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Abstract: Our objective in this paper is to study a particular set of prime numbers, namely
{p € Pand 7(p) ¢ P}. As a consequence, estimations of the form > f(p) with p being prime
belonging to this set are derived.
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1 Introduction

As usual, let IP be the set of all primes, 7(z) = #P N [2, z] and

N
1 z k! 1
Li = dt = 1 Ol ———— ) 1.1
i) /2 logt log x ( +;logk:c + (logNHx)) (&= +o0) (.D

The Prime Number Theorem states that

7(x) ~ Li(z), (r — +00). (1.2)

The theorem was proved, independently, by Hadamard [1] and de la Vallée-Poussin [2] in 1896.
Another paper of de la Vallée-Poussin is [3], where he estimated the error term in the Prime
Number Theorem by showing existence of a zero-free region for the Riemann zeta-function ((s)
to the left of the line :(s) = 1. The error is given by

m(x) = Li(z) + O (xe’“vlog’”> as r — 00, (1.3)
where a is a positive absolute constant.
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The aim of this paper is to use the Prime Number Theorem to give some estimations related
to the following subset of primes

{pePand7(p) ¢ P}.

2 Preparatory lemmas

We will need several preparatory lemmas. The first one is a new version and extension of the
result obtained in [4]. Let us use the denotations my(x) for 7(7(z)), Lis(z) for Li(Li(z)) and
Li.(z) = Li(z) — Lig(x).

Lemma 2.1. Let x be a positive real number. Let us denote by 7 .(x) (respectively, T.(x)) the

number of primes p < x such as 7(p) is not a prime (respectively, w(p) is prime). Precisely,

me(x) = #{p < z|n(p) is not prime} = Z 1,

p<w
n(p)¢P
and
Te(w) := #{p < x|n(p) is prime} = Z 1.
p<w
m(p)EP
Then,

1. w(z) = 7m.(x) + 7(z).
2. me(x) = mw(x) — m(n(x)).
3. Te(x) = n(n(x)).

Proof. 1. It is straightforward to see that the set of prime numbers less than or equal to x can
be partitioned into two subsets as follows

{p < z|pis prime} = {p < z|pis prime and 7 (p) is prime }
U {p < z|pis prime and 7(p) is not prime} . (2.1
By passage to cardinality, we get
#{p < z|pis prime} = # {p < z|p is prime and 7(p) is prime}
+ # {p < z|p is prime and 7(p) is not prime }

m(z) = m.(z) + T (). (2.2)

2. Tt is not difficult to see that # {p < z|p is prime and 7(p) is not prime} is equal to the
number of different equivalence classes p which was denoted in [4] by 7.(x) (for more
details, see [4]).

3. From the equation (2.2), we obtain

Te(®) = m(2) = me(2) = 7(z) = (7(z) = w(7(2))) = 7 (7 (2)). O
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Lemma 2.2. We have the following estimations

1 1 log log x
logLi(z) logx log”® ©

Proof. Using formula (1.1), we get
1 1

) (x — o00).

log Li(z)

and by using Taylor’s expansion, we acquire

N
k! 1 1
1 1 —_— =
og < + 2 log" = +0 (lOgNJrlx)) log +0

Next, we replace (2.5) in (2.4), we get

k!
log x — loglog x + log (1 + Zszl o +
og

log Li log1 1
og Li(x) loga (1 oglogz :
log z log” x

O (10g13x>)

1 log 1
= 14+0 OB 0BT (x — 00).
log log x

Lemma 2.3. We have

x
—a, | log
mo(z) — Lis(x) = O ® e logz

log x

me(x) — Lic(z) = O

log x

Proof. From (1.3), we have on the one hand

7(n(z)) = Li(x(z)) + O (w(x)e*ax/logﬂz)) = Li(r(z)) + O

And, on the other hand, by Taylor’s series, we acquire

Xz
—a, | log
T, log

(x — 0),

(x — o0).

log

Li(r(z)) — Lis(2) = Li (Li(x) + O(xe—a@)) ~ Li(Li(x))

- log Li(z)

-0 z e—avlogz |
log x

Now, we can estimate 7o (z) — Lis(x):

! O <xe’“@)

mo(x) — Lig(x) = mo(x) — Li(w(x)) + Li(m(x)) — Lis(z).
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Using (2.8) and (2.9), we get

x x
—a, |log —a, |log
mo(z) — Lis(z) = O (Le—a\flogx> 10 T, logz | _ O T, log z

log log = log

For the formula (2.7), we have

me(x) — Lie(x) =

3 Main results

Our main result may be stated as follows.

Theorem 3.1. Let us have f(x) = Ca~blog” z with C,b > 0 and w > 1. Then

v 1
Z fp) = / % (1 - @) dy + O (z'"(log z)"*loglog x) . (3.1)
p<z 2
m(p)¢P

Proof. Using Stieltjes integral, we obtain

Yo fw) = [ flydr(y).

p<lx

m(p)¢P

Integration by parts gives

xT

D f) = f@me(z) = f2) = | fy)m(y)dy

p<z 2

7(p)¢P x

= f@)mela) - £(2) - / PLiw)dy — [ @) ) — Licy))dy.

2

Then integration by parts gives

> )= [ E (1 )y FOLE) - @)+ @) (r) - Lie)

(p)¢P
— [ f(y)(7(y) — Lic(y))dy (3.2)



Now, using estimation (2.3) of Lemma 2.2, we get

f()( o <loglogy>)
2 ) /zlogy ! log y © log” y W

p<lz

m(p)¢P

+ F@)Lia(2) + f(x)(me(z) — Lis(z /f (7o(y) — Lic(y))dy.

We have, on the one hand, by (2.7) of Lemma 2.3

X

F@)(ma(@) — Lis(x)) = O | 27 1og¥ e V1087

and

Y f(y) 0 (10glogy
5 logy log” y
On the other hand, we have

) dy =0 (xl_blog“’_?’ x loglog m) .

f'(z) = Cz™"og"” ' 2(~blogz + w).
Then, again by (2.7) of Lemma 2.3

T

') (me(y) — Lic(y)) = O x_b(logm)we_a log

Consequently,

y
/2 F'(y)(me(y) — Lio(y))dy = / O |y t(ogy)e V18Y | gy

2

T

=0 | ' (log z)¥e logz

Finally, by replacing estimations (3.4), (3.5) and (3.6) in (3.3), we find that

> f(p)Z/; /) (1—

= log y
w(p)¢P

We now present applications of Theorem 3.1.

1-b w—3
1ogy) dy + O (z'"(log z)“*loglog z) .

Corollary 1. We have

Z logp =z — Li(z) — 2+ O (zlog > zloglogz) (z — o0),
p<lzx

(p)¢P
log p _ -2
Z = logz — loglog z + loglog V2 4+ O (log x log log x) (x — 00),

p<lzx

w(p)¢P
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1
Z — =loglogz — (loglog2 + (log2)™") + O (1og_3 zloglogz) (z — 00), (3.9)

p<zT
™(p)EP
1 n 1 n 1 n—1
Z ep_8%_ 06 T cn(2) + O (log"* zloglog z) (z — o0), (3.10)
P n n—1
(p)¢P
log"2 log"'2
with ¢, (2) = — < o6 = 08 ) andn > 2.
n n—1

n 1 ) log™
Z Z 6P _08 7T —logz + C,(2) + O (log" > zloglog z) (z — o0), (3.11)
=2 p<lz p n
m(p)¢P
with C,,(2) = >0, ¢i(2).

Proof. The first four estimations are immediate from formula (3.1). Now, for the latest, we have

log’p  log”
k=2, Z %8 p_ 06 x—logx—i—cg(2)+O(log*1xloglog:c),
p

2
p<x
m(p)¢P
log® log® log?
k=3, Z e p_08 T 08 x—l——l—c;;(Z)—l—O(loglogx),
o [ 3 2
(p)gP

k=n. Z log" p _ log" x B log"™*

4 ¢n(2) + O (log"* zloglog z) .

P n n—1
m(p)¢P
These equations can be added to yield the desired formula. O]

Remark. The absolute error in (3.9) tends to zero as z tends to infinity, then

1
Ao = lim Z — —loglogx
p

r—r00
p<xz
m(p)¢P
exists and has a finite value.
Theorem 3.2. 1. We have
mo(x) < k—o— k= 2.4919 and © > 2. (3.12)
log” x

2. The following sum is convergent

Z L (3.13)

p,m(p) are primes
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Proof. 1. As it is well-known

x
— >1
m(x) <c s %2
with ¢ = 1.25506. Then
7 () 2 X 2 X 2 X
= > 2
m(m(w)) < Clnﬂ(x) =¢ InzInm(z) =¢ Inz(lnzx —Inlnz) “Wls (1—loloz)’ t=

— has its maximum value
__ Inlnz e—1

Inx

The function

at e, then we get

e «x

m(m(z)) <
2. Using Abel’s summation formula and since inequality (3.12) holds, we get
1 ——1 T—1
Z ; = Wc(l‘)g + / Wc(t)ﬁdt

p<z M
p,m(p) are primes

T > 2.
e—llnx In?z’

1 o1 k k k
<——+k dt = -
log” x A, tlog?t log® z logx log A1
1 1
log” x log:c log)\l 10g3

This implies that 3M > 0 such that for all sufficiently large z,

1
Z 5gM.

p,m(p) are primes

This implies that the sum is convergent. U
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