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Abstract: The sums of powers of arithmetic progressions is of the form ap + (a + d)p

+(a + 2d)p + · · · + (a + (n − 1)d)p, where n ≥ 1, p is a non-negative integer, and a and d are
complex numbers with d 6= 0. This sum can be computed using classical Eulerian numbers [11]
and general Eulerian numbers [12]. This paper gives a new method using classical Eulerian
numbers to compute this sum. The existing formula that uses general Eulerian numbers are more
algorithmically complex due to more numbers to compute. This paper presents and focuses on
two novel algorithms involving both types of Eulerian numbers. This paper gives a comparison
to Xiong et al.’s result with general Eulerian numbers [12]. Moreover, an analysis of theoretical
time complexities is presented to show our algorithm is less complex. Various values of p are
analyzed in the proposed algorithms to add significance to the results. The experimental results
show the proposed algorithm remains around 70% faster as p increases.
Keywords: Analysis of algorithms, Sums of powers of arithmetic progressions, Dynamic
programming, Classical Eulerian numbers, General Eulerian numbers.
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1 Introduction

This paper is a continuation of the work on sums of powers of arithmetic progressions [9] with
classical Eulerian numbers. In [9], the authors used Stirling numbers of the second kind to
compute the sums of powers of arithmetic progressions. Our purpose is to discover different
ways to compute the sum and compare algorithmically with other formulas of similar type. The
sums of powers of arithmetic progressions are of the form

Sp,a,d(n) = ap + (a + d)p + · · ·+ (a + (n− 1)d)p =
n−1∑
j=0

(a + jd)p, (1)

where n ≥ 1, p is a non-negative integer, and a and d are complex numbers with d 6= 0. Several
formulae and algorithms using different special functions and numbers have been developed to
compute this sum [1, 6, 9, 12].

Letting a = d = 1 in (1) gives the following famous formula:

Sp,1,1(n) =
n∑

j=1

jp = 1p + 2p + 3p + · · ·+ np. (2)

For example, letting p = 1 gives the identity

S1,1,1(n) =
n∑

j=1

j =
n(n + 1)

2
.

In 2013, Xiong et. al. [12] presented a method to compute such a sum based on general
Eulerian numbers. However, generalized Eulerian numbers may not be good because it takes
longer to compute. Other authors have also published results using generalized Eulerian numbers
[7, 8]. This paper aims to use a new method with classical Eulerian numbers as a comparison
with Xiong et al.’s method with general Eulerian numbers. More specifically, we algorithmically
analyze their method to obtain theoretical time complexity.

Classical Eulerian numbers are defined as the coefficients of
(
x+p−j

p

)
, j = 0, 1, . . . , n in the

factorial expansion of xn, namely,

xp =

p∑
j=0

〈
p

j

〉(
x + j − 1

p

)
, p = 0, 1, . . . , (3)

which is called Worpitzky’s identity [2, 3, 11]. For example, the values of
〈
p
j

〉
for 1 ≤ p ≤ 5 are

given as follows [3]:

HH
HHH

p j 0 1 2 3 4

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

Table 1. Values of Eulerian numbers for 1 ≤ p ≤ 5.
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Xiong et. al. [12] defined the general Eulerian numbers Ap,j(a, d) with the following recurrence
relation as A0,−1 = 1, Ap,j = 0 (j ≥ p or j ≤ −2) and

Ap,j(a, d) = (−a + (j + 2)d)Ap−1,j(a, d) + (a + (p− j − 1)d)Ap−1,j−1(a, d). (4)

(0 ≤ j ≤ p− 1).

Two lemmas are presented in the next section to give explicit forms of the two special numbers
discussed. In addition, the new method with classical Eulerian numbers is given. In Section 3,
we analyze both Xiong et al.’s formula and our formula algorithmically and present their
corresponding theoretical time complexities. In Section 4, experiments are conducted to compare
both algorithms.

2 Main results

In this section, a new method using classical Eulerian numbers, as opposed to using general
Eulerian numbers, is given. As a result, a new formula to compute sums of powers of arithmetic
progression using classical Eulerian numbers is presented. A detailed analysis of this algorithm
is given in the next section.

2.1 Preliminaries

The classical Eulerian number
〈
p
j

〉
is the number of permutations of the numbers 0 to p in which

exactly j elements are greater than the previous element.
The binomial expansion of

(
x
p

)
can be rewritten using the Pochhammer symbol (x)p, or falling

factorial, as follows: (
x

p

)
=

(x)p
p!

, (5)

where (x)p = x(x− 1) · · · (x− p+ 1). Next, two lemmas are presented to give the explicit forms
of Eulerian numbers and general Eulerian numbers, which we will use in the experiments.

Lemma 2.1. The classical Eulerian numbers
〈
p
j

〉
are given explicitly by the sum

〈
p

j

〉
=

j∑
i=0

(−1)i
(
p + 1

i

)
(j − i)p. (6)

This lemma is proved in many manuscripts [3–5].

Lemma 2.2. The general Eulerian numbers Ap,j(a, d) are given explicity by the sum

Ap,j(a, d) =

j+1∑
i=0

(−1)i
(
p + 1

i

)
[(j + 2− i)d− a]p. (7)

This lemma is proved by Xiong et al. [12].
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2.2 New method with classical Eulerian numbers

Given

xp =

p∑
j=0

〈
p

j

〉(
x + j − 1

p

)
, (8)

the substitution x = (k − 1)+
a

d
results in[

(k − 1) +
a

d

]p
=

p∑
j=0

〈
p

j

〉(
(k − 1) + a

d
+ j − 1

p

)
. (9)

Multiplying both sides by dp and summing over k leads to
n∑

k=1

[a + d(k − 1)]p = dp
p∑

j=0

〈
p

j

〉 n∑
k=1

(
(k − 1) + a

d
+ j − 1

p

)
. (10)

Now, consider just
∑n

k=1

(
(k−1)+a

d
+j−1

p

)
. Expanding the right-hand side of (10) results in

n∑
k=1

(
(k − 1) + a

d
+ j − 1

p

)
=

(
a
d

+ j − 1

p

)
+

(
a
d

+ j

p

)
+ · · ·+

(
n− 2 + a

d
+ j

p

)
.

Now using Pascal’s identity
(
n
p

)
=
(
n−1
p−1

)
+
(
n−1
p

)
, the right-hand side becomes(

a
d

+ j

p + 1

)
−
(

a
d

+ j − 1

p + 1

)
+

(
1 + a

d
+ j

p + 1

)
−
(

a
d

+ j

p + 1

)
+ · · ·

+

(
n− 1 + a

d
+ j

p + 1

)
−
(
n− 2 + a

d
+ j

p + 1

)
.

We see that the sum telescopes, so we have the following result
n∑

k=1

(
(k − 1) + a

d
+ j

p

)
=

(
n− 1 + a

d
+ j

p + 1

)
−
(

a
d

+ j − 1

p + 1

)
. (11)

Utilizing the identity (5) we arrive at the following(
n− 1 + a

d
+ j

p + 1

)
−
(

a
d

+ j − 1

p + 1

)
=

(a
d

+ j + n− 1)p+1 − (a
d

+ j − 1)p+1

(p + 1)!
. (12)

Plugging (12) back into (10) gives us
n∑

k=1

[a + d(k − 1)]p =
dp

(p + 1)!

p∑
j=0

〈
p

j

〉[(a
d

+ j + n− 1
)
p+1
−
(a
d

+ j − 1
)
p+1

]
. (13)

3 Analysis of algorithms

A comparison between the general Eulerian algorithm and the proposed classical Eulerian
algorithm is provided.

Since it takes n−1 operations to compute n! and (x)n, both operations have a time complexity
of O(n). Therefore, the binomial coefficients

(
n
k

)
can be computed with n − 1 + k − 1 + (n −

k)− 1 + 2 = 2n− 1 operations and has a time complexity of O(n).
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3.1 Xiong et al.’s formula

Xiong et al. gave a method to compute the sums of powers of arithmetic progressions using
general Eulerian numbers [12]. In this section, we will break down their method and present an
analysis on the following:

n∑
k=1

(a + d(k − 1))p =

p−1∑
j=−1

Ap,j(a, d)

(
n + j + 1

p + 1

)
. (14)

To calculate the time complexity of Xiong et al.’s algorithm, we only need to consider the
time complexity of the binomial coefficient and of the general Eulerian numbers. It is clear that
from the binomial coefficient we get the time complexity in terms of n and j.

From (14), the portion of the algorithm which computes
(
n+j+1
p+1

)
, takes

O(2(n + j + 1)− 1) = O(2n + 2j + 1) = O(n + j)

operations to compute.
Lemma 2.2 can be used to compute the general Eulerian numbers. Examining (7), we get a

time complexity of O(i + 2p + 2 + 5 + p) = O(i + p). Summing from i = 0 to j + 1 gives
an upper bound for the time complexity of O(ji + jp) = O(j2 + jp). Using this calculation of
Ap,j(a, d) in (14) and summing from k = 0 to p gives an upper bound for the time complexity of
the first algorithm as

O(pj2 + jp2 + 2pn + 2pj + 3p) = O(2p3 + 2p2 + 2pn + p) = O(p3 + pn) (15)

in terms of the input variables p, n.

3.2 Our algorithm

An analysis on the new method presented in Subsection 2.2 is provided using Lemma 2.1 for the
classical Eulerian numbers.

n∑
k=1

[a + d(k − 1)]p =
dp

(p + 1)!

p∑
j=0

〈
p

j

〉[(a
d

+ j + n− 1
)
p+1
−
(a
d

+ j − 1
)
p+1

]
. (16)

To calculate the time complexity of our improved formula (16), we begin with the term outside
the sum, dp

(p+ 1)!
, which takes 2p + 1 operations to compute and, consequently, has a O(p) time

complexity. In addition, we see that each falling factorial terms will have a time complexity of
O(p). Note that the complexity no longer depends directly on the value of n.

From (6), we get a time complexity of O(i + 2p + 2 + 3 + p) = O(i + p) for the classical
Eulerian numbers. Summing from i = 0 to j + 1 gives an upper bound for the time complexity
of O(ji + jp) = O(j2 + jp). Using this calculation of

〈
p
j

〉
in (16) and summing from k = 0 to p

gives an upper bound for the time complexity of the first algorithm as

O(pj2 + jp2 + 2p2) = O(2p3 + 2p2) = O(p3) (17)
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in terms of the input variables p. Note that the complexity no longer depends directly on the value
of n; therefore, when comparing (14) and (16), this gives evidence to suggest that the improved
algorithm will run faster than the original algorithm on average. This expectation is realized in
the following section, where we conduct extensive experiments.

4 Experimental results

In this section, experimental results for evaluating the sums of powers of arithmetic progressions
are presented. The specifications of the testing environment are given, and the details of the
experiments are described. Thereafter, the results of the original method compared to the
simplified method are to be discussed.

4.1 Specifications

The computer used to run the tests consists of an Intel i7-8700K running at 3.7GHz with 6
physical cores and 16 gigabytes of RAM. The operating system used is Windows 10 Pro 20H2,
64 bit version. All of the experiments are implemented using Python 3.7 with Jupyter Notebook
6.0.3. The libraries include Sympy and time. Sympy is a library that does symbolic mathematics.
The time library stores start-time and end-time, which are subtracted to obtain actual computation
time. Mathematica is used to perform data visualizations.

4.2 Description of experiments

In the first set of experiments, the value of the power p varies from p = 10 to p = 100 with
∆p = 10 as the increments. This aims to give the sums of powers of arithmetic progressions in
the general form. The results are simplified when comparing the results.

In the second set of experiments, the values of a, d, and n are fixed to randomly generated
20-digit numbers. The value of the power p varies from p = 200 to p = 2000 with ∆p = 200 as
the increments. This aims to better compare the two algorithms as lower values of p may not give
significant results. In both sets of experiments, the run-times are collected and averaged over 100

runs.

4.3 Results and discussion

The results are visualized using Mathematica. The graphs are used to compare our algorithm (16)
against Xiong et al.’s algorithm (14). Two tables are given to see the numerical results.

The main contribution to the drastic difference in times shown in Figure (a) is that Xiong
et al.’s algorithm gives the result in polynomials in n, whereas our algorithm gives the result
in an unsimplified form. Even though the theoretical results can be simplified to the identity, a
computer check was also performed to verify that the answers are the same. This gives a more
comparable result since the first set of experiments does not give the results in the same way.
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Values of p 10 20 30 40 50
Our algorithm 0.4747 1.4272 3.1077 5.9152 10.2915

Xiong et al.’s algorithm 0.5635 4.5019 27.0317 101.6553 252.6017

Values of p 60 70 80 90 100
Our algorithm 17.8694 25.0377 34.7735 46.7552 61.1408

Xiong et al.’s’s algorithm 500.5395 807.2444 1309.9709 2003.4787 2703.5214

Experiment One: The time is measured in seconds. Algorithms generate
the general form of the sums of powers of arithmetic progressions.

This table shows that our algorithm is far more efficient.
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Figure (a). A comparison of the two algorithms
that calculates the general form of the sums

of powers of arithmetic progressions by varying
p only shows that our algorithm is drastically

more efficient.
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Figure (b). A comparison of the two algorithms
that calculate the result of the sums of powers of

arithmetic progressions by fixing values
of a, d, and n and varying p. The plot includes

the line of best fit for two data sets.

Values of p 100 200 300 400 500
Our algorithm 0.4497 1.0876 2.1052 3.9748 5.9838

Xiong et al.’s’s algorithm 0.359 1.3106 4.1687 10.9749 22.7876

Values of p 600 700 800 900 1000
Our algorithm 9.2827 13.244 17.6911 23.2921 34.1791

Xiong et al.’s’s algorithm 44.2563 70.7529 124.8384 188.3088 273.7294

Values of p 1100 1200 1300 1400 1500
Our algorithm 82.4342 145.502 188.3088 290.617 346.7947

Xiong et al.’s’s algorithm 412.5691 604.4786 846.1521 1105.5296 1457.421

Values of p 1600 1700 1800 1900 2000
Our algorithm 492.055 570.5803 681.9292 770.6358 979.0942

Xiong et al.’s’s algorithm 1822.8166 2221.2837 2681.4324 3336.1961 3840.6724

Experiment Two: The time is measured in seconds. The constants a, d, and n are fixed
to randomly generated 20-digit numbers, where the value of p varies. This table shows that our

algorithm is faster in generating the values of sums of powers of arithmetic progressions.
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In the second set of experiments, the algorithms compute the value of the sums of powers of
arithmetic progressions with a, d, and n fixed and p varied. The results show that our algorithm
performs faster than Xiong et al.’s method since our algorithm does not depend on the value of n.
As seen in Figure (b), both algorithms have a cubic polynomial time, with the general Eulerian
number method using more time.

5 Conclusion

In this paper, two novel algorithms using the Eulerian numbers are given to compute the general
form of sums of powers of arithmetic progressions Sp,a,d(n). In addition, formula (13) is used to
compare with Xiong et al.’s method, which uses the general Eulerian numbers.

In Section 3, extensive analyses of both algorithms are presented. These analyses suggest
that our algorithm using classical Eulerian numbers will on average run faster than Xiong et al.’s
algorithm using general Eulerian algorithm. The experimental results also support the analyses.

This paper focused on using a new method with classical Eulerian numbers. A future project
may involve algorithms using dynamic programming for solving the sums of powers of arithmetic
progressions using other special combinatorial numbers such as Bernoulli polynomials and
numbers [1, 10].
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