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Abstract: In this paper, we give several explicit formulas involving the n-th Euler polynomial
E, (z). For any fixed integer m > n, the obtained formulas follow by proving that E,, (x)
can be written as a linear combination of the polynomials =", (z +7)",..., (x +rm)", with
rE {1, -1, %} As consequence, some explicit formulas for Bernoulli numbers may be deduced.
Keywords: Appell polynomials, Euler polynomials, Bernoulli numbers, Binomial coefficients.
2020 Mathematics Subject Classification: 11B68, 05A10.

1 Introduction

A polynomial sequence A = (A, <$>>n20 is called an Appell sequence [2] if one of the following
equivalent conditions is satisfied

Al (x) =nA,_1(x), n>1and A (x) is a non-zero constant, (1)

oo tn

E A, (x) — =54 (t) e, where Sy (t) is a formal power series such S4 (0) #0, (2)
n!

n=0
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A, (z) = i (Z) Ay (0) 2" F with A, (0) # 0. 3)

k=0
Let r # 0 be a complex number and m > 0 be an integer. It is easy to see that the family of
polynomials {z™, (z +r)™, (x +2r)",..., (x + mr)™} forms a base of the C-vectorial space
Cp 2] :=={P (z) € C[z] : deg P (x) < m}. For any Appell sequence A, A,, (z) is a polynomial
of degree m which we want to decompose on this basis. Therefore, there exists a unique sequence
of complex numbers j; = p; (A, r,m) such that

A (@)=Y s (o4 7)™ @
j=0
Note that for 0 < n < m, by (1), we have
|
(m=n) () — "
A () = oA, (2)

m!
n!

Then, by differentiating m — n times the two sides of (4) and dividing by —, we deduce that we
have more generally

A (@) =D pi(@+rj)",0<n<m. )
=0

The aim of this article is to determine simple expressions of y; (£, r, m) forr € {1, —1, %} and to
deduce explicit formulas for Euler polynomials and Bernoulli numbers, where £ = (E, (x))n20
is the Appell sequence of Euler polynomials defined by their exponential generating function

2" S m @ (< ©)
et—i—l_n:O "$n! T

2 Lemmas

To obtain the desired expressions and explicit formulas, we give some lemmas which will be used
later.

Lemma 2.1. For all integers j and m such that 0 < j < m, we have

20 )

k=3 k=3

and .
i (=1 (k) RS (1) (m—l—l) (k) ®
= 2\ o AR |

Proof. We have [7]
e k ko m m—l—l k _ m—k

In particular, for 2 = 3, we get (7) after multiplying by (—1Y.
By deriving j times and dividing by ;! the two sides of the identity
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k=0 k=0
we obtain
£ £
k=j J k=3 + J

The identity (8) follows by substituting x = % in this identity and multiplying by (—2)_j . [
Lemma 2.2. We have

k
s =l <|t|<\/§>,
I =

where ay, is
ay = ( >, (10)
25 s
s=0
ng s+k
k+1

=3 Y < * ) (an
—~ 2 2s + 1
(=1)" 1) ™

0k = "t sin <(k +1) Z) , (12)

where | x| is the largest integer less than or equal to x.

Proof. We have

0o j N\ 4its 00
1+t+ T+i+ie ZO ZO() 3 = 2wl

which gives (10). To prove (11) and (12), we use the well-known identity [6, 1.60. pp. 8]
15)

s k—s s k—2s karl - ykJrl
-1 - g
S v () ewre e e
with
1 1 = 1 1
= 5 (1 + Z) = Eezz and Yy = § (]_ - Z) = EG_IZ. (13)
With this we get the desired result. []

3 Explicit formulas for Euler polynomials

We will begin by giving some operators properties defined on the vector space C [z]|. Since we
have

o0

e =X B0 (<,

we denote by (2 for the operator
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defined by

Qp = E(0) R
k=0 )

(14)

where D is the usual differential operator. The operator {2 verifies the relation £, () =Qg (") .

If we consider the translations 7, (r € C) of C [z] which are the operators defined by Robert

[9, pp. 195] as

7 (") = (x+71)",n >0,
and the operators A, defined for r # 0 as

A () = (@41 —a”,

we get

We denote by A for the operator A;.
For k > 0, we have

and

where b5, depends of 7. In the following lemmas, we study cases where r € {17

Lemma 3.1. We have

k=0
and i

(=D ok

Qp=1- Z ok A—l

k=1

Proof. 1t is easy to see that we have
2 2 = (—1)F
Qg — — AF
PZeDr1l 2+4A 2k

and

-1,1

(15)

(16)

1

(17)

(18)



Lemma 3.2. We have

s+k
(_;)5 (k_s) Ak, (19)

5 (20)

= (—1)k . m k
Qp =) ( o sin <(+1) Z> i 21)
k=0
Proof. By the expression
1
Qp (22)

T 1AL+ TA37
2 bl
and with the help of Lemma 2.2, we have

o0

k=0

The relations (19), (20) and (21) result from expressions (10), (11) and (12) of a;, given in Lemma
2.2. O

Theorem 3.3 (Case » = *1). For all integers m, n such that 0 < n < m, we have

k n
]>) (z+7)", (23)

Z‘f;)) (043", ©4)
B, (z) = 2:; gﬁ (_Qi)k (Zfll ) (’;)) (x+7)". (25)
B, (z) = ;”—m + zmj (fj (_;ZM @) (x —4)". (26)

B, (x) =Qp (") =) SOV (z"), (27)

A ) = 3 (1) (") 8)
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By (27) and (28), we have

The relation (23) is thus proved and we have

pi (B,1,m) = Zm: (_Q?j (j) (29)

k=j

By relation (7) of Lemma 2.1 and (29), we deduce that we have also

i (E,1,m) = zm: om <m+]1>

=J

and (24) follows. By relation (8) of Lemma 2.1 and (29), we deduce that we have also

e m+ 1\ [k
e =SSR ()

k=j

and (25) follows. By (18) of Lemma 2.1, we have

E, (z) =Qp (2") = Z 2k A’jl (z"). (30)

k=

—

With the help of (16), we have
k e
2t @) = 0 (B a1

Relation (26) follows from (30) and (31). [l

Remark 3.4. For m = nin (23) we obtain

B, (z :Zz—lki ()x—i—]).

J=

Theorem 3.5 (Case r = 1/2). For all integers m, n such that 0 < n < m, we have

m S e (R i\
225 (0)0)) b)) e

> z FEO) ) e
:é<§:<23<>sm((k+1)%>> <x+%>n. (34)

85



Proof. From (19), we have form > n

() =3 (_12):+k (k;8> A% (a). 35)

A‘; (z") = zk: (—1)F7 (’;) (g: - %)n (36)

w(2am) - 2% 5 (1))

In the same way, we obtain (33) and (34) thanks to relations(20) and (21) of Lemma 3.2. O

4 Explicit formulas for Bernoulli numbers

The Bernoulli polynomials B, (x) are defined by the following exponential generating function

t
et —1

o0 t”
et = ZO Bu(w)— (|t <2m). (37)

The Bernoulli numbers are then B,, = B,, (0). From the definitions (6) and (37), we can easily
deduce the following well-know properties [8, pp. 218 and 222]

By (2) = % (Bn (z) — 2"B, (g)) >, (38)
E,(1-2) = (~1)"E, (),
E, (0) = (=1)" En (1) (39)
From (38) and (39), we deduce that
Bui1 = 2(1”_—21“)13 (0) (40)
and .
o= Gt -

From (38), we also deduce

1 1 1 1
Es, - = By, — ) —o2p, -1]).
wr (5) = g (B (5) -2 (5))

Using the following relations [1, pp. 806]

1 2n+1 B2n+2
Bon (5) = (1 -3 ) 9 32n+1

and
1

Bay,
Bania (6) = (1 - 22n+1) (1 B 32n+1) 22n+§.§_22n+1’
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we deduce that

2(n +1).32n+1 1

These relations that we have just proved will be useful for us to establish the following theorem.

Theorem 4.1. For all integers m, n such that 0 < n < m, we have

n m k ]
(=" (n+1) (D" (kN . 4
B = ontl _ | ZZ ok+1 \ ; G+1)" (43)
k=0 j=0 J
41 = (1) (k
Bt = 15t DD i ( > (k=3)", (44)
k=0 j=0 J
m k
Bui1 = g gy 22 2 (D ( ; ) (k—4)", 45)
k=0 j=0
2m+1 k i+1
n+1 (—1) k . n+1
Bonso = (471 — 1) (3201 — 1) Z Z ok—1 \ j (3 +1) : (46)
k=0 j=0

m k j
E,(1) = ZZ (_21) (’;) G+1)". (47)

SE e (e

Using (40) and (48), we get (44).
From relation (24), we deduce for x = 0

m k
k=0 j=0

0

:%ii (mjl) (k= )" (49)

k=0 j=0

<.

Using (40) and (49), we get (45).
From relation (23), we deduce for x =

2m—+1 2m+1
Eonta <_> 32n+1 Z Z ( ) 3+ 1)2n+1' (50)

Jj=0  k=j

Wl

Using (42) and (50), we get (46). L]
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Theorem 4.1 generalizes many explicit formulas given in [5]. Indeed for m = n, the identity
(43) becomes

( 1)n+1 ( n k ]
By = ontl _ Z ok+1 ( ) (G+1)"
=0 j=
This last identity is exactly the identity (2) given in [5]. This formula has been proven in 1940
by Garabedian [4] by use of divergent power series. In 1953, Carlitz [3] also gave a short proof
while pointing out that formula was a very old formula proved in 1883 by Worpitzky [11, pp.
224]. This same identity was again proved in 2004 by Rzadkowski [10].
Using the following Gould notation [5, pp. 48]:

B = Z (—1)’ <q> (r—5", (51)

J=0 J
relations (44) and (45) can be written
n+1 " "
By = (1 —2n+1) ZO Qk Bk,k (52)
and
n+1 " et
Bn+1 oam+1 2n+1 _ 1 Z Bk,m—l—l' (53)

k=0
Gould’s identities (18) and (19) of [5] are obtained when m = n in (52) and (53) respectively.
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