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Abstract: Our objective in this paper is to study a particular set of prime numbers, namely
{p ∈ P and π(p) /∈ P}. As a consequence, estimations of the form

∑
f(p) with p being prime

belonging to this set are derived.
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1 Introduction

As usual, let P be the set of all primes, π(x) = #P ∩ [2, x] and

Li(x) =

∫ x

2

1

log t
dt =

x

log x

(
1 +

N∑
k=1

k!

logk x
+O

(
1

logN+1 x

))
, (x→ +∞). (1.1)

The Prime Number Theorem states that

π(x) ∼ Li(x), (x→ +∞). (1.2)

The theorem was proved, independently, by Hadamard [1] and de la Vallée-Poussin [2] in 1896.
Another paper of de la Vallée-Poussin is [3], where he estimated the error term in the Prime
Number Theorem by showing existence of a zero-free region for the Riemann zeta-function ζ(s)
to the left of the line <(s) = 1. The error is given by

π(x) = Li(x) +O
(
xe−a

√
log x
)

as x→∞, (1.3)

where a is a positive absolute constant.
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The aim of this paper is to use the Prime Number Theorem to give some estimations related
to the following subset of primes

{p ∈ P and π(p) /∈ P} .

2 Preparatory lemmas

We will need several preparatory lemmas. The first one is a new version and extension of the
result obtained in [4]. Let us use the denotations π2(x) for π(π(x)), Li2(x) for Li(Li(x)) and
Lic(x) = Li(x)− Li2(x).

Lemma 2.1. Let x be a positive real number. Let us denote by πc(x) (respectively, πc(x)) the
number of primes p ≤ x such as π(p) is not a prime (respectively, π(p) is prime). Precisely,

πc(x) := # {p ≤ x|π(p) is not prime} =
∑
p≤x
π(p)/∈P

1,

and
πc(x) := # {p ≤ x|π(p) is prime} =

∑
p≤x
π(p)∈P

1.

Then,

1. π(x) = πc(x) + πc(x).

2. πc(x) = π(x)− π(π(x)).

3. πc(x) = π(π(x)).

Proof. 1. It is straightforward to see that the set of prime numbers less than or equal to x can
be partitioned into two subsets as follows

{p ≤ x|p is prime} = {p ≤ x|p is prime and π(p) is prime}
∪ {p ≤ x|p is prime and π(p) is not prime} . (2.1)

By passage to cardinality, we get

# {p ≤ x|p is prime} = # {p ≤ x|p is prime and π(p) is prime}
+# {p ≤ x|p is prime and π(p) is not prime}

or
π(x) = πc(x) + πc(x). (2.2)

2. It is not difficult to see that # {p ≤ x|p is prime and π(p) is not prime} is equal to the
number of different equivalence classes ṗ which was denoted in [4] by πc(x) (for more
details, see [4]).

3. From the equation (2.2), we obtain

πc(x) = π(x)− πc(x) = π(x)− (π(x)− π(π(x))) = π(π(x)).
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Lemma 2.2. We have the following estimations

1

log Li(x)
=

1

log x
+O

(
log log x

log2 x

)
(x→∞). (2.3)

Proof. Using formula (1.1), we get

1

log Li(x)
=

1

log x− log log x+ log

(
1 +

∑N
k=1

k!

logk x
+O

(
1

logN+1 x

)) , (2.4)

and by using Taylor’s expansion, we acquire

log

(
1 +

N∑
k=1

k!

logk x
+O

(
1

logN+1 x

))
=

1

log x
+O

(
1

log2 x

)
(x→∞). (2.5)

Next, we replace (2.5) in (2.4), we get

1

log Li(x)
=

1

log x

(
1− log log x

log x
+

1

log2 x
+O

(
1

log3 x

))
=

1

log x

(
1 +O

(
log log x

log x

))
(x→∞).

Lemma 2.3. We have

π2(x)− Li2(x) = O

 x

log x
e
−a

√√√√log
x

log x

 (x→∞), (2.6)

πc(x)− Lic(x) = O

 x

log x
e
−a

√√√√log
x

log x

 (x→∞). (2.7)

Proof. From (1.3), we have on the one hand

π(π(x)) = Li(π(x)) +O
(
π(x)e−a

√
log π(x)

)
= Li(π(x)) +O

 x

log x
e
−a

√√√√log
x

log x

 . (2.8)

And, on the other hand, by Taylor’s series, we acquire

Li(π(x))− Li2(x) = Li
(
Li(x) +O(xe−a

√
log x)

)
− Li(Li(x))

=
1

log Li(x)
O
(
xe−a

√
log x
)

= O

(
x

log x
e−a
√
log x

)
. (2.9)

Now, we can estimate π2(x)− Li2(x):

π2(x)− Li2(x) = π2(x)− Li(π(x)) + Li(π(x))− Li2(x).
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Using (2.8) and (2.9), we get

π2(x)− Li2(x) = O

(
x

log x
e−a
√
log x

)
+O

 x

log x
e
−a

√√√√log
x

log x

 = O

 x

log x
e
−a

√√√√log
x

log x

 .

For the formula (2.7), we have

πc(x)− Lic(x) = π(x)− π2(x)− (Li(x)− Li2(x))

= π(x)− Li(x)− (π2(x)− Li2(x))

= O
(
xe−a

√
log x
)
−O

 x

log x
e
−a

√√√√log
x

log x


= O

 x

log x
e
−a

√√√√log
x

log x

 .

3 Main results

Our main result may be stated as follows.

Theorem 3.1. Let us have f(x) = Cx−b logw x with C, b ≥ 0 and w ≥ 1. Then∑
p≤x
π(p)/∈P

f(p) =

∫ x

2

f(y)

log y

(
1− 1

log y

)
dy +O

(
x1−b(log x)w−3 log log x

)
. (3.1)

Proof. Using Stieltjes integral, we obtain∑
p≤x
π(p)/∈P

f(p) =

∫ x

2

f(y)dπc(y).

Integration by parts gives∑
p≤x
π(p)/∈P

f(p) = f(x)πc(x)− f(2)−
∫ x

2

f ′(y)πc(y)dy

= f(x)πc(x)− f(2)−
∫ x

2

f ′(y)Lic(y)dy −
∫ x

2

f ′(y)(πc(y)− Lic(y))dy.

Then integration by parts gives

∑
p≤x
π(p)/∈P

f(p) =

∫ x

2

f(y)

log y

(
1− 1

logLi(y)

)
dy + f(2)Lic(2)− f(2) + f(x)(πc(x)− Lic(x))

−
∫ x

2

f ′(y)(πc(y)− Lic(y))dy (3.2)

28



Now, using estimation (2.3) of Lemma 2.2, we get∑
p≤x
π(p)/∈P

f(p) =

∫ x

2

f(y)

log y

(
1− 1

log y
−O

(
log log y

log2 y

))
dy

+ f(2)Lic(2) + f(x)(πc(x)− Lic(x))−
∫ x

2

f ′(y)(πc(y)− Lic(y))dy. (3.3)

We have, on the one hand, by (2.7) of Lemma 2.3

f(x)(πc(x)− Lic(x)) = O

x1−b logw e−a
√√√√ x

log x

 (3.4)

and ∫ x

2

f(y)

log y
O

(
log log y

log2 y

)
dy = O

(
x1−b logw−3 x log log x

)
. (3.5)

On the other hand, we have

f ′(x) = Cx−b−1 logw−1 x(−b log x+ w).

Then, again by (2.7) of Lemma 2.3

f ′(y)(πc(y)− Lic(y)) = O

x−b(log x)we−a
√√√√ x

log x

 .

Consequently,

∫ x

2

f ′(y)(πc(y)− Lic(y))dy =

∫ x

2

O

y−b(log y)we−a
√√√√ y

log y

 dy

= O

x1−b(log x)we−a
√√√√ x

log x

 (3.6)

Finally, by replacing estimations (3.4), (3.5) and (3.6) in (3.3), we find that∑
p≤x
π(p)/∈P

f(p) =

∫ x

2

f(y)

log y

(
1− 1

log y

)
dy +O

(
x1−b(log x)w−3 log log x

)
.

We now present applications of Theorem 3.1.

Corollary 1. We have∑
p≤x
π(p)/∈P

log p = x− Li(x)− 2 +O
(
x log−2 x log log x

)
(x→∞), (3.7)

∑
p≤x
π(p)/∈P

log p

p
= log x− log log x+ log log

√
2 +O

(
log−2 x log log x

)
(x→∞), (3.8)
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∑
p≤x
π(p)/∈P

1

p
= log log x− (log log 2 + (log 2)−1) +O

(
log−3 x log log x

)
(x→∞), (3.9)

∑
p≤x
π(p)/∈P

logn p

p
=

logn x

n
− logn−1 x

n− 1
+ cn(2) +O

(
logn−3 x log log x

)
(x→∞), (3.10)

with cn(2) = −
(
logn 2

n
− logn−1 2

n− 1

)
and n ≥ 2.

n∑
i=2

∑
p≤x
π(p)/∈P

logi p

p
=

logn x

n
− log x+ Cn(2) +O

(
logn−3 x log log x

)
(x→∞), (3.11)

with Cn(2) =
∑n

i=2 ci(2).

Proof. The first four estimations are immediate from formula (3.1). Now, for the latest, we have

k = 2,
∑
p≤x
π(p)/∈P

log2 p

p
=

log2 x

2
− log x+ c2(2) +O

(
log−1 x log log x

)
,

k = 3,
∑
p≤x
π(p)/∈P

log3 p

p
=

log3 x

3
− log2 x

2
+ +c3(2) +O (log log x) ,

...

k = n,
∑
p≤x
π(p)/∈P

logn p

p
=

logn x

n
− logn−1 x

n− 1
+ cn(2) +O

(
logn−3 x log log x

)
.

These equations can be added to yield the desired formula.

Remark. The absolute error in (3.9) tends to zero as x tends to infinity, then

λ0 = lim
x→∞

 ∑
p≤x
π(p)/∈P

1

p
− log log x


exists and has a finite value.

Theorem 3.2. 1. We have

π2(x) ≤ k
x

log2 x
, k w 2.4919 and x ≥ 2. (3.12)

2. The following sum is convergent ∑
p,π(p) are primes

1

p
. (3.13)
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Proof. 1. As it is well-known
π(x) < c

x

lnx
, x ≥ 1

with c = 1.25506. Then

π(π(x)) < c
π(x)

lnπ(x)
< c2

x

lnx lnπ(x)
< c2

x

lnx(lnx− ln lnx)
= c2

x

ln2 x
(
1− ln lnx

lnx

) , x ≥ 2

The function 1

1− ln ln x
ln x

has its maximum value e

e− 1
at ee, then we get

π(π(x)) <
c2e

e− 1

x

ln2 x
≈ 2.4919

x

ln2 x
, x ≥ 2.

2. Using Abel’s summation formula and since inequality (3.12) holds, we get∑
p≤x

p,π(p) are primes

1

p
= πc(x)

1

x
+

∫ x

λ1

πc(t)
1

t2
dt

≤ 1

log2 x
+ k

∫ x

λ1

1

t log2 t
dt =

k

log2 x
+

k

log x
+

k

log λ1

≤ k

(
1

log2 x
+

1

log x
+

1

log λ1

)
≤ k

(
1

log2 3
+

2

log 3

)
.

This implies that ∃M > 0 such that for all sufficiently large x,∑
p,π(p) are primes

1

p
≤M.

This implies that the sum is convergent.
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