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1 Introduction

The huge number of identities and relations between Fibonacci (and Lucas) numbers may fill
many books. These relations are deduced via many different methods, certainly almost all of
them are elementary. Perhaps, the most powerful (non elementary) tool is the hypergeometric
functions method. This method gives many beautiful identities (finite and infinite) and is used
just in a sporadic papers, see for instance [3, 5] and the references therein.

There is no (known) general unified approach to derive identities or relations between the
Fibonacci (and Lucas) numbers. May be the most general formula, based on the explicit formula
of the Fibonacci polynomial and its anti derivative is due to Seiffert [13]. Nevertheless, we
remarked that considering the Fibonacci generating polynomial and its relatives (its reciprocal,
derivative, anti derivative), with appropriate substitutions supply easy (and different) proofs of
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many identities, and (may) lead to “new” identities too. It seems that Fibonacci polynomials are
not yet well exploited. Finally, for the sentence “new identity”, we cite Dilcher [5]: ” Statements
that a certain identity is new should be taken with the necessary caution”. Indeed, the vastness of
the literature in the subject make it hard to check it exhaustively.

The aim of this paper is to prove many identities and results concerning Fibonacci and Lucas
numbers, using only Fibonacci and Lucas polynomials, their reciprocal polynomials, and
sometimes their derivatives and anti derivatives. In the next section, we recall the polynomials
we will use in the sequel, as well as some classical basic relations convenient for specializations.
In Section 3 we prove some new identities. In Section 4, we use these identities to solve many
Diophantine equations. The fifth section is devoted essentially to the proofs of the results of
[7, 9, 14]. These results are chosen because they are relatively recent and are of the same type. In
Section 6, using the derivatives of Fibonacci polynomials, we prove other known results due to
Melham [12]. In the last section, we discuss further questions and state some conjectures.

2 Preliminaries

For every n ≥ 2, Fibonacci polynomials sequence is defined by

φn(x) = φn−1(x) + xφn−2(x), φ0(x) = 0, φ1(x) = 1.

The explicit formula of φn(x) is given by

φn(x) =

bn−1
2 c∑

k=0

(
n− k − 1

k

)
xk

=
1√

4x+ 1

((
1 +
√
4x+ 1

2

)n

−
(
1−
√
4x+ 1

2

)n)
. (1)

We will use φ2n(x)

φ2n(x) =
n−1∑
k=0

(
2n− k − 1

k

)
xk

=
1√

4x+ 1

((
1 +
√
4x+ 1

2

)2n

−
(
1−
√
4x+ 1

2

)2n
)
.

Recall that if Pn(x) =
n∑

k=0

akx
k is a polynomial, its reciprocal P rc

n (x) is defined by

P rc
n (x) = xn Pn

(
1

x

)
=

n∑
k=0

an−kx
k.

So,

F2n(x) = φrc
2n(x) =

n−1∑
k=0

(
n+ k

2k + 1

)
xk,

and

F2n+1(x) =
n∑

k=0

(
n+ k

2k

)
xk.
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Then

F2n(x) =
1√

x(x+ 4)

((√
x+
√
4 + x

2

)2n

−
(√

x−
√
4 + x

2

)2n
)
, (2)

and

F2n+1(x) =
1√
x+ 4

((√
x+
√
4 + x

2

)2n+1

−
(√

x−
√
4 + x

2

)2n+1
)
. (3)

Recall the very known explicit formulas, respectively for Fibonacci and Lucas numbers:

Fn =
1√
5

((
1 +
√
5

2

)n

−

(
1−
√
5

2

)n)
=

1√
5
(αn − βn) ,

with F0 = 0, F1 = 1. For Lucas numbers (Ln), we have L0 = 2, L1 = 1, and for n ≥ 2

Ln = αn + βn.

The next relation is also very famous

5F 2
l + 4(−1)l = L2

l (4)

5F 2
l (−1)l + 4 = (−1)lL2

l . (5)

The antiderivative of Fn(x) will be useful: for n ≥ 1, we have

G2n(x) =

x∫
0

n−1∑
k=0

(
n+ k

2k + 1

)
tkdt =

n−1∑
k=0

(
n+ k

2k + 1

)
xk+1

k + 1

=
1

n

((√
x+
√
4 + x

2

)2n

+

(√
x−
√
4 + x

2

)2n
)
− 2

n
, (6)

and

H2n+1(x) =

x∫
0

n∑
k=0

(
n+ k

2k

)
t2kdt =

n∑
k=0

(
n+ k

2k

)
x2k+1

2k + 1

=
1

2n+ 1

(x+√4 + x2

2

)2n+1

−

(
x−
√
4 + x2

2

)2n+1
 . (7)

The last polynomials we need are

bn−1
2 c∑

k=0

(
n

2k + 1

)
x2k =

1

2x
((1 + x)n − (1− x)n) (8)

bn−1
2 c∑

k=0

(
n

2k

)
x2k =

1

2
((1 + x)n + (1− x)n) . (9)
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3 Some new identities

In this section, we prove some identities involving Fibonacci and Lucas numbers. The proof as
remarked before is based on the explicit formula of Fibonacci generating polynomial. Some of
these identities seem to be new.

Theorem 3.1. We have for all n ≥ 1 and l ≥ 1

n
n−1∑
k=0

(
n+ k

2k + 1

)
(−1)l(n+k+1) (5F 2

l )
k

k + 1
=

(
Fnl

Fl

)2

n

n−1∑
k=0

(
n+ k

2k + 1

)
(−1)(l+1)(n+k+1) (L2

l )
k+1

k + 1
= L2nl − 2(−1)n(l+1)

n
n−1∑
k=0

(
n+ k

2k + 1

)
(−1)(n+k+1)

k + 1
= 2 cos

(nπ
3

)
− 2

(2n+ 1)
n∑

k=0

(
n+ k

2k

)
(−1)n+k

2k + 1
= 2 cos

(2n+ 1)π

6
.

Proof. Replace x by x2 in (6) yields

n−1∑
k=0

(
n+ k

2k + 1

)
(x)2k+2

k + 1
+

2

n
=

1

n

(x+√4 + x2

2

)2n

+

(
x−
√
4 + x2

2

)2n
 . (10)

Let x = il
√
5Fl in the previous relation:

n−1∑
k=0

(
n+ k

2k + 1

)
(il
√
5Fl)

2k+2

k + 1
+

2

n
=

1

n

(il√5Fl + ilLl

2

)2n

+

(
il
√
5Fl − ilLl

2

)2n


n−1∑
k=0

(
n+ k

2k + 1

)
(−1)l(k+1)(5F 2

l )
k+1

k + 1
=

(−1)nl

n

(
α2nl + β2nl

)
− 2

n
=

(−1)nl

n

(
L2nl − 2(−1)nl

)
n−1∑
k=0

(
n+ k

2k + 1

)
(−1)l(k+1)(5F 2

l )
k+1

k + 1
=

(−1)nl

n

(
α2nl + β2nl − 2(−1)nl

)
=

(−1)nl

n

(
αnl − βnl

)2
,

which is: (
Fnl

Fl

)2

= n

n−1∑
k=0

(
n+ k

2k + 1

)
(−1)l(n+k+1)(5F 2

l )
k

k + 1
.

For the second identity, again let x = il+1Ll in (6), we get:

G2n(i
l+1Ll) =

n−1∑
k=0

(
n+ k

2k + 1

)
(il+1Ll)

2k+2

k + 1
+

2

n

=
1

n

(il+1Ll + il+1
√
5Fl

2

)2n

+

(
il+1Ll − il+1

√
5Fl

2

)2n
 .
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Note that (
il+1Ll + il+1

√
5Fl

2

)2n

= (−1)n(l+1)α2nl,

and (
il+1Ll − il+1

√
5Fl

2

)2n

= (−1)n(l+1)β2nl.

Rearrange to obtain

n

n−1∑
k=0

(
n+ k

2k + 1

)
(−1)(l+1)(n+k+1)(L2

l )
k+1

k + 1
=

(
α2nl + β2nl

)
− (−1)n(l+1)2

= L2nl − (−1)n(l+1)2,

which is the desired formula. The last identities are obtained by setting x = i in (6) and (7).

For l = 1, 2, we obtain

F 2
n = n

n−1∑
k=0

(
n+ k

2k + 1

)
(−1)(n+k+1) (5)k

k + 1

F 2
2n = n

n−1∑
k=0

(
n+ k

2k + 1

)
5k

k + 1
.

Those formulas appear, as particular cases in [13], but it does not seem possible to extract F 2
nl

from Seifert general formula for every l ≥ 1.

Corollary 3.1. For positive integers n, l ≥ 1, we have(
Fnl

Ll

)2

=
2n

5

2n−1∑
k=0

(
2n+ k

2k + 1

)
(−1)(l+1)(k+1) (L2

l )
k

k + 1
,

(
L(2n+1)l

Ll

)2

= (2n+ 1)
2n∑
k=0

(
2n+ k + 1

2k + 1

)
(−1)k(l+1) (L2

l )
k

k + 1
.

Proof. From the second relation in the previous theorem

L2nl − 2(−1)n(l+1) =
(
αnl − βnl

)2
+ 2(−1)nl − 2(−1)n(l+1).

For n even, the last relation becomes

L4nl − 2(−1)2n(l+1) =
(
α2nl − β2nl

)2
,

dividing by 5, yields the first relation of the corollary. For the second one, we have

L2nl − 2(−1)n(l+1) =
(
αnl + βnl

)2 − 2(−1)nl − 2(−1)n(l+1)

= L2
nl − 2(−1)nl (1 + (−1)n) .

For n odd, we obtain

L2(2n+1)l − 2(−1)(2n+1)(l+1) =
(
α(2n+1)l + β(2n+1)l

)2
= L2

(2n+1)l,

which is the wanted formula.
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Corollary 3.2. For every integer n ≥ 1

(2n+ 1)
2n∑
k=0

(
2n+ k + 1

2k + 1

)
(−4)k

k + 1
= 1

2n

5

2n−1∑
k=0

(
2n+ k

2k + 1

)
(−4)k

k + 1
= 0.

Proof. Let l = 0, in the previous relations.

It is possible to find other identities, using the polynomials

bn−1
2 c∑

k=0

(
n

2k + 1

)
x2k =

1

2x
((1 + x)n − (1− x)n) (11)

bn−1
2 c∑

k=0

(
n

2k

)
x2k =

1

2
((1 + x)n + (1− x)n) . (12)

For example Catalan’s well known identity

Fn = 21−n
bn−1

2 c∑
k=0

(
n

2k + 1

)
5k

is obtained by setting x =
√
5 in (12). In fact Catalan’s identity is a particular case of the

Theorem 3.2. For every l ≥ 1, n ≥ 1, we have

Fnl = 21−nFlL
n−1
l

bn−1
2 c∑

k=0

(
n

2k + 1

)(
5F 2

l

L2
l

)k

Lnl = 21−nLn
l

bn−1
2 c∑

k=0

(
n

2k

)(
5F 2

l

L2
l

)k

.

Proof. Put x =
√
5Fl

Ll
, in the previous polynomials.

For l = 1, Fn = 21−n
bn−1

2 c∑
k=0

(
n

2k+1

)
5k is Catalan identity. For l = 2,

F2n =

(
3

2

)n−1 bn−1
2 c∑

k=0

(
n

2k + 1

)(
5

9

)k

,

this is relation (5.9) in [5]. For l = 3, we have F3n = 2n
bn−1

2 c∑
k=0

(
n

2k+1

) (
5
4

)k
, ...
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Theorem 3.3. For every integers n, l ≥ 1, we have

Fnl = Fl

bn−1
2 c∑

k=0

(
n− k − 1

k

)
(−1)k(l+1)Ln−2k−1

l ,

and
bn−1

2 c∑
k=0

(
n− k − 1

k

)
(−1)kl

(
1

5F 2
l

)k

=


Fnl

5
n−2
2 F n−1

l Ll

, n = 2m

Lnl

(
√
5Fl)n−1Ll

, n = 2m+ 1.

Proof. Let x = (−1)l+1

L2
l

in the first polynomial, we obtain the first formula. This is (6) in [8]. For

the second identity, let x = (−1)l
5F 2

l
; we get

bn−1
2 c∑

k=0

(
n− k − 1

k

)
(−1)kl

(
1

5F 2
l

)k

=

√
5Fl

Ll

((
αl

√
5Fl

)n

−
(
−βl

√
5Fl

)n)
=

1

Ll(
√
5Fl)n−1

(
αnl − (−1)nβnl

)
.

So, we obtain

bn−1
2 c∑

k=0

(
n− k − 1

k

)
(−1)kl

(
1

5F 2
l

)k

=


Fnl

5
n−2
2 F n−1

l Ll

, n = 2m

Lnl

(
√
5Fl)n−1Ll

, n = 2m+ 1.

We can also write these formulas separately as follows:

F2ml =
Ll

5Fl

m−1∑
k=0

(−1)kl
(
2m− k − 1

k

)(
5F 2

l

)m−k
L(2m+1)l = Ll

m∑
k=0

(−1)kl
(
2m− k

k

)
(5F 2

l )
m−k.

Those do not appear in [8].

Another less well known identity involving (1) is

n =

bn−1
2 c∑

k=0

(−1)k
(
n− k − 1

k

)
2n−2k−1, (13)

this is due to Lucas, see [8]. It may be obtained as a limit, in fact since Fn(x) is a polynomial
then it is defined for every x ∈ R, and then

Fn(−
1

4
) = lim

x−→− 1
4

(
1+
√
4x+1
2

)n
−
(

1−
√
4x+1
2

)n
√
4x+ 1

=
n

2n−1
,

which is the wanted identity. By the same we deduce the following corollary.
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Corollary 3.3. For n ≥ 1

n =
n−1∑
k=0

(−1)n+k+1

(
n+ k

2k + 1

)
4k.

Proof. This may be deduced by replacing n by 2n in the previous proposition, or as a limit:

F (−4) =
n−1∑
k=0

(−1)k
(
n+ k

2k + 1

)
4k

= lim
x−→−4

(√
x+
√
x+4

2

)n
−
(√

x−
√
x+4

2

)n
√
x(x+ 4)

= (−1)n+1n.

This is the analogous of (13).

4 Application to some Diophantine equations

It is possible to use the previous results to see that some surfaces contain many lattice
points, which are Fibonacci and/or Lucas numbers. Also, we will see that the solutions of some
Diophantine equations, are sequences of these numbers

Theorem 4.1. The following surfaces contain infinitely many lattice points:

z2 = 5x2 ± 4y2.

Proof. Of course, all of the solutions of these equations may be easily determined. But, it is nice
to know that some are Fibonacci and Lucas numbers. In fact, letting n = 1, in the first relation of
Corollary 2, yields:

5F 2
2l = 4(−1)l+1L2

l + (L2
l )

2.

This may be written, according to l odd or even, as follows:

(L2
2l)

2 = 5F 2
4l + 4L2

2l

(L2
2l+1)

2 = 5F 2
4l+2 − 4L2

2l+1.

This means that (z, y, x) = (L2l, F4l, L2l) and (L2l+1, F4l+2, L2l+1) are families of integer
solutions of these equations.

Theorem 4.2. The following equations have infinitely many solutions which are Fibonacci and
Lucas numbers:
1) 5y2 = x3 ± 8x2 + 20x± 16

2) z2 = x4 ± 6y2 + 9

Proof. Note that the first equations are singular elliptic curves:

5y2 = x3 ± 8x2 + 20x± 16 = (x± 4)(x± 2)2.

So, we can find all the solutions. But it is nice to see that among these solutions, infinitely are
Fibonacci and Lucas numbers. Let n = 2 in relation 1 of Corollary 2. We obtain
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5

(
F2l

Ll

)2

= 4
3∑

k=0

(
4 + k

2k + 1

)
(−1)(l+1)(k+1) (L2

l )
k

k + 1
.

= L3
l + 8(−1)l+1(L2

l )
2 + 20(L2

l ) + (−1)l+116.

So, the pairs
(
F2l

Ll

, L2
l

)
, l ≥ 1 , is a set of solutions for the first equations. For the second ones,

let n = 1 in the second relation of Corollary 2, to get:(
L3l

Ll

)2

= 3
2∑

k=0

(
3 + k

2k + 1

)
(−1)k(l+1) (L2

l )
k

k + 1

= 9 + 6(−1)l+1L2
l + L4

l .

This means that
(
L6l+3

L2l+1

, L2l+1, L2l+1

)
and

(
L6l

L2l

, L2l, L2l

)
, l ≥ 0 are families of solutions

for the equations t2 = x4 ± 6y2 + 9.

Remark 4.1. Using the identities proved in the previous sections, it is possible to find solutions
to other Diophantine equations, in the same vein as in the [1, 10].

5 Some known identities involving Fibonacci numbers

In this section, we prove some identities involving Fibonacci and Lucas numbers. All of them are
known and due to Jennings [9], Filipponi [7] and Swamy [14]. Curiously, all of these identities
are easily derived via the generating polynomial Fn(x) and an almost trivial substitutions. Let us
illustrate this fact by the following proposition:

Proposition 5.1. For every n ≥ 1, we have

F4n = 3(−1)n−1
n−1∑
k=0

(
n+ k

2k + 1

)
(−9)k

F2n = (−1)n−1
n−1∑
k=0

(−1)k
(
n+ k

2k + 1

)
5k

F4n = 3
n−1∑
k=0

(
n+ k

2k + 1

)
5k .

Proof. The first and the last identity are obtained by setting, repectively, x = −9 , and then x = 5

in (2) and remembering that
(

1±
√
5

2

)2
= 3±

√
5

2
. To obtain the second put x = −5 in (2).

These are known, and may be found in [5]. In fact those are particular cases of the following
general ones:
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Theorem 5.1. (Jennings [9]) For every integers n, l ≥ 0

F2nl = Fl

n−1∑
k=0

(−1)(l+1)(n+k+1)

(
n+ k

2k + 1

)
L2k+1
l

F(2n+1)l = Fl

n∑
k=0

(−1)(l+1)(n+k)

(
n+ k

2k

)
L2k
l .

F(2n+1)l = Fl

n∑
k=0

(−1)l(n+k) 2n+ 1

n+ k + 1

(
n+ k + 1

2k + 1

)
5kF 2k

l

= Fl

n∑
k=0

(−1)l(n+k)2n+ 1

2k + 1

(
n+ k

2k

)
5kF 2k

l .

We have F2n =
n−1∑
k=0

(
n+k
2k+1

)
, F4n = 3

n−1∑
k=0

(−1)(n+k+1)
(
n+k
2k+1

)
9k, F6n = 8

n−1∑
k=0

(
n+k
2k+1

)
16k, ...

Dilcher said that the relation

F4n+2 = (2n+ 1)
n∑

k=0

1

2k + 1

(
n+ k

2k

)
5k,

seem to be new (this is relation (5.7) in [5]). This is obtained by just putting l = 2 in the last result
of the previous theorem. These formulas were obtained by Jennings [9]; using a relatively long
proof. Later, they were derived by Filipponi [7], using Waring’ formula. By the same method, he
also proved the following results:

Theorem 5.2. (Filipponi [7])

L2nl =
n∑

k=0

(−1)l(n+k) 2n

n+ k

(
n+ k

2k

)
5kF 2k

l

. L2nl =
n∑

k=0

(−1)(l+1)(n+k) 2n

n+ k

(
n+ k

2k

)
L2k
l

L(2n+1)l = Ll

n∑
k=0

(−1)(l+1)(n+k) 2n+ 1

n+ k + 1

(
n+ k + 1

2k + 1

)
L2k
l

= Ll

n∑
k=0

(−1)(l+1)(n+k)2n+ 1

2k + 1

(
n+ k

2k

)
L2k
l .

By the formula

Xn − Y n = (X − Y )

bn−1
2 c∑

k=0

(−1)k
(
n− k − 1

k

)
(XY )k(X + Y )n−2k+−1,

(already used by Carlitz [3]), Swamy [14] established the following:

Theorem 5.3. (Swamy [14]) For positive integers n, l ≥ 1 we have

F2nl = FlLl

n−1∑
k=0

(−1)l(n+k+1)

(
n+ k

2k + 1

)
5kF 2k

l

L(2n+1)l = Ll

n∑
k=0

(−1)l(n+k)

(
n+ k

2k

)
5kF 2k

l .
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Note that in the first formula l may be 0. Dilcher [5] claimed that he was unable to find the

formula F4n = 3
n−1∑
k=0

(
n+k
2k+1

)
5k in the literature. In fact this is known, it is obtained just by setting

l = 2 in the first relation of Swamy. In what follows, we will deduce all of these formulas,
using just the Fibonacci polynomial Fn(x), its anti-derivative and simple specializations for the
unknown. Let us prove the previous results.

Proof. (Jennings results) For the first formula, let x = i2l+2L2
l (i2 = −1) in (2), By noting that(

il+1Ll +
√

4 + i2l+2L2
l

2

)2n

= α2nl,

and (
il+1Ll −

√
4 + i2l+2L2

l

2

)2n

= β2nl,

we get

F2n(x) =
n−1∑
k=0

(
n+ k

2k + 1

)(
i2l+2L2

l

)k
n−1∑
k=0

(
n+ k

2k + 1

)
(−1)k(l+1)L2k

l =
(−1)l+1i2(l+1)n

√
5LlFl

(
(αl)2n −

(
βl
)2n)

=
(−1)l+1+(l+2)n

√
5LlFl

(
α2nl − β2nl

)
.

Finally, we have the wanted result

n−1∑
k=0

(
n+ k

2k + 1

)
(−1)(n+k+1)(l+1)L2k

l =
1√
5LlFl

(
α2nl − β2nl

)
=
F2nl

LlFl

.

For the second, let x = i2l+2L2
l in (3). Using (4) we get

F2n+1(i
2l+2L2

l ) =
n∑

k=0

(
n+ k

2k

)
(i2l+2L2

l )
k

=
i(l+1)(2n+1)

il+1
√
5Fl

(Ll +
√
5Fl

2

)2n+1

−

(
Ll −

√
5Fl

2

)2n+1


After simplification, we get

n∑
k=0

(
n+ k

2k

)
(−1)(n+k)(l+1)(L2

l )
k =

1√
5Fl

(
αl(2n+1) − βl(2n+1)

)
=
F(2n+1)l

Fl

.

For the last one, letting x = il
√
5Fl in (7), and using (4), we getil√5Fl ±

√
4 + (il

√
5Fl)2

2

2n+1

= i(2n+1)l

(√
5Fl ± Ll

2

)2n+1

.
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H2n+1(x) =
n∑

k=0

(
n+ k

2k

)
(il
√
5Fl)

2k+1

2k + 1

=
i(2n+1)l

2n+ 1

(√5Fl + Ll

2

)2n+1

+

(√
5Fl − Ll

2

)2n+1


=
i(2n+1)l

2n+ 1

((
αl
)2n+1

+
(
−βl

)2n+1
)

=
i(2n+1)l

2n+ 1

(
α(2n+1)l − β(2n+1)l

)
So,

n∑
k=0

(
n+ k

2k

)
(−1)l(k+n)5k(Fl)

2k

2k + 1
=

1

(2n+ 1)Fl

√
5

(
αl(2n+1) − βl(2n+1)

)
=

F(2n+1)l

(2n+ 1)Fl

,

and the proof is finished.

Filipponi results are proved as follows:

Proof. (Filipponi results). First, note that for n ≥ 1, we have

L2n(x) =
n∑

k=0

2n

n+ k

(
n+ k

2k

)
x2k =

(
x+
√
4 + x2

2

)2n

+

(
x−
√
4 + x2

2

)2n

. (14)

Let x = il
√
5Fl in (14), this yields

L2n(i
l
√
5Fl) =

n∑
k=0

2n

n+ k

(
n+ k

2k

)
(il
√
5Fl)

2

=
n∑

k=0

2n

n+ k

(
n+ k

2k

)
(−1)lk5kFl

2k

= (−1)2nl
(√5Fl + Ll

2

)2n

+

(√
5Fl − Ll

2

)2n
 ,

We deduce
n∑

k=0

2n

n+ k

(
n+ k

2k

)
(−1)l(k+n)5kFl

2k =
(
αl
)2n

+
(
βl
)2n

= L2nl.

For the second one, again let x = ilLl in (14) :

L2n(i
lLl) =

n∑
k=0

2n

n+ k

(
n+ k

2k

)
(il+1Ll)

2k

=
n∑

k=0

2n

n+ k

(
n+ k

2k

)
(−1)(l+1)kL2k

l

= i2n(l+1)

(Ll +
√
5Fl

2

)2n

+

(
Ll −

√
5Fl

2

)2n
 .
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So,
n∑

k=0

2n

n+ k

(
n+ k

2k

)
(−1)(l+1)(k+n)L2k

l = α2nl + (−βl)2n = L2nl.

For the last relation of Filipponi, put x = il+1Ll in (7). This yields

H2n+1(i
l+1Ll) =

n∑
k=0

(
n+ k

2k

)
(il+1Ll)

2k+1

2k + 1
.

Since (
il+1Ll + il+1

√
5Fl

2

)2n+1

= α(2n+1)l

and (
il+1Ll − il+1

√
5Fl

2

)2n+1

= β(2n+1)l,

n∑
k=0

(
n+ k

2k

)
i(l+1)(2k+1)Ll

2k+1

2k + 1
=
i(l+1)(2n+1)

2n+ 1

(Ll +
√
5Fl

2

)2n+1

+

(
Ll −

√
5Fl

2

)2n+1
 .

Finally, we obtain

n∑
k=0

(
n+ k

2k

)
(−1)(l+1)(n+k)Ll

2k+1

2k + 1
=

1

2n+ 1

(
α(2n+1)l + β(2n+1)l

)
=

1

2n+ 1
L(2n+1)l.

This finishes the proof of Filipponi results.

Now, let us prove the results due to Swamy.

Proof. (Swamy results)
Putting x =

(
il
√
5Fl

)2
in (2) yields

F2n

((
il
√
5Fl

)2)
=

n−1∑
k=0

(
n+ k

2k + 1

)(
il
√
5Fl

)2k
=

1

(i)2l
√
5FlLl

(
A2n −B2n

)
,

where

A =

il√5Fl +

√
4 +

(
il
√
5Fl

)2
2

 = αl,

and

B =

il√5Fl −
√

4 +
(
il
√
5Fl

)2
2

 = βl.

Thus
n−1∑
k=0

(−1)lk
(
n+ k

2k + 1

)
5kF 2k

l =
(−1)l+nl

√
5FlLl

((
αl
)2n − (βl

)2n)
.
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This is nothing than
n−1∑
k=0

(−1)l(n+k+1)

(
n+ k

2k + 1

)
5kF 2k

l =
F2nl

FlLl

.

The second relation is obtained by letting x =
(
il
√
5Fl

)2
(l ≥ 1) in (3).

n∑
k=0

(
n+ k

2k

)
(−1)lk5kF 2k

l =
il(2n+1)

ilLl

(√5Fl + Ll

2

)2n+1

−

(√
5Fl − Ll

2

)2n+1
 ,

After simplification we get,
n∑

k=0

(
n+ k

2k

)
(−1)l(k+n)5kF 2k

l =
1

Ll

((
αl
)2n+1

+
(
βl
)2n+1

)
=
Ll(2n+1)

Ll

.

This is the wanted result,

The polynomials F2n(x) and F2n+1(x) may be used to find other identities. For instance,
using the hypergeometric representation of the Fibonacci number, Dilcher [5] gave the formulas

F2n =
1

2

2n−1∑
k=0

(−1)k+1

(
2n+ k

2k + 1

)
F3k

and

F2n+1 = (2n+ 1)
2n−1∑
k=0

(−1)k+1

(
2n+ k + 1

2k

)
F3k

2n+ k + 1
.

Let us prove the first one using just Fn(x)

Proposition 5.2. For n ≥ 1,

F2n =
1

2

2n−1∑
k=0

(−1)k+1

(
2n+ k

2k + 1

)
F3k.

Proof. Consider

F4n(x) =
2n−1∑
k=0

(
2n+ k

2k + 1

)
xk

=
1√

x(x+ 4)

((√
x+
√
4 + x

2

)4n

−
(√

x−
√
4 + x

2

)4n
)

=
1√

x(x+ 4)

(x+ 2 +
√
x(4 + x)

2

)2n

−

(
x+ 2−

√
x(4 + x)

2

)2n
 .

Let x = −(2±
√
5) = −(1±

√
5

2
)3 in the previous formula, we get

F4n(−(2±
√
5)) =

2n−1∑
k=0

(−1)k
(
2n+ k

2k + 1

)
(2±

√
5)k

=

(1∓
√
5

2

)2n

−

(
1±
√
5

2

)2n
 .
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Now just substract to get

2n−1∑
k=0

(−1)k
(
2n+ k

2k + 1

)(
(2 +

√
5)k − (2−

√
5)k
)
= 2

(1−
√
5

2

)2n

−

(
1 +
√
5

2

)2n
 .

So, after multiplying by −1/2
√
5, we get

F2n =
1

2

2n−1∑
k=0

(−1)k+1

(
2n+ k

2k + 1

)
F3k.

The other identity involving F2n+1 may be proved similarly.

6 Identities involving the derivatives

In what follows, we give some (known) identities involving the derivatives of Fibonacci
polynomials. Melham [12] proved, among others, the following identities:

Theorem 6.1. (Melham)

F(2n+1)l

Fl

=
n∑

r=0

(−1)n+l(n+r)2−rLr
2l

n∑
k=r

(−2)k
(
k

r

)(
n+ k

2k

)
L(2n+1)l

Ll

=
n∑

r=0

(−1)r+l(n+r)2−rLr
2l

n∑
k=r

(−2)k
(
k

r

)(
n+ k

2k

)
He also evaluated several sums of the following kind

Lemma 6.1. (Melham) For n ≥ 1 and r ≥ 0

n∑
k=r

(−2)k
(
k

r

)(
n+ k

2k

)
=


(−1)n+r

2 2r
(

n+r
2

r

)
, n ≡ r mod (2)

(−1)n+r+1
2 2r

(
n+r−1

2

r

)
, n ≡ r + 1 mod (2)

n−1∑
k=r

(−2)k
(
k

r

)(
n+ k

2k + 1

)
=

 0, n ≡ r mod (2)

(−1)n+r−1
2 2r

(
n+r−1

2

r

)
, n ≡ r + 1 mod (2)

Using just the polynomial F2n(x) and its derivatives, Melham results may be stated as follows:

Theorem 6.2.

F(2n+1)l

Fl

=
n∑

r=0

(−1)(l+1)(n+r)Lr
2l

F
(r)
2n+1(−2)
r!

L(2n+1)l

Ll

=
n∑

r=0

(−1)(n+r)Lr
2l

F
(r)
2n (−2)
r!

.
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Proof. Note that

n∑
k=r

(−2)k
(
k

r

)(
n+ k

2k

)
=

n∑
k=r

(−2)k k(k − 1)(k − 2)...(k − r + 1)

r!

(
n+ k

2k

)
=

(−2)r

r!
F

(r)
2n+1(−2).

Replace this in the previous theorem to get the identities of this theorem. Hence, again these
identities may be expressed by Fibonacci polynomial and its derivatives.

7 Conclusion

Integrating (10) and (11), j times we obtain the following polynomials:

bn2 c∑
k=0

(
n+ j

2k + j

)
x2k+j =

1

2

(
(1 + x)n+j + (−1)j(1− x)n+j

)
bn−1

2 c∑
k=0

(
n+ j

2k + j + 1

)
x2k+j+1 =

1

2

(
(1 + x)n+j + (−1)j−1(1− x)n+j

)
.

From these, it is possible to deduce many identities, for example, letting x =

√
5Fl

Ll
in the

previous polynomial, and replace j by 2j, we get

21−n−2j
bn−1

2 c∑
k=0

(
n+ 2j

2k + 2j + 1

)
(5F 2

l )
k+1Ln−2k

l =
Ll

Fl

Fl(n+2j).

Put x2 instead of x, we get

bn−1
2 c∑

k=0

(
n

2k

)
x4k+2 =

1

2

(
(1 + x2)n − (1− x2)n

)
bn−1

2 c∑
k=0

(
n

2k + 1

)
x4k =

1

2

(
(1 + x2)n + (1− x2)n

)
,

their antiderivatives involve the hyperbolic functions. It is possible to use these polynomials and
their derivatives to find new proofs, or even (may be) new identities for Fibonacci and Lucas
numbers.

Pell and Pell–Lucas sequences are defined by

P1 =, P2 = 2, and for n ≥ 2, Pn = 2Pn−1 + Pn−2

Q1 = 1, Q2 = 3, and for n ≥ 2, Qn = 2Qn−1 +Qn−2
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Their generating polynomials are defined by

Pn(x) =

bn−1
2 c∑

k=0

(
n− k − 1

k

)
(2x)n−2k−1 =

1

2
√
x2 + 1

((
x+
√
x2 + 1

)n
−
(
x−
√
x2 + 1

)n)

Qn(x) =

bn2 c∑
k=0

(
n− k
k

)
(2x)n−2k =

(
x+
√
x2 + 1

)n
+
(
x−
√
x2 + 1

)n
.

Pell polynomials are related to the Fibonacci’s by the relation Pn(x/2) = φn(x). So, it is
possible to use the same elementary techniques to derive other proofs and may be new identities
concerning these numbers.

Finally we ask if there is a general formula (like Seiffert [13]) for the Lucas polynomials.
Another question is: does every formula involving Fibonacci and Lucas numbers (any formula
with finite sum) may be proved using the Fibonacci polynomial and its relatives?
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