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Abstract: In this paper we give representations for the coefficients of the Maclaurin series for
Γ(z + 1) and its reciprocal (where Γ is Euler’s Gamma function) with the help of a differential
operator D, the exponential function and a linear functional ∗ (in Theorem 3.1). As a result we
obtain the following representations for Γ (in Theorem 3.2):

Γ(z + 1) =
(
e−u(x)e−zD[eu(x)]

)∗
,(

Γ(z + 1)
)−1

=
(
eu(x)e−zD[e−u(x)]

)∗
.

Theorem 3.1 and Theorem 3.2 are our main results. With the help of the first theorem we give
our approach for finding the coefficients of Maclaurin series for Γ(z + 1) and its reciprocal in an
explicit form.
Keywords: Gamma function, Zeta function, Euler’s constant, Maclaurin series.
2020 Mathematics Subject Classification: 33B15, 11M06, 30D10, 30D30, 30K05, 41A58.

1 Introduction

Let N be the set of all positive integers, C - the complex number field, E - the set of all entire
functions of one complex variable. For F ∈ E the operator Dk : E → E is defined by:
D0[F (z)] := F (0)(z) = F (z), z ∈ C; Dk[F (z)] := F (k)(z), k ∈ N, z ∈ C, i.e., D = d

dz

and Dk =
(
d
dz

)k.
If Dk[F (z)] = Hk(z), we define Dk

s [F (z)] := Hk(s).
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Further, we shall use the following notation: ζ for Riemann zeta function; γ for Euler’s
constant, i.e. γ = limn→∞

(∑n
i=1

1
i
− lnn

)
= 0.5772156649 . . .; ζ̃(1) = γ and ζ̃(k) = ζ(k)

for each integer k > 1.

The Gamma function admits the following basic representations (see [7], pp. 31, 33, 34):

(i) Γ(z) =
∫∞
0

e−ttz−1dt , valid for z ∈ C, Rez > 0 (Euler)

where Γ is a holomorphic function and Dk[Γ(z)] =
∫∞
0
e−ttz−1(ln t)kdt;

(ii) Γ(z) = limm→∞
m!mz

z(z+1)···(z+m)
, valid for z ∈ C, z 6= 0,−1,−2, . . . (Euler–Gauss)

(iii) Γ(z) = 1
z
e−γz

∏∞
n=1 e

z
n

(
1 + z

n

)−1, valid for z ∈ C, z 6= 0,−1,−2, . . . (Weierstrass)

From (iii) it is seen that (Γ(z))−1 ∈ E and that Γ(z) is a meromorphic function without zeroes
and with simple poles: z = 0,−1,−2, . . . .

We have Γ(1) = 1 and for any z ∈ C Γ satisfies the functional equation

Γ(z + 1) = zΓ(z). (1)

Hence Γ(z+ 1)−1 ∈ E and Γ(z+ 1) is a meromoromorphic function without zeroes and with
simple poles: z = −1,−2, . . .

Also, from (i), the representations:

A(k) = Γ(k)(1) = Dk
0 [Γ(z + 1)] =

∫ ∞
0

e−t(ln t)kdt, k = 0, 1, 2, . . . , (2)

hold.
Although the Gamma function was introduced by Euler about two hundred and ninety two

years ago it still has its secrets. In the present paper we introduce a linear operator D : E→ E on
which our main results are based – Theorem 3.1 and Theorem 3.2. With the help of Theorem 3.1
we find explicit formulae for the coefficients of Maclaurin series of Γ(z + 1) and (Γ(z + 1))−1

(Theorem 3.3.). Here we must note that such type of formulae are given by other authors too. For
example formulae for these coefficients are contained in: [3, 4, 6, 8].

2 A new operator D and its basic properties

Definition 2.1. Let u(z) ∈ E. The operator D is defined by:

• D = D1; D0[u(z)] = u(z);

• D
[
D0[u(z)]

]
= D1[u(z)];

• D
[
Dk[u(z)]

]
= kDk+1[u(z)], k ≥ 1;

• Dk[u(z)] = D[Dk−1[u(z)]
]
, k ≥ 1.

Lemma 2.1. Let u(z), F (z), G(z) ∈ E. Then

(j1) Dk[u(z)] = (k − 1)!Dk[u(z)] (∀k ∈ N)

(j2) Dk is a linear operator (∀k ∈ N)
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(j3) Dk[F (z)G(z)] =
k∑
ν=0

(
k

ν

)
Dk−ν [F (z)]Dν [G(z)] (∀k ∈ N)

(analogue of Leibnitz formula for Dk[F (z)G(z)] )

(j4) D[F (G(z))] = (DF )(G(z))D[G(z)]

(j5) For f, g ∈ E and n ∈ N the following analogue of Faa di Bruno’s formula for Dn[f(g(z))]:

Dn
[
f
(
g(z)

)]
=

n∑
m=0

(Dmf)
(
g(z)

)∑
α

Cn(α)
(
D1[g(z)]

)α1 . . .
(
Dn[g(z)]

)αn (3)

is true, where: Cn(α) = n!
(1!)α1 .α1!(2!)α2 .α2!...(n!)αn .αn!

and
∑
α

means that the sum is

over all α = (α1, . . . , αn), for which α1, α2, . . . , αn ∈ N ∪ {0}, α1 + · · · + αn = m and
1.α1 + · · ·+ n.αn = n.

Proof. (j1) follows by induction from the definition of D.
Let λ, µ ∈ C. From (j1) and from the linearity of Dk we obtain:

Dk[λF (z) + µG(z)] = (k − 1)!Dk[λF (z) + µG(z)] = λ(k − 1)!Dk[F (z)] + µ(k − 1)!Dk[G(z)]

= λDk[F (z)] + µDk[G(z)],

which proves (j2).
Let us prove (j3) by induction. In the case k = 1, D coincides with D and (j3) is obvious. If

for k ≥ 1 (j3) is true, then applying D to (j3) and using the linearity of D we obtain:

Dk+1[F (z)G(z)] =
k∑
ν=0

(
k

ν

)
D
[
Dk−ν [F (z)]Dν [G(z)]

]
The right-hand side R in the above equality is I1 + I2, where:

I1 = Dk+1[F (z)]D0[G(z)] +
k∑
ν=1

(
k

ν

)
Dk+1−ν [F (z)]Dν [G(z)];

I2 =
k∑
ν=1

(
k

ν − 1

)
Dk+1−ν [F (z)]Dν [G(z)] + D0[F (z)]Dk+1[G(z)].

I2 is obtained after substitution ν + 1 = t and replacing t with ν.
Now using that

(
k
ν

)
+
(
k
ν−1

)
=
(
k+1
ν

)
, ν = 1, . . . , k, we obtain

R =
k+1∑
ν=0

(
k + 1

ν

)
Dk+1−ν [F (z)]Dν [G(z)]

and (j3) is proved.
The proof of (j4) is obvious since D[F (G(z))] = (DF )(G(z))D[G(z)] and we may replace

D[G(z)] with D[G(z)] (see Definition 2.1).
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Let us prove (j5). We consider the equalities:

D[f(g(z))] = (Df)(g(z))D[g(z)],

D[f(g(z))] = (Df)(g(z))D[g(z)]

(see (j4)).
Applying to the left one Dn−1 and to the right one Dn−1 and after that using Leibnitz formula

for the right-hand side of the first equality and the analogue of the Leibnitz formula (see (j3))
for the right-hand side of the second equality, one may see that Dn[f(g(z))] and Dn[f(g(z))]

have the same structure with only one difference: Dm[g(z)] for the first expression is replaced
with Dm[g(z)] for the second expression. But since we have the Faa di Bruno’s formula (see [1],
p.823):

Dn
[
f
(
g(z)

)]
=

n∑
m=0

(Dmf)
(
g(z)

)∑
α

Cn(α)
(
D1[g(z)]

)α1 . . .
(
Dn[g(z)]

)αn
,

then replacing Dm(g(z)) with Dm(g(z)) in it, we obtain exactly (3).

Corollary 2.1. Formula (3) admits the representation

Dn
[
f
(
g(z)

)]
=

n∑
m=0

(Dmf)
(
g(z)

)∑
α

Cn(α)
n∏
ν=1

((ν−1)!)αν
(
D1[g(z)]

)α1 · · ·
(
Dn[g(z)]

)αn (4)

Proof. It follows immediately from Lemma 2.1, (j1).

Corollary 2.2. Formula (4) admits the representation

Dn
[
f
(
g(z)

)]
=

n∑
m=0

(Dmf)
(
g(z)

)∑
α

An(α)
(
D1[g(z)]

)α1 · · ·
(
Dn[g(z)]

)αn
, (5)

where
An(α) =

n!

(1α12α23α3 · · ·nαn)(α1!α2!α3! · · ·αn!)
(6)

Proof. One may check directly that

Cn(α)
n∏
ν=1

((ν − 1)!)αν = An(α).

Corollary 2.3. Let u ∈ E and n ∈ N. Then:

Dn[eu(z)] = eu(z)
n∑

m=0

∑
α

An(α)
(
D1[u(z)]

)α1 · · ·
(
Dn[u(z)]

)αn
Dn[e−u(z)] = e−u(z)

n∑
m=0

∑
α

(−1)
∑n
ν=1 ανAn(α)

(
D1[u(z)]

)α1 · · ·
(
Dn[u(z)]

)αn (7)
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3 Maclaurin series for Γ(z + 1) and its reciprocal

If k ≥ 0 we define ak, dk, bk, ρk by:

k!ak = Dk
0 [Γ(z + 1)] (8)

k!dk = Dk
0 [(Γ(z + 1))−1] (9)

bk = (−1)kk!ak (10)

ρk = k!dk (11)

Hence:

Γ(z + 1) =
∞∑
k=0

akz
k, |z| < 1, (12)

(
Γ(z + 1)

)−1
=
∞∑
k=0

dkz
k, |z| <∞. (13)

For the sequences {ak} and {dk} recurrence relations are known (see [5], pp. 12, 17; [2],
p. 12) that we give below but for the sequences {bk} and {ρk}:

bk+1 =
k∑
ν=0

(
k

ν

)
(k − ν)!ζ̃(k − ν + 1)bν , k ≥ 0, b0 = 1, (14)

ρk+1 =
k∑
ν=0

(
k

ν

)
(k − ν)!(−1)k−ν ζ̃(k − ν + 1)ρν , k ≥ 0, ρ0 = 1. (15)

3.1 Connection between the Gamma function and the exponential function

Definition 3.1. Let F (z1, z2, . . . , zk) be a polynomial und u(z) ∈ E. Then we define the mapping
∗ by: (

F
(
D1[u(z)], D2[u(z)], . . . , Dk[u(z)]

))∗
:= F

(
ζ̃(1), ζ̃(2), . . . , ζ̃(k)

)
.

Remark. From the above definition it is clear that ∗ is a linear and multiplicative mapping. The
multiplicativity of ∗ means that if F (z1, . . . , zk) and G(z1, . . . , zm) are polynomials and

H(z1, . . . , zn) = F (z1, . . . , zk)G(z1, . . . , zm),

then(
H
(
D1[u(z)], . . . , Dn[u(z)]

))∗
=
(
F
(
D1[u(z)], . . . , Dk[u(z)]

))∗(
G
(
D1[u(z)], . . . , Dm[u(z)]

))∗
.

Our first main result in this paper is the following.

Theorem 3.1. ∀k ∈ N ∪ {0} bk and ρk are given by the formulae:

bk =
(
e−u(z)Dk[eu(z)]

)∗
, (16)

ρk =
(
(−1)keu(z)Dk[e−u(z)]

)∗
. (17)
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Proof. We shall prove only (16) since one may prove (17) in the same way. We prove (16) by
induction. For k = 0 we have b0 = 1 and (e−u(z)Dk[eu(z)])∗ = (e−u(z)D0[eu(z)])∗ = ({1})∗ = 1.
Assume that (16) is true for some k ≥ 0. We will show that (16) is true for k + 1 too. Let

b′k+1 = (e−u(z)Dk+1[eu(z)])∗.

Then

b′k+1 = (e−u(z)Dk[D[eu(z)]])∗ = (e−u(z)Dk[D[eu(z)]])∗

= (e−u(z)Dk[eu(z)D[u(z)]])∗ = (e−u(z)Dk[eu(z)D[u(z)]])∗

[
now we apply Lemma 2.1, (j3) to Dk[eu(z)D[u(z)]]

]

=
(
e−u(z)

k∑
ν=0

(
k

ν

)
Dk+1−ν [u(z)]Dν [eu(z)]

)∗
=
( k∑
ν=0

(
k

ν

)
Dk+1−ν [u(z)]

(
e−u(z)Dν [eu(z)]

))∗
[now we use Dk+1−ν [u(z)] = (k − ν)!Dk+1−ν [u(z)], see Lemma 2.1, (j1)]

=

( k∑
ν=0

(
k

ν

)
(k − ν)!Dk+1−ν [u(z)]

(
e−u(z)Dν [eu(z)]

))∗

[from the linearity and multiplicativity of ∗]

=
k∑
ν=0

(
k

ν

)
(k − ν)!

(
Dk+1−ν [u(z)]

)∗
(e−u(z)Dν [eu(z)]

)∗
[from the induction hypothesis we have (e−u(z)Dν [eu(z)]

)∗
= bν , 0 ≤ ν ≤ k]

=
k∑
ν=0

(
k

ν

)
(k − ν)!ζ̃(k − ν + 1)bν = bk+1

(the last from (14)). Thus we proved b′k+1 = bk+1 and (16) is proved.

From Theorem 3.1, using the fact that the mapping ∗ is linear and that the generating function
of the operator D:

∞∑
k=0

(−z)k

k!
Dk

is equal to e−zD, we obtain our second main result in this paper.
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Theorem 3.2. Γ(z + 1) and its reciprocal have the following important representations:

Γ(z + 1) =
(
e−u(x)e−zD[eu(x)]

)∗
, (18)(

Γ(z + 1)
)−1

=
(
eu(x)e−zD[e−u(x)]

)∗
, (19)

where ∗ acts only with respect to the variable x.

Proof. We prove only (18) since one may prove (19) analogically.

(e−u(x)e−zD[eu(x)])∗ =

(
e−u(x)

( ∞∑
k=0

(−z)k

k!
Dk

)
[eu(x)]

)∗
=

(
e−u(x)

∞∑
k=0

(−z)k

k!
Dk[eu(x)]

)∗
=

( ∞∑
k=0

(−z)k

k!
e−u(x)Dk[eu(x)]

)∗
[here we suppose that ∗ is defined not only for polynomials but for power series, too]

=
∞∑
k=0

(−z)k

k!

(
e−u(x)Dk[eu(x)]

)∗
[from Theorem 3.1]

=
∞∑
k=0

(−z)k

k!
bk =

∞∑
k=0

(−1)k

k!
bkz

k =
∞∑
k=0

akz
k = Γ(z + 1).

3.2 Explicit formulae for the coefficients

From Theorem 3.1 and Corollary 2.3 we obtain using (16) and (17):

bn =
n∑

m=0

∑
α

An(α)
(
ζ̃(1)

)α1 · · ·
(
ζ̃(n)

)αn (compare with [9], the formula for Γ(n)(1))

ρn = (−1)n
n∑

m=0

∑
α

(−1)
∑n
ν=1 ανAn(α)

(
ζ̃(1)

)α1 · · ·
(
ζ̃(n)

)αn
In [6], p. 43, (10) and (11), explicit formulae for an and dn are given.
Further we shall find formulae for bn and ρn in a polynomial form, of one variable, using

instead of this variable Euler’s constant γ. For this purpose we need two lemmas.

Lemma 3.1. For k ≥ 2 the following identities are valid

e−u(z)Dk[eu(z)] = (D1[u(z)])k +
k∑
p=2

(
k

p

)
.∆p.(D

1[u(z)])k−p, (20)

(−1)keu(z)Dk[e−u(z)] = (D1[u(z)])k +
k∑
p=2

(
k

p

)
.σp.(D

1[u(z)])k−p, (21)
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where:

∆2 = D2[u(z)], ∆3 = D[D2[u(z)]], ∆p+1 = p.(D2[u(z)]).∆p−1 + D[∆p], p > 3, (22)

σ2 = −D2[u(z)], σ3 = D[D2[u(z)]], σp+1 = −p.(D2[u(z)]).σp−1 −D[σp], p > 3. (23)

Proof. We prove (20) by induction. For k = 2 and k = 3 we check directly the validity of
(20). Let k ≥ 3. We denote by Rk the right-hand side of (20) and let (20) be true for some
k ≥ 3. For k + 1 we must verify that e−uDk+1[eu] = Rk+1, i.e., Rk+1 = e−uD

[
Dk[eu]

]
= e−uD

[
eue−uDk[eu]

]
= (from our assumption for k) = e−uD[euRk] = (after computation)

= D[u]Rk + D[Rk]. Thus, to prove (20), it remains to prove that Rk+1 = D[u]Rk + D[Rk].
It is easy to see that the coefficient in front of (D1[u(z)])k+1−p in the left-hand side of the last

equality equals to
(
k+1
p

)
∆p and in the right-hand side equals to (k+ 2− p)

(
k
p−2

)
∆p−2.D

2[u(z)] +(
k
p

)
∆p +

(
k
p−1

)
D[∆p−1]. So, to prove (20), we must check that(

k + 1

p

)
∆p = (k + 2− p)

(
k

p− 2

)
∆p−2.D

2[u(z)] +

(
k

p

)
∆p +

(
k

p− 1

)
D[∆p−1].

One may easily check the above equality using (22) and the well-known relations:(
k + 1

p

)
=

(
k

p

)
+

(
k

p− 1

)
; t

(
k

t

)
= k

(
k − 1

t− 1

)
.

In the same way, one may prove (21) (using (23)) and Lemma 3.1 is proved.

Lemma 3.2. For p ≥ 2 the following representations hold:

∆p =
∑
α̃

Ap(α̃)
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
, (24)

σp =
∑
α̃

(−1)p+
∑p
ν=2 ανAp(α̃)

(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
, (25)

where, for α̃ := (α2, . . . , αp), Ap(α̃) is given by:

Ap(α̃) = p!

p∏
ν=2

(
(ν − 1)!

)αν p∏
ν=2

(
αν !(ν!)αν

)−1
=

p!

(2α23α3 · · · pαp)(α2!α3! · · ·αp!)

and
∑
α̃

means that the sum is over all nonnegative integers αν such that
p∑

ν=2

ναν = p.

Proof. We shall prove only (24) since (25) may be proved in the same way. First in (22) we write
∆D
t instead of ∆t, ∀t ≥ 2. Second we replace in (22) D with D. As a result we obtain:

∆D
2 = D2[u(z)], ∆D

3 = D[D2[u(z)]], ∆D
p+1 = p.(D2[u(z)]).∆D

p−1 +D[∆D
p ], p > 3.

Now we shall prove that

∆D
p =

∑
α̃

p!

(2!)α2 .α2! · · · (p!)αp .αp!
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
using induction with respect to p. For p = 2, 3 the validity of the above equality is a matter
of direct check. Let α̃ = α̃(p), C̃p(α̃(p)) = p!

(2!)α2 .α2!···(p!)αp .αp! and the equality is checked for

ν = 2, 3, . . . , p. For the sake of brevity, let C̃p := C̃p(α̃(p)).
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We must prove that

∑
α̃(p+1)

C̃p+1

p+1∏
ν=2

(Dν [u(z)])αν = ∆D
p+1 = p.(D2[u(z)]).∆D

p−1 +D[∆D
p ],

i.e. that the equality (further denoted by H):

∑
α̃(p+1)

C̃p+1

p+1∏
ν=2

(Dν [u(z)])αν =
∑
α̃(p−1)

pC̃p−1(D
2[u(z)])α2+1

p−1∏
ν=3

(Dν [u(z)])αν

+

p−1∑
j=2

∑
α̃(p)

αjC̃p.P.
(
Dj[u(z)]

)αj−1(Dj+1[u(z)])αj+1+1.Q+Dp+1[u(z)],

holds, where P and Q are given by:

P =

j−1∏
ν=2

(
Dν [u(z)]

)αν
; Q =

p−1∏
ν=j+2

(
Dν [u(z)]

)αν
.

Let
∏p−1

ν=2(D
ν [u(z)])γν be an arbitrary monomial from the right-hand side of H. Below we calculate

the coefficient C in front of this monomial:

C = pC̃p−1(γ2 − 1, γ3, . . . , γp+1) +

p−1∑
j=2

(γj + 1)C̃p(γ2, . . . , γj + 1, γj+1 − 1, . . . , γp+1)

= p!

∑p+1
ν=2 νγν∏p+1

ν=2(ν!)γνγν !
=

(p+ 1)!∏p+1
ν=2(ν!)γνγν !

= C̃p+1(γ2, . . . , γp+1).

Hence, the right-hand side of H is a sum of the terms C̃p+1(γ2, ..., γp+1)
∏p+1

ν=2(D
ν [u(z)])γν , for

which
∑p+1

ν=2 νγν = p + 1. Then, to prove H, it remains to show that in the right-hand side of H
all partitions

∑p+1
ν=2 νγν = p+ 1 are met.

Indeed, let
∏p+1

ν=2(D
ν [u(z)])γν be an arbitrary monomial from the left-hand side of H. If

γp+1 = 1, then γ2 = γ3 = · · · = γp = 0, so this monomial is Dp+1[u(z)] and it is contained
in the right-hand side of H, too. If γp+1 = 0 but for some j, such that 2 < j ≤ p, γj 6= 0, we
consider in the right-hand side of H the sum:

∑
α̃(p)

αj−1C̃p(α2, . . . , αp)

( j−2∏
ν=2

(
Dν [u(z)]

)αν)(Dj−1[u(z)]
)αj−1−1(Dj [u(z)]

)αj+1
p∏

ν=j+1

(
Dν [u(z)]

)αν .
Now we set: α2 = γ2, . . . , αj−2 = γj−2; αj−1 = γj−1+1; αj = γj−1; αj+1 = γj+1, . . . , αp = γp.
Then

∑p
ν=2 ναν = (

∑p+1
ν=2 νγν)− 1 = (p+ 1)− 1 = p. Hence, according to the given definition

of
∑
α̃(p)

the monomial
∏p+1

ν=2(D
ν [u(z)])γν is contained in the right-hand side of H.

If γ2 6= 0, then we consider in the right-hand side of H the sum:

∑
α̃(p−1)

pC̃p−1(α2, . . . , αp−1)(D
2[u(z)])α2+1

p−1∏
ν=3

(Dν [u(z)])αν .
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Letting α2 = γ2−1, α3 = γ3, . . . , αp−1 = γp−1, we obtain
p−1∑
ν=2

ναν =

( p+1∑
ν=2

νγν

)
−2 = p−1.

Hence according to the definition of
∑
α̃(p−1)

the monomial
∏p+1

ν=2

(
Dν [u(z)]

)γν is contained in the

right-hand side of H.
Thus we proved by induction that

∆D
p =

∑
α̃

p!

(2!)α2 .α2! · · · (p!)αp .αp!
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
.

In the above equality we replace D with D (using the fact that Lemma 3.1 remains valid if we
replace in (22) and (23) D with D) and obtain

∆D
p =

∑
α̃

p!

(2!)α2 .α2! · · · (p!)αp .αp!
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
.

Now, using the fact that Dk[u(z)] = (k − 1)!Dk[u(z)] (see Lemma 2.1, (j1)), we obtain

∆D
p =

∑
α̃

p!

(2!)α2 .α2! · · · (p!)αp .αp!

p∏
ν=2

((ν − 1)!)αν
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
.

Hence

∆p = ∆D
p =

∑
α̃

p!

(2α23α3 · · · pαp)(α2!α3! · · ·αp!)
(
D2[u(z)]

)α2 · · ·
(
Dp[u(z)]

)αp
.

Thus (24) and therefore Lemma 3.2 are proved.

From Theorem 3.1, Lemma 3.1 and Lemma 3.2 we obtain the following explicit formulae for
the coefficients.

Theorem 3.3. The following representations are valid:

bk = γk +
k∑
p=2

(
k

p

)
γk−p

∑
α̃

Ap(α̃)

p∏
ν=2

(
ζ(ν)

)αν
; (26)

ρk = γk +
k∑
p=2

(
k

p

)
γk−p

∑
α̃

(−1)p+
∑p
ν=2 ανAp(α̃)

p∏
ν=2

(
ζ(ν)

)αν
, (27)

where
∑
α̃

means that we sum over all nonnegative integers αν such that
∑p

ν=2 ναν = p.

Corollary 3.1. From (10)–(13) and from (26), (27) we obtain:

Γ(z + 1) = 1− γz +
∞∑
k=2

akz
k, |z| < 1 (28)

where

ak =
(−1)k

k!

(
γk +

k∑
p=2

(
k

p

)
p!γk−p

∑
α̃

1

(2α23α3 · · · pαp)(α2!α3! · · ·αp!)

p∏
ν=2

ζ(ν)α(ν)
)

; (29)
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(Γ(z + 1))−1 = 1 + γz +
∞∑
k=2

dkz
k, |z| <∞ (30)

where

dk =
γk

k!
+

k∑
p=2

γk−p

(k − p)!
∑
α̃

(−1)p+
∑p
ν=2 αν

1

(2α23α3 · · · pαp)(α2!α3! · · ·αp!)

p∏
ν=2

(ζ(ν))α(ν) (31)

and
∑
α̃

means that we take the sum over all nonnegative integers αν such that
∑p

ν=2 ναν = p.

In particular (see (2)):

A(k) =

∫ ∞
0

e−t(ln t)kdt = (−1)k
(
γk+

k∑
p=2

(
k

p

)
p!γk−p

∑
α̃

1

(2α23α3 ...pαp)(α2!α3!...αp!)

p∏
ν=2

ζ(ν)α(ν)
)

and: a0 = 1, a1 = −γ, a2 = 1
2
(γ2 + ζ(2)) = 1

2
(γ2 + π2

6
), a3 = −1

6
(γ3 + 3ζ(2)γ + 2ζ(3)) =

−1
6
(γ3 + π2

2
γ + 2ζ(3)); d0 = 1, d1 = γ, d2 = 1

2
(γ2 − ζ(2)) = 1

2
(γ2 − π2

6
), d3 = 1

6
γ3 − 1

2
ζ(2)γ +

1
3
ζ(3) = 1

6
γ3 − π2

12
γ + 1

3
ζ(3).

Remark. Using (1) and (28), one may observe that the Laurent series of Γ(z) around z = 0 is:

Γ(z) =
1

z
− γ +

∞∑
k=2

akz
k−1, |z| < 1,

where ak are given by (29). Also, using (1) and (30), one may observe the Maclaurin series of
(Γ(z))−1 is

1

Γ(z)
= z + γz2 +

∞∑
k=2

dkz
k+1,

where dk are given by (31).
We must note that the representation (30)–(31) for (Γ(z + 1))−1 is given in another form by

Mika Sakata’s formula for (Γ(z))−1 in [8], where Sakata uses multiple zeta values.

4 Conclusion

In the paper two important results are found in Theorem 3.1 and Theorem 3.2. With the help of
Theorem 3.1 we obtain explicit formulae for the coefficients of Γ(z+1) and (Γ(z+1))−1 in their
Maclaurin series.
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