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1 Introduction

The Bernoulli numbers B0, B1, B2, . . . is a sequence of rational numbers that has important
applications in Analysis and Number theory. For instance, they appear in the Taylor expansion of
the tangent and other related functions [4, 5] and in the Euler–Maclaurin summation formula [2].
The Bernoulli numbers are also the constant terms of the Bernoulli polynomials (see [7–10] for
some recent research on Bernoulli polynomials). Among the various possible ways of defining
the Bernoulli polynomials and numbers, one is [2]:
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B0 = B0(x) := 1 and Bm(x) =

x∫
0

mBm−1(x) +Bm, m ≥ 1, (1)

where Bm is such that
1∫

0

Bm(x)dx = 0,m ≥ 1. (2)

For n = 1, 2, 3, 4 and 6 and ` ≤ n, the values of the Bernoulli polynomials Bk

(
`
n

)
, k even,

are given by
Bk(0) = Bk(1) = Bk, Bk

(
1
2

)
= (21−k − 1)Bk

and
Bk

(
1
3

)
= Bk

(
2
3

)
= 1

2
(31−k − 1)Bk,

Bk

(
1
4

)
= Bk

(
3
4

)
= 1

2
(41−k − 21−k)Bk,

Bk

(
1
6

)
= Bk

(
5
6

)
= 1

2
(61−k − 31−k − 21−k + 1)Bk.

(3)

The problem of determining whether Bk

(
`
n

)
, k even, has a simple closed form (like those above)

for other irreducible fractions `
n

with ` < n is instigated by Lehmer in her paper of 1938 (see
footnote in p. 352 of [12]) and also by Granville and Sun in the more recent paper [6] of 1996.
Nevertheless, no significant advance with respect to this question seems to have been reported so
far.

The cases contemplated in (3) are derived in [6] using the symmetries of B2k(x) with respect
to x = 1

2
and Raabe’s multiplication theorem, [1] p. 804,

Bk(nx) = nk−1
n−1∑
j=0

Bk

(
x+

j

n

)
, n ≥ 1. (4)

In the first enigmatic case, n = 5, (4) and the symmetries of B2k(x) yield
B2k

(
1
5

)
− B2k

(
4
5

)
= 0

B2k

(
2
5

)
− B2k

(
3
5

)
= 0

B2k

(
1
5

)
+ B2k

(
2
5

)
+ B2k

(
3
5

)
+ B2k

(
4
5

)
=

(
1

52k−1 − 1
)
B2k,

(5)

so one may be tempting to launching in the quest of just another algebraic equation involving

B2k

(
1

5

)
, B2k

(
2

5

)
, B2k

(
3

5

)
and B2k

(
4

5

)
(6)

in order to solve the question.

In this note we call the attention to the impossibility of expressing the ratio
B2k

(
`
n

)
B2k

as a
rational function of powers of k with rational coefficients, like the expressions in (3). In fact,

Lemma 1.1. For x ∈ [0, 1], we have

lim
k→∞

B2k (x)

B2k

= cos (2πx) . (7)
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In particular, for x = 1
5
, (7) yields

lim
k→∞

B2k

(
1
5

)
B2k

=
−1 +

√
5

4
. (8)

Since
B2k

(
1
5

)
B2k

is always a rational number, this shows that it is impossible to express this ratio as
a rational function of powers of k with rational coefficients, like the expressions in (3).

Equation (7) follows directly by the Fourier representation of the Bernoulli polynomials (see
a proof below in the fold). A more informative expression for B2k

(
`
n

)
can be obtained in the

same manner in terms of the modular fractions of the Riemann zeta function:

µζ(z, n, q) :=

∞∑
j=0

1
[nj+q]z

∞∑
j=1

1
jz

=

∞∑
j=0

1
[nj+q]z

ζ(z)
, q = 1, 2, . . . , n, Re(z) > 1. (9)

For k ≥ 1, n ≥ 2, ` = 1, 2, . . . , n, and for µζ defined in (9),

B2k

(
`

n

)
= B2k

(
n∑
q=1

µζ(2k, n, q) cos
(
2q`π
n

))
. (10)

We have independently come across (10), but this result is not new1. A slightly different
version of (10) can be found in [3] in terms of the Hurwitz zeta function. We note that (10) can
be used to give an analytic proof of (3):

Corollary 1.1.1. The values Bk

(
1
2

)
, Bk

(
1
3

)
, Bk

(
2
3

)
, Bk

(
1
4

)
, Bk

(
3
4

)
, Bk

(
1
6

)
and Bk

(
5
6

)
are

given by the right-hand side of (3).

Therefore, it seems that (10) gives possibly the simplest closed form for the values B2k

(
`
n

)
in the

sense that the right-hand side of (10) is a linear combination of a finite number of functions of k
that are somewhat familiar.

A better known problem than the one discussed above is about the irrationality of the values
of the Riemann zeta function at odd positive integers. Until now, only ζ(3) has been known to be
irrational. A closely related open question, inspired by Euler’s formula for ζ(2k), is determining
whether the numbers β2k+1 defined by

ζ(2k + 1) = β2k+1(−1)k
22kπ2k+1

(2k + 1)!
, k ≥ 1 (11)

are rational or not [5]. We show that some of the modular fractions µζ(2k + 1, n, q) defined by
(9) are closely related to the numbers β2k+1 defined by (11). More precisely, we have

Theorem 1.2. For k ≥ 1,

1It is also worth noting that the maxima and minima of Bernoulli polynomials were previously analyzed using
Fourier expansions [11].
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µζ(2k + 1, 3, 1) = 1
2

(
1− 3−2k−1

)
+ 1√

3

B2k+1( 1
3)

β2k+1
,

µζ(2k + 1, 3, 2) = 1
2

(
1− 3−2k−1

)
− 1√

3

B2k+1( 1
3)

β2k+1
,

µζ(2k + 1, 4, 1) = 1
2
− 2−2k−2 + 1

2

B2k+1( 1
4)

β2k+1
,

µζ(2k + 1, 4, 3) = 1
2
− 2−2k−2 − 1

2

B2k+1( 1
4)

β2k+1
,

µζ(2k + 1, 6, 1) = 1
2

[
1 − 1

22k+1 − 1
32k+1 + 1

62k+1

]
+ 1√

3

[
B2k+1( 1

6)
β2k+1

− 1
22k+1

B2k+1( 1
3)

β2k+1

]
,

µζ(2k + 1, 6, 5) = 1
2

[
1 − 1

22k+1 − 1
32k+1 + 1

62k+1

]
− 1√

3

[
B2k+1( 1

6)
β2k+1

− 1
22k+1

B2k+1( 1
3)

β2k+1

]
.

Theorem 1.2 shows that β2k+1 is rational if and only if µζ(2k + 1, 4, 1) or µζ(2k + 1, 4, 3)

are rationals. In the affirmative case, it also shows that µζ(2k + 1, n, q) sometimes is rational,
sometimes is not.

In the rest of the note, we prove Theorem 1.2, Lemma 1.1 and Corollary 1.1.1.

2 Proofs

2.1 Proof of Theorem 1.2

Our proof is based on the Fourier expansion of the Bernoulli polynomials, [1] p. 805:

B2k−1 (x) = (−1)k 2(2k − 1)!

(2π)2k−1

∞∑
j=1

sin(2jπx)

j2k−1
, x ∈]0, 1[, for k = 1, (12)

x ∈ [0, 1], for k > 1, and

B2k (x) = (−1)k+1 2(2k)!

(2π)2k

∞∑
j=1

cos(2jπx)

j2k
, x ∈ [0, 1], k ≥ 1. (13)

Let x` = `
n
, ` = 0, 1, 2, . . . , n. We have

B2k+1 (x`)

β2k+1

(11),(12)
= 1

ζ(2k+1)

∞∑
j=1

sin(2jπx`)

j2k+1

= 1
ζ(2k+1)

n∑
q=1

∞∑
j=0

sin(2[nj + q]πx`)

[nj + q]2k+1

=
n∑
q=1

µζ(2k + 1, n, q) sin

(
2q`π

n

)
.

(14)

To simplify the notation, we shall write only µζ(n, q) instead of µζ(2k + 1, n, q). First, note
that

µζ(n, n) =
1

n2k+1
and µζ(an, aq) =

1

a2k+1
µζ(n, q). (15)
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For n = 3, (14) gives

B2k+1

(
1
3

)
β2k+1

= sin
(
2π
3

)
µζ(3, 1) + sin

(
4π
3

)
µζ(3, 2) + sin

(
6π
3

)
µζ(3, 3),

=
√
3
2
µζ(3, 1) −

√
3
2
µζ(3, 2).

In addition,

1 = µζ(3, 1) + µζ(3, 2) + µζ(3, 3)

(15)
= µζ(3, 1) + µζ(3, 2) + 3−2k−1.

Therefore, 
µζ(3, 1) = 1

2

(
1− 3−2k−1

)
+ 1√

3

B2k+1( 1
3)

β2k+1
,

µζ(3, 2) = 1
2

(
1− 3−2k−1

)
− 1√

3

B2k+1( 1
3)

β2k+1
.

(16)

For n = 4, (14) gives

B2k+1

(
1
4

)
β2k+1

= sin

(
2π

4

)
µζ(4, 1) + sin

(
4π

4

)
µζ(4, 2) + sin

(
6π

4

)
µζ(4, 3) + sin

(
8π

4

)
µζ(4, 4)

= µζ(4, 1) − µζ(4, 3)

In addition,

1 = µζ(4, 1) + µζ(4, 2) + µζ(4, 3) + µζ(4, 4)

(15)
= µζ(4, 1) + µζ(4, 3) +

1
22k+1µζ(2, 1) +

1
42k+1

(15)
= µζ(4, 1) + µζ(4, 3) +

1
22k+1

[
1− 1

22k+1

]
+ 1

42k+1 .

Therefore, 
µζ(4, 1) = 1

2
− 2−2k−2 + 1

2

B2k+1( 1
4)

β2k+1
,

µζ(4, 3) = 1
2
− 2−2k−2 − 1

2

B2k+1( 1
4)

β2k+1
.

For n = 6, (14) gives

B2k+1

(
1
6

)
β2k+1

= sin
(
2π
6

)
µζ(6, 1) + sin

(
4π
6

)
µζ(6, 2) + sin

(
6π
6

)
µζ(6, 3)

+ sin
(
8π
6

)
µζ(6, 4) + sin

(
10π
6

)
µζ(5, 6) + sin

(
12π
6

)
µζ(6, 6)

=
√
3
2
µζ(6, 1) +

√
3
2
µζ(6, 2)−

√
3
2
µζ(6, 4) −

√
3
2
µζ(6, 5)

(15)
=

√
3
2
µζ(6, 1) +

√
3
2

1
22k+1µζ(3, 1)−

√
3
2

1
22k+1µζ(3, 2) −

√
3
2
µζ(6, 5)

(16)
=

√
3
2
µζ(6, 1) −

√
3
2
µζ(6, 5) + 1

22k+1

B2k+1( 1
3)

β2k+1
.
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In addition,

1 = µζ(6, 1) + µζ(6, 2) + µζ(6, 3) + µζ(6, 4) + µζ(6, 5) + µζ(6, 6)

(15)
= µζ(6, 1) + 1

22k+1µζ(3, 1) + 1
32k+1µζ(2, 1) + µζ

1
22k+1 (3, 2)

+µζ(6, 5) + µζ(6, 6)

= µζ(6, 1) + 1
32k+1 [1− µζ(2, 2)] + 1

22k+1 [1− µζ(3, 3)]

+µζ(6, 5) + µζ(6, 6)

(15)
= µζ(6, 1) + µζ(6, 5) + 1

32k+1

[
1− 1

22k+1

]
+ 1

22k+1

[
1− 1

32k+1

]
+ 1

62k+1 .

Therefore,
µζ(6, 1) = 1

2

[
1− 1

22k+1 − 1
32k+1 + 1

62k+1

]
+ 1√

3

[
B2k+1( 1

6)
β2k+1

− 1
22k+1

B2k+1( 1
3)

β2k+1

]
,

µζ(6, 5) = 1
2

[
1− 1

22k+1 − 1
32k+1 + 1

62k+1

]
− 1√

3

[
B2k+1( 1

6)
β2k+1

− 1
22k+1

B2k+1( 1
3)

β2k+1

]
.

2.2 Proof of Corrolary 1.1.1

Let us prove (3) for `
n
= 1

3
(the other cases are analogous). By (10), we have

B2k

(
1
3

)
B2k

=
F − 1

2
E

E + F
,

with

E =
∞∑
j=0

1

(3j + 1)2k
+
∞∑
j=0

1

(3j + 2)2k
, F =

∞∑
j=1

1

(3j)2k
.

However,

F =
1

32k

∞∑
j=1

1

(j)2k
=

1

32k
(E + F ).

Therefore
B2k

(
1
3

)
B2k

=
F
(
1 + 1

2

[
1− 32k

])
32kF

=
1

2

(
31−2k − 1

)
.

2.3 Proof of Lemma 1.1

By (13), for x ∈ [0, 1],

B2k (x)

B2k

=
B2k (x)

B2k(0)
= 1

ζ(2k)

∞∑
j=1

cos(2jπx)

j2k (17)

and we also have lim
k→∞

ζ(2k) = 1 and lim
k→∞

∞∑
j=1

cos(2jπx)

j2k
= cos(2πx).
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3 Summary

In this note we investigated the impossibility of expressing the values of the Bernoulli polynomials
B2k

(
`
n

)
at rational arguments as products of the Bernoulli numbers B2k and rational functions of

powers of k with rational coefficients. Lemma 1.1 tells us that this can not be done in general. We
also give some necessary and sufficient conditions for ζ(2k + 1) be a rational multiple of π2k+1

in terms of the modular fractions µζ(2k + 1, n, q) defined by (9).
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