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Abstract: In this paper, we give several explicit formulas involving the n-th Euler polynomial
En (x). For any fixed integer m ≥ n, the obtained formulas follow by proving that En (x)

can be written as a linear combination of the polynomials xn, (x+ r)n , . . . , (x+ rm)n, with
r ∈

{
1,−1, 1

2

}
. As consequence, some explicit formulas for Bernoulli numbers may be deduced.
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1 Introduction

A polynomial sequence A = (An (x))n≥0 is called an Appell sequence [2] if one of the following
equivalent conditions is satisfied

A′n (x) = nAn−1 (x) , n ≥ 1 and A0 (x) is a non-zero constant, (1)
∞∑
n=0

An (x)
tn

n!
= SA (t) ext, where SA (t) is a formal power series such SA (0) 6= 0, (2)
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An (x) =
n∑

k=0

(
n

k

)
Ak (0)xn−k with A0 (0) 6= 0. (3)

Let r 6= 0 be a complex number and m ≥ 0 be an integer. It is easy to see that the family of
polynomials {xm, (x+ r)m , (x+ 2r)m , . . . , (x+mr)m} forms a base of the C-vectorial space
Cm [x] := {P (x) ∈ C [x] : degP (x) ≤ m}. For any Appell sequenceA, Am (x) is a polynomial
of degreemwhich we want to decompose on this basis. Therefore, there exists a unique sequence
of complex numbers µj = µj (A, r,m) such that

Am (x) =
m∑
j=0

µj (x+ rj)m . (4)

Note that for 0 ≤ n ≤ m, by (1), we have

A(m−n)
m (x) =

m!

n!
An (x) .

Then, by differentiating m− n times the two sides of (4) and dividing by m!

n!
, we deduce that we

have more generally

An (x) =
m∑
j=0

µj (x+ rj)n , 0 ≤ n ≤ m. (5)

The aim of this article is to determine simple expressions of µj (E, r,m) for r ∈
{

1,−1, 1
2

}
and to

deduce explicit formulas for Euler polynomials and Bernoulli numbers, where E = (En (x))n≥0
is the Appell sequence of Euler polynomials defined by their exponential generating function

2ext

et + 1
=
∞∑
n=0

En (x)
tn

n!
(|t| < π) . (6)

2 Lemmas

To obtain the desired expressions and explicit formulas, we give some lemmas which will be used
later.

Lemma 2.1. For all integers j and m such that 0 ≤ j ≤ m, we have
m∑
k=j

(−1)j

2k

(
k

j

)
=

(−1)j

2m

m∑
k=j

(
m+ 1

k − j

)
(7)

and
m∑
k=j

(−1)j

2k

(
k

j

)
=

m∑
k=j

(−1)k

2k

(
m+ 1

k + 1

)(
k

j

)
. (8)

Proof. We have [7]
m∑
k=j

(
k

j

)
xk =

m∑
k=j

(
m+ 1

k − j

)
xk (1− x)m−k . (9)

In particular, for x = 1
2
, we get (7) after multiplying by (−1)j .

By deriving j times and dividing by j! the two sides of the identity
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m∑
k=0

xk =
m∑
k=0

(
m+ 1

k + 1

)
(x− 1)k ,

we obtain
m∑
k=j

(
k

j

)
xk−j =

m∑
k=j

(
m+ 1

k + 1

)(
k

j

)
(x− 1)k−j .

The identity (8) follows by substituting x =
1

2
in this identity and multiplying by (−2)−j .

Lemma 2.2. We have

1

1 + t+ 1
2
t2

=
∞∑
k=0

akt
k

(
|t| <

√
2
)
,

where ak is

ak =

b k
2
c∑

s=0

(−1)s+k

2s

(
k − s
s

)
, (10)

ak =

b k
2
c∑

s=0

(−1)s+k

2k

(
k + 1

2s+ 1

)
, (11)

ak =
(−1)k

2
k−1
2

sin
(

(k + 1)
π

4

)
, (12)

where bxc is the largest integer less than or equal to x.

Proof. We have

1

1 + t+ 1
2
t2

=
∞∑
j=0

(−1)j
j∑

s=0

(
j

s

)
tj+s

2s
=
∞∑
k=0

akt
k,

which gives (10). To prove (11) and (12), we use the well-known identity [6, 1.60. pp. 8]

b k
2
c∑

s=0

(−1)s
(
k − s
s

)
(xy)s (x+ y)k−2s =

xk+1 − yk+1

x− y
,

with

x =
1

2
(1 + i) =

1√
2
ei
π
4 and y =

1

2
(1− i) =

1√
2
e−i

π
4 . (13)

With this we get the desired result.

3 Explicit formulas for Euler polynomials

We will begin by giving some operators properties defined on the vector space C [x]. Since we
have

2

et + 1
=
∞∑
k=0

Ek (0)
tk

k!
(|t| < π) ,

we denote by ΩE for the operator
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ΩE =
2

eD + 1
, (14)

defined by

ΩE =
∞∑
k=0

Ek (0)
Dk

k!
,

whereD is the usual differential operator. The operator ΩE verifies the relationEn (x)=ΩE (xn) .

If we consider the translations τr (r ∈ C) of C [x] which are the operators defined by Robert
[9, pp. 195] as

τr (xn) = (x+ r)n , n ≥ 0,

and the operators ∆r defined for r 6= 0 as

∆r (xn) = (x+ r)n − xn, (15)

we get

∆r = τr − 1 = erD − 1.

We denote by ∆ for the operator ∆1.
For k ≥ 0, we have

∆k
r = (τr − 1)k =

k∑
j=0

(−1)k−j
(
k

j

)
τrj

and

∆k
r (xn) = (τr − 1)k (xn) =

k∑
j=0

(−1)k−j
(
k

j

)
(x+ rj)n . (16)

We want express ΩE as [7]

ΩE =
∞∑
k=0

bk
∆k

r

k!
,

where bk depends of r. In the following lemmas, we study cases where r ∈
{

1,−1, 1
2

}
.

Lemma 3.1. We have

ΩE =
∞∑
k=0

(−1)k

2k
∆k (17)

and

ΩE = 1−
∞∑
k=1

(−1)k

2k
∆k
−1. (18)

Proof. It is easy to see that we have

ΩE =
2

eD + 1
=

2

2 + ∆
=
∞∑
k=0

(−1)k

2k
∆k

and

ΩE =
1 + ∆−1

1 + 1
2
∆−1

= 1−
∞∑
k=1

(−1)k

2k
∆k
−1.
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Lemma 3.2. We have

ΩE =
∞∑
k=0

 b k2 c∑
s=0

(−1)s+k

2s

(
k − s
s

)∆k
1
2
, (19)

ΩE =
∞∑
k=0

 b k2 c∑
s=0

(−1)s+k

2k

(
k + 1

2s+ 1

)∆k
1
2
, (20)

ΩE =
∞∑
k=0

(
(−1)k

2
k−1
2

sin
(

(+1)
π

4

))
∆k

1
2
. (21)

Proof. By the expression

ΩE =
1

1 + ∆ 1
2

+ 1
2
∆2

1
2

, (22)

and with the help of Lemma 2.2, we have

ΩE =
∞∑
k=0

ak∆k
1
2
.

The relations (19), (20) and (21) result from expressions (10), (11) and (12) of ak given in Lemma
2.2.

Theorem 3.3 (Case r = ±1). For all integers m, n such that 0 ≤ n ≤ m, we have

En (x) =
m∑
j=0

(
m∑
k=j

(−1)j

2k

(
k

j

))
(x+ j)n , (23)

En (x) =
m∑
j=0

(
m∑
k=j

(−1)j

2m

(
m+ 1

k − j

))
(x+ j)n , (24)

En (x) =
m∑
j=0

(
m∑
k=j

(−1)k

2k

(
m+ 1

k + 1

)(
k

j

))
(x+ j)n , (25)

En (x) =
xn

2m
+

m∑
j=1

(
m∑
k=j

(−1)j+1

2k

(
k

j

))
(x− j)n . (26)

Proof. In what follows, we suppose that 0 ≤ n ≤ m. From (17) of Lemma 3.1, we have

En (x) = ΩE (xn) =
m∑
k=0

(−1)k

2k
∆k (xn) , (27)

and with the help of (16), we have

∆k (xn) =
k∑

j=0

(−1)k−j
(
k

j

)
(x+ j)n . (28)
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By (27) and (28), we have

En (x) =
m∑
k=0

k∑
j=0

(−1)j

2k

(
k

j

)
(x+ j)n

=
m∑
j=0

(
m∑
k=j

(−1)j

2k

(
k

j

))
(x+ j)n .

The relation (23) is thus proved and we have

µj (E, 1,m) =
m∑
k=j

(−1)j

2k

(
k

j

)
. (29)

By relation (7) of Lemma 2.1 and (29), we deduce that we have also

µj (E, 1,m) =
m∑
k=j

(−1)j

2m

(
m+ 1

k − j

)
,

and (24) follows. By relation (8) of Lemma 2.1 and (29), we deduce that we have also

µj (E, 1,m) =
m∑
k=j

(−1)k

2k

(
m+ 1

k + 1

)(
k

j

)
,

and (25) follows. By (18) of Lemma 2.1, we have

En (x) = ΩE (xn) = xn −
m∑
k=1

(−1)k

2k
∆k
−1 (xn) . (30)

With the help of (16), we have

∆k
−1 (xn) =

k∑
j=0

(−1)k−j
(
k

j

)
(x− j)n . (31)

Relation (26) follows from (30) and (31).

Remark 3.4. For m = n in (23) we obtain

En (x) =
n∑

k=0

1

2k

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n .

Theorem 3.5 (Case r = 1/2). For all integers m, n such that 0 ≤ n ≤ m, we have

En (x) =
m∑
j=0

 m∑
k=j

b k
2
c∑

s=0

(−1)s+j

2s

(
k − s
s

)(
k

j

)(x+
j

2

)n

, (32)

En (x) =
m∑
j=0

 m∑
k=j

b k
2
c∑

s=0

(−1)s+j

2k

(
k + 1

2s+ 1

)(
k

j

)(x+
j

2

)n

, (33)

En (x) =
m∑
j=0

(
m∑
k=j

(−1)j

2
k−1
2

(
k

j

)
sin
(

(k + 1)
π

4

))(
x+

j

2

)n

. (34)
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Proof. From (19), we have for m ≥ n

ΩE (xn) =
m∑
k=0

 b k2 c∑
s=0

(−1)s+k

2s

(
k − s
s

)∆k
1
2

(xn) . (35)

With the help of (16), we have

∆k
1
2

(xn) =
k∑

j=0

(−1)k−j
(
k

j

)(
x− j

2

)n

. (36)

By (35) and (36), we deduce (32) and we have

µj

(
E,

1

2
,m

)
=

m∑
k=j

b k
2
c∑

s=0

(−1)s+j

2s

(
k − s
s

)(
k

j

)
.

In the same way, we obtain (33) and (34) thanks to relations(20) and (21) of Lemma 3.2.

4 Explicit formulas for Bernoulli numbers

The Bernoulli polynomials Bn (x) are defined by the following exponential generating function

t

et − 1
ext =

∞∑
n=0

Bn (x)
tn

n!
(|t| < 2π) . (37)

The Bernoulli numbers are then Bn = Bn (0). From the definitions (6) and (37), we can easily
deduce the following well-know properties [8, pp. 218 and 222]

En−1 (x) =
2

n

(
Bn (x)− 2nBn

(x
2

))
, n ≥ 1, (38)

En (1− x) = (−1)nEn (x) ,

En (0) = (−1)nEn (1) . (39)

From (38) and (39), we deduce that

Bn+1 =
n+ 1

2(1− 2n+1)
En (0) (40)

and

Bn+1 =
(−1)n (n+ 1)

2(1− 2n+1)
En (1) . (41)

From (38), we also deduce

E2n+1

(
1

3

)
=

1

n+ 1

(
B2n+2

(
1

3

)
− 22n+2B2n+2

(
1

6

))
.

Using the following relations [1, pp. 806]

B2n+2

(
1

3

)
=
(
1− 32n+1

) B2n+2

2.32n+1

and

B2n+2

(
1

6

)
=
(
1− 22n+1

) (
1− 32n+1

) B2n+2

22n+2.32n+1
,
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we deduce that

B2n+2 =
2 (n+ 1) .32n+1

(4n+1 − 1) (1− 32n+1)
E2n+1

(
1

3

)
. (42)

These relations that we have just proved will be useful for us to establish the following theorem.

Theorem 4.1. For all integers m, n such that 0 ≤ n ≤ m, we have

Bn+1 =
(−1)n+1 (n+ 1)

2n+1 − 1

m∑
k=0

k∑
j=0

(−1)j

2k+1

(
k

j

)
(j + 1)n , (43)

Bn+1 =
n+ 1

1− 2n+1

m∑
k=0

k∑
j=0

(−1)k−j

2k+1

(
k

j

)
(k − j)n , (44)

Bn+1 =
n+ 1

2m+1 (1− 2n+1)

m∑
k=0

k∑
j=0

(−1)k−j
(
m+ 1

j

)
(k − j)n , (45)

B2n+2 =
n+ 1

(4n+1 − 1) (32n+1 − 1)

2m+1∑
k=0

k∑
j=0

(−1)j+1

2k−1

(
k

j

)
(3j + 1)2n+1 . (46)

Proof. In all that follows, we suppose that 0 ≤ n ≤ m. From relation (23), we deduce for x = 1

En (1) =
m∑
k=0

k∑
j=0

(−1)j

2k

(
k

j

)
(j + 1)n . (47)

Using (41) and (47), we get (43). From relation (23), we deduce for x = 0

En (0) =
m∑
k=0

k∑
j=0

(−1)j

2k

(
k

j

)
jn

=
m∑
k=0

k∑
j=0

(−1)k−j

2k

(
k

j

)
(k − j)n . (48)

Using (40) and (48), we get (44).
From relation (24), we deduce for x = 0

En (0) =
m∑
k=0

k∑
j=0

(−1)j

2m

(
m+ 1

k − j

)
jn

=
1

2m

m∑
k=0

k∑
j=0

(−1)k−j
(
m+ 1

j

)
(k − j)n . (49)

Using (40) and (49), we get (45).
From relation (23), we deduce for x = 1

3

E2n+1

(
1

3

)
=

1

32n+1

2m+1∑
j=0

2m+1∑
k=j

(−1)j

2k

(
k

j

)
(3j + 1)2n+1 . (50)

Using (42) and (50), we get (46).
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Theorem 4.1 generalizes many explicit formulas given in [5]. Indeed for m = n, the identity
(43) becomes

Bn+1 =
(−1)n+1 (n+ 1)

2n+1 − 1

n∑
k=0

k∑
j=0

(−1)j

2k+1

(
k

j

)
(j + 1)n .

This last identity is exactly the identity (2) given in [5]. This formula has been proven in 1940
by Garabedian [4] by use of divergent power series. In 1953, Carlitz [3] also gave a short proof
while pointing out that formula was a very old formula proved in 1883 by Worpitzky [11, pp.
224]. This same identity was again proved in 2004 by Rzadkowski [10].

Using the following Gould notation [5, pp. 48]:

Bn
r,q :=

r∑
j=0

(−1)j
(
q

j

)
(r − j)n , (51)

relations (44) and (45) can be written

Bn+1 =
n+ 1

2 (1− 2n+1)

m∑
k=0

(−1)k

2k
Bn

k,k (52)

and

Bn+1 =
n+ 1

2m+1 (2n+1 − 1)

m∑
k=0

(−1)k+1Bn
k,m+1. (53)

Gould’s identities (18) and (19) of [5] are obtained when m = n in (52) and (53) respectively.
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