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Abstract: Robin’s criterion says that the Riemann Hypothesis is equivalent to

∀n ≥ 5041,
σ(n)

n
≤ eγ log2 n,

where σ(n) is the sum of the divisors of n, γ represents the Euler–Mascheroni constant, and logi
denotes the i-fold iterated logarithm. In this note we get the following better effective estimates:

∀n ≥ 3,
σ(n)

n
≤ eγ log2 n+

0.3741

log2
2 n

.

The idea employed will lead us to a possible new reformulation of the Riemann Hypothesis in
terms of arithmetic functions.
Keywords: Primorial number, Robin’s inequality, Riemann Hypothesis.
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1 Introduction and statement of results

As usual, let (pk)k≥1 denote the increasing sequence of prime numbers, and letNk be the primorial
integer of index k, the product of its k first terms. The Riemann Hypothesis (RH) claims that the
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nontrivial zeros of zeta function ζ(s) =
∑

n≥1 n
−s are located on the critical line R(s) = 1

2
.

Several equivalent formulations of RH appeared, but the one which interests us here is that in
terms of arithmetic functions, here we cite the first papers of Gronwall [8], Nicolas [11] and
Robin [13], followed by, for instance, Akbary [1], Caveney et al. [6] and Lagarias [10].

Robin in his paper [13] asserted that RH is equivalent to

∀n ≥ 5041, σ(n) ≤ eγn log2 n, (1)

with σ(n) denotes the sum of divisors function, γ the Euler–Mascheroni constant, and logi the
i-fold iterated logarithm. This assertion is based on the known following formula (see [9]):

σ(n)

n
= (1 + o(1))eγ log2 n. (2)

In this note, we intend to join the authors who have attempted to closely determine the o-term in
the formula (2). The best upper bound of the normalized of the sum of divisors function is also
given by Robin [13] which proved, unconditionally, that

∀n ≥ 3,
σ(n)

n
≤ eγ log2 n+

0.6483

log2 n
.

We propose the following result:

Theorem 1.1. For every integer n ≥ 3, we have

σ(n)

n
≤ eγ log2 n+

0.3741

log2
2 n

.

This improves considerably Robin’s upper bound. In parallel, we study another form of upper
bound than that exposed in the theorem above, since it is completely expressed in terms of K(x),
the primorial counting function which, see Balazard [4], is approximately log x

log2 x
. We conclude

that:

Theorem 1.2. If K(n) is the number of primorial integers not exceeding n, then

∀n ≥ 30,
σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)
+

1

20 log2
2K(n)

)
.

This leads us to examine a conjecture upon which we stumbled:

Conjecture 1. The Riemann Hypothesis is equivalent to

∀n ≥ 205,
σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)

)
.

See Section 4 for more background on this conjecture. The main ingredient of this paper is the
recent version of the upper bound of the product over primes

∏
p≤x

p
p−1 , thanks to the paper of the

third author in [7], as a consequence of the new estimates of Chebyshev’s summatory functions
also exposed in [7]. Although there are some updates, such improvements have negligible
influence on the final results. Finally, we indicate that e represents Napier’s constant, p a prime
number, and with this technique, obtaining better approximations is closely linked with progress
on extending the known zero-free region of the Riemann zeta-function.
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2 Preliminary lemmas

The primorial counting function K(x) is not known in the literature. We begin by showing some
basic properties (for a more extended study, see the recent paper of the authors [3]). For each
real x ≥ 1, the integer K(x) can be defined by max {k ∈ N∗, Nk ≤ x} . In the following lemma,
we prove that for a given x ≥ 1, the primorial NK(x) represent the smallest integer less than x
whose decomposition into prime numbers is the longest. Here ω(n) denotes the number of prime
distinct divisors of n.

Lemma 2.1. For every real number x ≥ 1, we have

K(x) = max
1≤n≤x

ω(n).

Furthermore, for any integer n ≤ x with ω(n) = K, we have NK ≤ n.

Proof. As Nk ≤ n ≤ x < Nk+1 means that ω(n) ≤ k and K(n) = k, hence ω(n) ≤ K(n) in
any interval [Nk, Nk+1[, which implies that

max
1≤n≤x

ω(n) = max
1≤n<NK+1

ω(n) = K.

Let q1q2 · · · qK be an integer less than x with q1 < q2 < · · · < qK prime numbers. For K = 1 it is
obvious that q1 ≥ p1. Now, assuming qi ≥ pi for i < K, it is necessary that qK ≥ pK , otherwise
qK < qK−1.

Lemma 2.2. We have, when x ≥ 8, the following inequalities:

log2 x < K (x) ≤ log x.

Proof. From the definition of K(x), by taking the logarithm, we can also write the following:

K(x) = max {k ∈ N∗, θ(pk) ≤ log x} , (3)

where θ denotes the Chebyshev function. So, by recalling the inequality θ(pk) ≥ k given in
Robin [12] valid once k ≥ 3, one easily deduces that

K(x) ≤ max {k ∈ N∗, k ≤ log x} ≤ log x, ∀x ≥ N3,

which is also valid for 8 ≤ x < N3. For the second, a short induction on k is necessary. For all
k≥1, we have Nk < ee

k−1 . Indeed, the case k=1 is obvious, and the fact that ∀k≥1, pk+1 < Nk

(according to Euclid’s proof of the infinity of primes) implies that

Nk+1 = Nkpk+1 < ee
k−1

Nk < e2e
k−1

< eee
k−1

= ee
k

.

So, by taking the logarithm, one gets that for all x ≥ e:

log2 x < log2NK+1 < K(x).

We conclude the proof using computer verifications for the small values. In relation to π (x) the
prime counting function, we can also mention that

log2 x < K (x) ≤ log x < π (x) .
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Lemma 2.3. Let δ = 1.000081. We have, when x ≥ 210:

K (x) ≥ 1

δ

log x

log2 x
.

Proof. Recalling the following estimates given in [14]:

θ(x) < δx, ∀x > 1 and π(x) ≥ x

log x
, ∀x ≥ 17,

one reaches successively, for every real x ≥ e17δ, that

K(x) ≥ max {k ∈ N∗, δpk ≤ log x} = π

(
log x

δ

)
≥ 1

δ

log x

log2 x
.

A computer check handles the cases 210 ≤ x < e17δ.

Now, for f a decreasing function greater than 1 on (1,∞), we consider the following sequence

L(n) =
∏
p|n

f(p), ∀n > 1.

The term L(n) for the function f(x) =
x

x− 1
is only n

ϕ(n)
, where ϕ(n) denotes the Euler totient

function, and L(n) is Ψt(n)

n
when f(x) = 1 + 1/x + · · · + 1/xt−1, t ≥ 2, where Ψt(n) is the

generalized Dedekind psi function. We have the following Lemmas

Lemma 2.4. For every real number x ≥ 2, the following equality

max
1<n≤x

L(n) =
∏

p≤pK(x)

f(p)

holds.

Proof. To determine the maximum of L(n), when n range over all integers less than or equal to
x, we first use the fact that f is greater than 1 since this places the maximum at the class of the
integers whose number of prime divisors is the largest. Then, as f is also strictly decreasing, the
maximum must have the smallest prime numbers in its decomposition. However, according to
the previous lemma, we can clearly specify that, it is only true for NK(x), i.e.,

max
1<n≤x

L(n) = L(NK(x)).

Finally, as p|Nk is equivalent to p ≤ pk, the lemma follows.

Remark 1. When f is strictly increasing and greater than 1 on (1,∞), the maximum of L(n) is
reached at an integer q1 · · · qK(x), where at least one of qi is a prime number greater than pi.

In the following lemma, we leave the generalization and show, through a simpler proof, a
result concerning the order of the Euler function.

Lemma 2.5. We have
lim sup
n→+∞

n

eγϕ(n) log2 n
= 1.
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Proof. From the previous lemma and the definition of K(n), we deduce that

L(n)

log2 n
≤

L(NK(n))

log2NK(n)

.

So, our limit becomes as follows:

lim sup
n→+∞

L(n)

eγn log2 n
= lim

k→+∞

L(Nk)

eγNk log2Nk

.

In particular, when f(x) =
x

x− 1
, one obtains according to Mertens’ theorem that

L(Nk) =
∏
p≤pk

p

p− 1
∼ eγ log pk,

as k → +∞. Thus, the lemma follows by recalling that

log2Nk = log(θ(pk)) ∼ log pk,

using the Prime Number Theorem.

Every proof containing explicit results requires at some point or another a digital verification
of the property obtained on the finite number of cases that remain. In our case, we need to
compute the values of σ(n)

eγn log2 n
for fairly large n. We will use the result of Briggs [5], where he

checked Robin’s inequality up to 101010 .

Lemma 2.6 (Briggs). Robin’s criterion holds, for 5040 < n ≤ 101010 .

We end this section by mentioning the following recent explicit bounds of θ(x) and
∏
p≤x

(1− 1
p
).

Lemma 2.7 (Dusart). The following estimates hold

θ(x) ≥ x

(
1− 0.01

log3 x

)
, as soon as x ≥ 7232121212. (4)

∏
p≤x

(
1− 1

p

)−1
≤ eγ log x

(
1 +

0.2

log3 x

)
, when x ≥ 2278382. (5)

θ(pk) ≥ k

(
log k + log2 k − 1 +

log2 k − 2.050735

log k

)
, when pk ≥ 1011. (6)

pk ≤ k

(
log k + log2 k − 1 +

log2 k − 1.95

log k

)
, when k ≥ 178974. (7)

3 Proof of Theorem 1.1

To begin with, for n such that K := K(n) ≥ K1 = 164607 we have pK ≥ 2228382. This implies
by Lemmas [2.4, 2.7] that

n

ϕ(n)
≤
∏
p≤pK

p

p− 1
≤ eγ log pK

(
1 +

0.2

log3 pK

)
. (8)

On the other hand, according to inequality (4), once K ≥ K2 = 7232121212, it follows that

log2NK = log θ(pK) ≥ log pK −
0.01

log3 pK
. (9)
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Now, with some care, one can write for K ≥ K2 the following

eγ log pK

(
1 +

0.2

log3 pK

)
= eγ log pK +

0.2eγ

log2 pK

= eγ log pK

(
1− 0.01

log2 pK

)
+

(0.2 + 0.01)eγ

log2 pK

= eγ log pK

(
1− 0.01

log3 pK

)
+

0.3741

log2 pK
.

Hence, taking into account that the function eγt+
0.3741

t2
is increasing for t ≥ 1, we easily deduce

from inequality (9) that

eγ
(

log pK −
0.01

log2 pK

)
+

0.3741

log2 pK
< eγ log2NK +

0.3741

log2
2NK

,

and then
n

ϕ(n)
≤ eγ log2NK +

0.3741

log2
2NK

, ∀K ≥ K2.

By computer, the last inequality is shown to be also valid when 2 ≤ K < K2. Consequently,
invoking again the increase of the function eγt +

0.3741

t2
, one gets for n ≥ N2, and then for n ≥ 3

that
n

ϕ(n)
≤ eγ log2 n+

0.3741

log2
2 n

.

Finally, as the inequality σ(n)

n
≤ n

ϕ(n)
holds (see [13, page 193]) for n ≥ 1, the theorem

follows. �

The following direct consequence joins the upper bounds of σ(n)

n
in the form (1 + ε)eγ log2 n

given in [2] for different values of ε. The value ε = 0.0000123 obtained below, once n ≥ 5041,
remains stable until the best value ε = 0.005558981 . . . obtained in [2], as soon as n ≥ 2521.

Corollary 3.1. For every integer n ≥ 5041, we have

σ(n)

n
≤ (1.0000123)eγ log2 n.

Proof. The idea is to take the term 0.3741

log2
2 n

from Theorem 1.1, divide it by eγ log2 n, then calculate

the image of 101010 . The remainder is guaranteed by Lemma 2.6.

4 Proof of Theorem 1.2

By inequality (5) we infer that for every k ≥ K1 = 164607:

Nk

ϕ(Nk)
=
∏
p≤pk

p

p− 1
≤ eγ log pk

(
1 +

0.2

log3 pk

)
.

However; see [12], we have

k log k ≤ pk ≤ k(log k + log2 k),
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once k ≥ 6. So, we obtain the following inequalities:

2 log2 k ≤ log pk ≤ log k + log2 k +
log2 k

log k
,∀k ≥ 6,

which implies successively for k ≥ K1:

Nk

ϕ(Nk)
≤ eγ

(
log pk +

0.2

log2 pk

)
≤ eγ

(
log k + log2 k +

log2 k

log k
+

0.2

4 log2
2 k

)
.

Then, it comes by computer that the last upper bound also holds for k ≥ 10. Hence, one gets for
all n ≥ N10, according to Lemma 2.4, that

n

ϕ(n)
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)
+

0.2

4 log2
2K(n)

)
. (10)

Now, let us go back to the ratio σ(n)

n
. According to [13], this quantity takes maximal values

on so called colossally abundant (CA) numbers, and if Robin’s inequality is true on consecutive
CA numbers CAi and CAi+1, then it is also true for all integer n ∈ [CAi, CAi+1]. We say that n
is colossally abundant if there exists a positive ε for which:

σ(n)

n1+ε
≥ σ(k)

k1+ε
, ∀k > 1.

Thus, to complete our proof, it suffices to check inequality (10) for σ(n)

n
only on the CA numbers

less than N10, namely: 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320,

21621600, 367567200 and 6983776800. �

Next, this leads us to discuss a possible reformulation of RH in terms of arithmetic functions.
First, we observe that the following proposition

Proposition 1. We have, when 205 ≤ n ≤ CA160, the inequality

σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)

)
,

where CA160 > 10326.

Proof. It suffices to check the list of terms of the sequence registered as A004490 of CA numbers
in OEIS [15]. This extends the inequality to all integers between 205 and CA160.

The following table shows part of the calculations, where eγA(n) is the upper bound of
Proposition 1.
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n σ(n)/n K(n) eγA(n)− σ(n)/n

CA150 = N121N11N5N3N
3
2N

4
1 11.570817 127 0.44727552

CA151 = N122N11N5N3N
3
2N

4
1 11.588010 128 0.44658941

CA152 = N123N11N5N3N
3
2N

4
1 11.605127 129 0.44584657

CA153 = N124N11N5N3N
3
2N

4
1 11.622118 130 0.44509823

CA154 = N125N11N5N3N
3
2N

4
1 11.638937 131 0.44439327

CA155 = N126N11N5N3N
3
2N

4
1 11.655541 132 0.44377752

CA156 = N127N11N5N3N
3
2N

4
1 11.671980 133 0.44320089

CA157 = N128N11N5N3N
3
2N

4
1 11.688214 134 0.44270719

CA158 = N129N11N5N3N
3
2N

4
1 11.704291 135 0.44224879

CA159 = N130N11N5N3N
3
2N

4
1 11.720259 136 0.44178089

CA160 = N131N11N5N3N
3
2N

4
1 11.736118 137 0.44130365

This completes the proof.

In view of this numerical experiments the natural question is:

Question 1. Is it true that

σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)

)
,

for all n ≥ 205?

An answer to this question is linked to RH by the following proposition:

Proposition 2. If the Riemann Hypothesis hold, we have for every integer n ≥ 205:

σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)

)
.

Proof. This is deduced from Robin’s criterion and essentially from the fact that A(n) ≥ log2 n,
for every n ≥ 10322. Indeed, one gets from Lemma 2.3 that

logK(x) ≥ log2 x− log3 x− log δ, ∀x ≥ 3, (11)

log2K(x) ≥ log3 x+ log

(
1− log3 x+ log δ

log2 x

)
, ∀x ≥ 3, (12)

and from Lemma 2.2 the following

log2K(x)

logK(x)
≥ log4 x

log3 x
, ∀x ≥ 15. (13)

Thus, inequalities (11), (12) and (13) yield us for x ≥ 15:

A(x) ≥ log2 x+
log4 x

log3 x
+ log

(
1− log3 x+ log δ

log2 x

)
− log δ.

By setting log2 x = t, the study of the following function:

log4 x

log3 x
+ log

(
1− log3 x+ log δ

log2 x

)
− log δ

becomes less complicated, and reveals that it is increasing and positive as soon as x ≥ 10322.
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This implies that
A(x) ≥ log2 x, ∀x ≥ 10322.

Finally, if the Riemann Hypothesis holds, first we have from Robin’s criterion that σ(n)
n
≤ eγA(n)

for all n ≥ 10322, and thanks to the computations of Proposition 1 for the remaining values.

At this level, part of Conjecture 1 is proven and the persistent question is:

Question 2. Is it true that if RH is false, the inequality

σ(n)

n
≤ eγ

(
logK(n) + log2K(n) +

log2K(n)

logK(n)

)
is violated for infinitely many n ≥ N3?

A heuristic motivation runs as follows:

K(n) ≈ log n/ log2 n =⇒
logn/ log2 n91

logK(n) ≈ log2 n− log3 n ≈ log2 n

=⇒ logK(n) + log2K(n) ≈ log2 n

=⇒ A(n) ≈ log2 n.

Hence, according to Robin’s criterion, since σ(n)

n
> eγ log2 n infinitely often, if the Riemann

Hypothesis is false, as A(n) ≈ log2 n, there may exist infinitely many n such that

σ(n)

n
> eγA(n).
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