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Abstract: We present a plane trigonometric proof for the case n = 4 of Fermat’s Last Theorem.
We first show that every triplet of positive real numbers (a, b, c) satisfying a4 + b4 = c4 forms
the sides of an acute triangle. The subsequent proof is founded upon the observation that the
Pythagorean description of every such triangle expressed through the law of cosines must exactly
equal the description of the triangle from the Fermat equation. On the basis of a geometric
construction motivated by this observation, we derive a class of polynomials, the roots of which
are the sides of these triangles. We show that the polynomials for a given triangle cannot all have
rational roots. To the best of our knowledge, the approach offers new geometric and algebraic
insight into the irrationality of the roots.
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1 Introduction

Let φ ≥ 1 be a real number. Let (a, b, c) be a triplet of positive real numbers such that

aφ + bφ = cφ. (1)

We will call φ the Fermat index of (a, b, c). We allow φ to take values as large as required to
satisfy (1). For some choices of the triplet (a, b, c), φ might not satisfy (1) at any finite value,
however large. In these cases, aφ+bφ−cφ might approach the limiting value of 0 only as φ grows
unboundedly large. For completeness of our definition of the Fermat index, we acommodate for
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this possibility and define φ to take values from the affinely extended positive real number line
greater than or equal to 1 , φ ∈ R̄≥1 = {R≥1} ∪ {+∞}, following the definition in [3].

It is common knowledge that Fermat’s Last Theorem [6], completely proved in 1995 by
Andrew Wiles [11], states that if a, b and c are all positive integers, then they cannot satisfy (1)
for an integer value of the Fermat index φ > 2. Let the positive integer values of φ be represented
by n, so that φ = n ∈ Z≥1. Then (1) for integer Fermat index is

an + bn = cn. (2)

In this paper, we specifically analyze (2) for n = 4

a4 + b4 = c4. (3)

While Fermat spoke of a marvelous proof that the margins of his notebook were too narrow to
contain, his only known work on this topic is one in which he used his method of infinite descent
to prove the case φ = 4 [6]. Since then many mathematicians, amongst them Euler, Legendre,
Lebesgue, and Kronecker, have proved this particular case in the past [10]. More recently, Grant
and Perella [8], Dolan [5], Barbara [1] and others have addressed this problem.

Traditionally, the strategies for proof that have been adopted have been based either on
Fermat’s observation that the area of a right triangle with integer sides can never be a perfect
square, or on other equivalent forms of Diophantine analysis that are founded upon an algebraic
approach. To the best of our knowledge, our approach represents a departure from these methods,
in that we adopt a strategy for proof that is based on an understanding of the plane trigonometric
implications of (3). We believe that the consequent insights are new and could potentially
complement the existing body of work on the subject.

We will first show that (3) represents acute triangles.

Lemma 1.1. The triplet (a, b, c) satisfying (3) forms an acute triangle with c the longest side.

Proof. Consider (a + b)4 = a4 + b4 + 4(a3b + ab3) + 6a2b2 > a4 + b4 = c4, hence a + b > c.
We also see that c > a and c > b. Therefore, the triangle inequalities a + b > c, b + c > a and
c + a > b are satisfied, and (a, b, c) can be considered as side lengths of a triangle, of which c is
the largest side. Assume γ as the largest angle opposite c, and we have cos γ = (a2+b2−c2)/2ab,
and (a2 + b2)2 = a4 + b4 + 2a2b2 > a4 + b4 = c4 = (c2)2 =⇒ (a2 + b2− c2)(a2 + b2 + c2) > 0,
thus a2 + b2 > c2 leading to cos γ > 0 and hence (a, b, c) is an acute triangle.

The main result of our paper is the proof of the following theorem:

Theorem 1.1. There exists no rational triangle with a Fermat index of 4.

In Section 2, we establish a framework for the proof of Theorem 1.1, followed by the proof
in Section 3.

Degenerate triangles are ruled out by definition, and from Lemma 1.1, obtuse and right
triangles are also ruled out. Therefore, for the proof of Theorem 1.1, we need to consider acute
triangles alone. We will call a triplet (a, b, c) an integer triplet (respectively, rational triplet), and
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the corresponding triangle, if it exists, an integer triangle (respectively, rational triangle), if, and
only if, all of a, b and c are positive integers (respectively, rational numbers). A triplet (a, b, c)

(and the corresponding triangle, if it exists) will be called primitive if, and only if, it is an integer
triplet (respectively, triangle), and the greatest common divisor of a, b and c is 1.

Lemma 1.2. For any integer triplet (a, b, c) satisfying (2), a2 + b2 − c2 is even.

Proof. First assume (a, b, c) is primitive. Then all of a, b, and c cannot be even. Neither can any
two be even, as the third then cannot be odd. This leaves exactly one of a, b, and c even, and the
remaining two odd, thus making a2 + b2 − c2 also even, and this can then also be seen to hold
when (a, b, c) is not primitive.

Lemma 1.3. If (a, b, c) is primitive and satisfies (3), then c must be odd.

Proof. Assume c is even, then a and b are odd, and one may consider (a2, b2, c2) a Pythagorean
triplet. For some positive integers l,m, let a2 = 2l + 1 and b2 = 2m + 1. Then (a2)2 + (b2)2 =

4(l2 +m2) + 4(l+m) + 2 which is divisible by 2 and not by 4, whereas (c2)2 divisible by 4. This
contradicts our assumption, hence c cannot be even.

2 Framework for the Proof of Theorem 1.1

In this section, we describe establish a framework for the proof of Theorem 1.1, which is based
on a geometric construction and the derivation of a class of polynomials which are obtained by
relating the law of cosines to (3), for all triangles arising in this construction.

2.1 Construction

We consider a construction as shown in Figure 1 below.

Figure 1. Construction for the proof
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At O, the origin of the Cartesian axis in two dimensions, place a line segment OL with length
c, at an angle θ to OX . Along OX , mark a line segment OQ of length a (labeled x in the figure).
Denote the length of the side LQ in triangleOLQ by b. We will refer to the sides ofOLQ by their
respective lengths in the rest of the paper. Let the angle opposite side a be λ, that opposite side
b be θ, and that opposite side c be γ. Note that, since we are looking for integer (hence rational)
values of a and b, we allow cos θ to only take on rational values. The projection of c on side a is
α = p/q, and that on side b is β = r/s, where p, q (respectively r, s) are either 1 or are positive
coprime integers (α, β are either positive integers or irreducible common fractions), and hence
cos θ = p/(qc), cosλ = r/(sc). We use the notation x | y to mean that x divides y. Then, in any
integer triangle (a, b, c), from the cosine law, (a2 + c2 − b2)/(2ac) = p/(qc), and from Lemma
1.2, 2 | (a2 + c2 − b2), and respectively for side b, therefore

q | a, s | b. (4)

Since we are looking for positive values of a and b, it is sufficient to restrict θ to the first quadrant.
Without loss of generality, we will allow c to only take positive integer values. We will define
the triangle “rotated” around the altitude QN as axis in Fig. 1, with c at an angle λ to the
X-axis, and side b swapped with side a, as the transposed triangle, indicated by the operation
(a, b, c)T = (b, a, c).

Theorem 1.1 is now equivalent to

Theorem 2.1. There exists no primitive triangle with Fermat index 4.

2.2 Fermat–Pythagoras polynomials

Theorem 2.1 specifies only primitive triangles, because any rational triangle can be scaled to a
primitive triangle. Hence, for all possible integer values of c and rational cos θ, the absence of
primitive triangle solutions implies the absence of rational triangle solutions. This is a geometric
analog of Gauss’s Lemma [7]. The idea of the construction is now to “search” for such acute
primitive triangles by continuously increasing x (starting from the position x = OJ), for all
possible acute triangles with all positive integer values of c at all positive rational values of cos θ.
We enable this search algebraically by equating the Fermat description of the length of side bwith
the corresponding Pythagorean description (the law of cosines) at constant c and α,

Ξ4 = u4(c, α, x) =
(
b(x)2

)4 − (c4 − x4)2

= (c2 + x2 − 2αx)4 − (c4 − x4)2,
(5)

where b is a function of x, and hence is denoted by b(x). Clearly, Ξ4 is a polynomial, which
we will call Fermat–Pythagoras polynomial. Note that by similar arguments for the transposed
triangle (a, b, c)T = (b, a, c), one may also derive u4(c, β, x) which equates the Fermat and
Pythagorean formulae for side a. Henceforth, for simplicity, our analysis will only consider
side a, but we note that the same analysis applies to side b also over the transposed triangle. We
will point out any differences in the treatment for both sides explicitly, as and when they arise.
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Lemma 2.1. At constant c and cos θ, if Ξ4 has non-zero real roots, then it has exactly two positive
non-zero real roots, the product of which is c2.

Proof. We begin by observing in Fig. 1, that in the interval −∞ < x < α, triangle QOL is
obtuse. Since (3) can only be satisfied by acute triangles, no solutions can exist in this interval,
except for x = 0, which is the trivial solution (for which no triangle exists and φ is not defined).
Furthermore, x = α gives a right triangle (with φ = 2), and is also ruled out. Therefore, we
consider only the interval α < x < +∞. We see in (5) that Ξ4 = 0 represents two types of
equations: c4 − x4 = ±b(x)4. The first type of Fermat equation is obtained with +b(x)4, and
represents what we will call a Type˜I triangle,

x4 + b(x)4 = c4. (6)

Here, c is the greatest side, and x, b(x) < c. The second type of Fermat equation is obtained with
−b(x)4, and is a Type˜II triangle,

c4 + b(x)4 = x4, (7)

in which c, b(x) < x. Therefore, as x increases from an initial value of α in Fig. 1, we expect at
first a Type˜I triangle with c as the longest side, which satisfies (6) for some x = x1,

x41 + b41 = c4, (8)

where b1 = b(x1). For constant c and θ, it is easy to see that (x1, b1, c), if it exists, is the
only Type˜I triangle that satisfies (8). Fig. 1 shows that at constant c and θ, when γ < π/2

(equivalently, when x > α), b(x) is strictly increasing with x since db/dx = (x − α)/b, hence
x > x1 ⇐⇒ b(x) > b1. Since c and θ remain constant, (8) will not be satisfied for any value of
x > x1. Therefore, for a given value of c and θ, there is exactly one Type˜I triangle.

At constant c and θ, x exceeds b(x) and c when x > max
(
c, c2/(2α)

)
. Then it is the longest

side of triangle OLQ, in which case, for some x = x2, (7) is satisfied with b2 = b(x2),

c4 + b42 = x42. (9)

We see that, in fact, the Type˜II triangle in (9) can be obtained from the Type˜I triangle (x1, b1, c),
by multiplying (8) throughout with (c/x1)

4,

c4 + (b1c/x1)
4 = (c2/x1)

4, (10)

which can be confirmed by substituting x = c2/x1 into the law of cosines formula for b(x):√
c2 + (c2/x1)2 − 2αc2/x1 = (c/x1)

√
c2 + x21 − 2αx1 = b1c/x1.

Thus we see that if a Type˜I triangle exists, a corresponding Type˜II triangle must also exist.

Now let us assume that the Type˜II triangle (x2, b2, c) = (c, b1c/x1, c
2/x1) satisfying (9) exists

and that there also exists a second value x3 and correspondingly, b3 = b(x3) which together satisfy
(7), with (x3, b3, c) being one more Type˜II triangle for the given value of c and cos θ. Then we
would have

c4 + b43 = x43, (11)
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which would result in c < x3 =⇒ c2/x3 < c, and also b3 < x3 =⇒ b3c/x3 < c, which, taken
together, imply that multiplying (11) throughout by (c/x3)

4, one obtains

(c2/x3)
4 + (b3c/x3)

4 = c4, (12)

where (c2/x3, b3c/x3, c) is a valid Type˜I triangle (as can be verified by substituting x = c2/x3
into the law of cosines formulation of b3) at the same values of c and θ as the other two triangles,
and it should have been encountered for some x < x3. But we have already seen that for a
given c and cos θ, there is exactly one Type˜I triangle. Hence, it is not possible to have more
than one Type˜II triangle, which is simply a Type˜I triangle of sides (x, b, c) scaled by the factor
c/x. Furthermore, this proves the converse statement, that if a Type˜II triangle exists, then the
corresponding Type˜I triangle must also exist. Therefore, if Ξ4 has non-zero real roots, then it has
exactly two positive real roots of the form x = x1 < c and x = x2 = c2/x1 > c. The product
of the two positive real roots of Ξ4 is c2, and apart from one trivial zero, the rest of the roots of
Ξ4 are complex.

Since every Type˜II triangle is a scaled Type˜I triangle, it follows that the set of all Type˜II
triangles is a subset of the set of all Type˜I triangles. Hence, Theorem 2.1 is reduced to

Theorem 2.2. There exists no primitive Type˜I triangle with Fermat index 4.

This leads to the following fact: to prove Theorem 2.1, it is sufficient to prove Theorem 2.2.

3 Proof of Theorem 2.1

We rewrite (5) as

u4(c, α, x) = −x
(
2x3−4αx2+(4α2+2c2)x−4c2α

)(
4αx3−(4α2+2c2)x2+4c2αx−2c4

)
, (13)

which, upon setting α = p/q, and in the light of (4), setting x = qy,

= −4y
(
q4y3 − 2pq2y2 + (2p2 + q2c2)y − 2c2p

)(
2pq2y3 − (2p2 + q2c2)y2 + 2c2py − c4

)
. (14)

Therefore u4(c, α, x) = −4ys4(c, p, q, y) = −4yg(p, q, y)h(p, q, y), where s4(c, p, q, y) is a
sixth degree polynomial, that is factored into two third degree polynomials, g(p, q, y) and h(p, q, y),
both of which have integer coefficients.

ga = g(p, q, y) = q4y3 − 2pq2y2 + (2p2 + q2c2)y − 2c2p,

ha = h(p, q, y) = 2pq2y3 − (2p2 + q2c2)y2 + 2c2py − c4.
(15)

A similar equation may be derived for each of gb = g(r, s, z) and hb = h(r, s, z), where x = sz,
with reference to the transposed triangle, (b, a, c). Therefore, we have two pairs of polynomials
associated with each side of the triangle: s4a = (ga, ha) and s4b = (gb, hb). We will also denote
the set of polynomials s4 = {s4a, s4b}.

Lemma 3.1. Every polynomial in the set s4 has exactly one real root, and the real roots of at
least one pair of polynomials s4a and s4b are irrational.
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Proof. Without loss of generality, we us assume that (a, b, c) is a primitive triangle. For simplicity,
we consider Fermat–Pythagoras polynomials of side awith the arguments being equally applicable
to the polynomials of side b of the transposed triangle (b, a, c). We ignore the trivial solution
x = 0 ( =⇒ y = 0) in u4(c, α, x), since we are concerned with the interval α < x < +∞.
We know that finding primitive triangles satisfying (3) would amount to finding integer roots of
Ξ4 in (5). We have established in Lemma 2.1 that, for a given c and cos θ, if non-zero real roots
of u4(c, α, x) exist, then there are exactly two positive real roots, with the rest of the roots being
complex. If the first root is an integer of the form x1 = y1q, then the second root is of the form
x2 = y2q = c2/x1, so that y2 = c2/(y1q

2). Clearly, with the trivial y = 0 being ruled out,
u4(c, α, x) = 0 whenever either ga = 0, or ha = 0, or both. Assume ga = 0. We first recall the
complex conjugate roots theorem [4], which states that for every complex root of a polynomial
(including multiplicity), there must be a corresponding complex conjugate root. Being cubic, ga
must have at least one real root, since there cannot be three complex roots, thus confirming the
existence of real roots of Ξ4. For the same reason, it cannot have two real roots. Three real roots
are not possible, as Lemma 2.1 shows that u4(c, α, x) has exactly two real roots. Therefore, the
remaining positive real root of Ξ4 must be a zero of ha. We have geometrically shown that one
real root is greater than the other in value, therefore, both ga and ha cannot be zero simultaneously
(reflecting the previously discussed geometric fact that the Type˜I triangle will occur before the
Type˜II triangle, as x increases).

Let a polynomial with integer coefficients be defined as follows:

Q(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. (16)

The tool we use to verify the existence of integer roots ofQ(x) is the rational root theorem, which
is a consequence of Gauss’s Lemma [2, 7, 9].

Theorem 3.1. If Q(x) has a rational root of the form p/q, p is a factor of a0, while q is a factor
of an. Any integer root of Q(x) must be a factor of a0 only. These conditions hold irrespective of
the sign of the root.

Lemma 3.2. If (a, b, c) is primitive and satisfies (2), then a, b, and c are pairwise mutually
coprime.

Since the greatest common divisor of a, b and c is 1, and if there is a common factor between
any two, this would render in (2) a fraction equal to an integer [6]. Now let us assume that
(a, b, c) satisfies (3). This means that side a cannot have a common factor with c. In particular,
with a = x1 = y1q, y1 (respectively, q) must be coprime with c, provided y1 > 1 (respectively,
q > 1). We identify two cases: (i) q > 1, and (ii) q = 1.

Let us consider case (i) first, and let q > 1. We will establish that, given a = y1q, y1 > 1.
For if y1 = 1, then a = q, which means that since

(
a2 + (c2 − b2)

)
/(2a) = p/q, a is coprime

with c2 − b2. However, from (3) we see that a4 = (c4 − b4) = (c2 − b2)(c2 + b2). Note that here
c2−b2 > 1 since c = b+1 at least. Therefore a is not coprime with c2−b2. This is a contradiction,
hence y1 > 1, and therefore must be coprime with c. From Lemma 2.1, y2 = c2/(y1q

2), and since
y1 is coprime with c, and both y1, c > 1, if y1 is an integer, then y2 must be a positive rational
number in the form of an irreducible common fraction.
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From Lemma 1.3, c is odd, and exactly one of a or b must be odd, and the other even. We
will first assume that a is odd, without loss of generality (since if a were even, we would simply
consider the transposed triangle (b, a, c)). Since a = y1q, both y1 and q are odd, and y1 > 1

as already shown. If y1 were a solution of ha in (15), then from Theorem 3.1, y1 would have
to be a factor of c. This is not possible since y1 must be coprime with c as Lemma 3.2 shows.
Therefore, y1 can only be a solution of ga, and not ha, in (15), and hence it must be a factor of p
in accordance with Theorem 3.1. This is consistent with y2 being a root of ha, since Theorem 3.1
shows that if a rational y2 exists as a common fraction, the numerator and denominator would be
factors respectively of the numerator and denominator of c2/p. Therefore, y1 is a factor of p. Let
p = y1m with m a positive integer, and substitute this expression into ga, to get

q4y21 − 2mq2y21 + 2m2y21 + q2c2 − 2c2m = 0.

Grouping terms we get
y21(q4 − 2mq2 + 2m2) = c2(2m− q2). (17)

The relation (17) can also be written as

y21q
2
(
m2 + (q2 −m)2

)
= c2

(
m2 − (q2 −m)2

)
. (18)

Note that m2 − (q2 − m)2 and m2 + (q2 − m)2 are always odd, regardless of m being odd
or even, since q is odd by assumption. Since q is coprime with p, q is coprime with m, and
m2 − (q2 −m)2 is coprime with m2 + (q2 −m)2. Therefore, in (18), a2 = m2 − (q2 −m)2, and
c2 = m2 + (q2 −m)2. Moreover, Fig. 1 shows the fact that a > p/q =⇒ y1q > y1m/q, thus
q2 > m. Then the numbers u = m, v = (q2 −m) are the generating terms for the Pythagorean
triplet (a2, b2, c2), with a2 = u2 − v2, b2 = 2uv, c2 = u2 + v2 [6], and the Pythagorean triplet
satisfying (3) is

a2 = m2 − (q2 −m)2, b2 = 2m(q2 −m), c2 = m2 + (q2 −m)2. (19)

Now let us consider the transposed triangle (b, a, c), with side c making an angle of λ with the
X-axis. The line segment LM occurs in place of OJ , and it has a length of

β = r/s = c cosλ = (c2 + b2 − a2)/(2b). (20)

Substituting values from (19) into (20), we get

β = r/s = q2/(2m). (21)

Since q is odd and coprime withm, q2/(2m) is already an irreducible fraction. Therefore, r = q2,
and s = 2m. From (21), and comparing with (15), we see that

gb = g(r, s, z) = g(q2, 2m, z) = 16m4z3 − 8q2m2z2 + (2q4 + 4m2c2)z − 2c2q2,

hb = h(r, s, z) = h(q2, 2m, z) = 8q2m2z3 − (2q4 + 4m2c2)z2 + 2c2q2z − c4.
(22)

Using (4) we let b = z1s, where z1 is a positive integer. From (22), the constant term of gb is
−2c2q2, while that of hb is −c4. Further, note from (13) that an additional factor of 2 must now
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be taken into account (since b is even). Therefore, z1 might either be a factor of 2c4, or 4c2q2.
Since a factor of c is ruled out from Lemma 3.2, z1 is either 2 or a factor of 4q2. But z1 cannot
also be a factor of q, since that would result in b having a common factor q with a, contradicting
Lemma 3.2. Therefore z1 can either be 1, 2 or 4. Together with these relations and (19), we set

b = z1s, (23)

and
b2 = z21s

2 = z21(2m)2 = 2m(q2 −m) =⇒ q2 = 3m, 9m, or 33m. (24)

We see in (24) that form > 1 this results in q andm having factors in common, which contradicts
our assumption of q and m being coprime. If m = 1 then a2 < 0 in (19). Therefore, case (i),
q > 1, is impossible.

We next consider case (ii), which is q = 1. Then, a = y1. Since y1 ≤ p leads to an obtuse
(respectively, right) triangle, as can be seen by inspecting Fig. 1, y1 > p. Secondly at y1 = 2p

either a, or b or both are equal to c, and thus (3) cannot be satisfied. Therefore, p < y1 < 2p.
This means that no proper factor of 2p can equal y1. Now if y1 = 2, then p being an integer, must
be 1. Then that would again lead to one or both of a and b being equal to c (and in any case, a is
assumed to be odd). Clearly y1 > 1 because p is at least 1, for which y1 = 1 would lead to a right
triangle. In case (ii) also, we see that no possible combination of factors of the constant term of
ga can equal y1.

The above arguments for cases (i) and (ii) apply for all admissible integer values of c and
rational cos θ. We have shown that no integer value of a = y1q can be found for any integer c and
rational cos θ combination, in a Type˜I triangle, such that b is also an integer. Hence, no primitive
Type˜I triangle (a, b, c) can exist as a solution to (3), and this proves Theorem 2.2. Since the set
of all Type˜II triangles is a subset of the set of all Type˜I triangles, there is no primitive triangle
(a, b, c) (and hence, no rational triangle) that satisfies (3). Therefore, at least one of a and b must
be irrational. Hence the roots of at least one pair of polynomials s4a and s4b must be irrational,
thus proving Lemma 3.1 and Theorem 2.1. Thus Fermat’s Last Theorem for n = 4 is proved.

The primary insight we obtain is that every real positive triplet (a, b, c) that satisfies (3) is
an acute triangle; if c and a are restricted to be integers, then due to the constraint that sides
of triangle (a, b, c) must satisfy both Pythagorean and Fermat relationships, the possible integer
values of b are restricted to those that are non-coprime with either a or c, which renders such
integer triplets impossible. The approach that we describe in this paper therefore offers significant
fresh trigonometric insight into why Fermat’s Last Theorem for n = 4 is true, and leads us to
believe that it could be explored for application to other integer exponents of the Fermat equation.
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