
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 27, 2021, No. 3, 184–193
DOI: 10.7546/nntdm.2021.27.3.184-193

Pauli–Fibonacci quaternions
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1 Introduction

The real quaternions were first described by Irish mathematician William Rowan Hamilton in
1843. The real quaternions constitute an extension of complex numbers into a four-dimensional
space and can be considered as four-dimensional vectors, in the same way that complex numbers
are considered as two-dimensional vectors.

In [11], Hamilton introduced the set of real quaternions which can be represented as

H = { q = q0 + i q1 + j q2 + k q3 | qs ∈ R , s = 0, 1, 2, 3 } (1)

where

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j .
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Quaternions have received widespread attention for their potential use in a new formulation of
quantum mechanics and quantum field theory [1]. Horadam [12, 13] defined complex Fibonacci
and Lucas quaternions as follows

Qn = Fn + Fn+1 i+ Fn+2 j + Fn+3 k (2)

and
Kn = Ln + Ln+1 i+ Ln+2 j + Ln+3 k (3)

where Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively. Also, the imaginary
quaternion units i, j, k have the following rules

i2 = j2 = k2 = −1 , i j = −j i = k , j k = −k j = i , k i = −i k = j

There are several studies on different quaternions and their generalizations, for example [2, 9, 10,
14, 15, 19, 22, 25].

The Pauli matrices have applications in different areas of mathematics and mathematical
physics [4, 5, 7, 8, 16, 18]. The work on the the Pauli matrices can be found in [4, 5, 16]. The
Pauli matrices are Hermitian and unitary which are elements of a set of three 2 × 2 complex
matrices as follows:

1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (4)

whose multiplication rules are

σ2
1 = σ2

2 = σ2
3 = 1 σ1 σ2 = −σ2 σ1 = i σ3 ,

σ2 σ3 = −σ3 σ2 = i σ1, σ3 σ1 = −σ1 σ3 = i σ2.
(5)

The famous physicist Wolfgang Pauli has introduced the Pauli matrices [5, 16]. The Pauli
quaternions are defined by the basis {1, i σ1 , i σ2 , i σ3 } [12]. This set of base is isomorphic to
quaternions H. In [16], the isomorphism from H to this set is given by the following map which
are reversed signs for the Pauli matrices:

1→ I , i→ −i σ1 , j → −i σ2 , k → −i σ3 .

The Hamilton multiplication rules differ from the Pauli matrix rules only by a factor of i. It is
possible to formulate special relativity with Hamilton quaternions having complex coefficients
(called biquaternions) [11].

In quantum mechanics, they occur in the Pauli equation which takes into account the interaction
of the spin of a particle with an external electromagnetic field. It turns out that the formulae of
general relativity are simpler with the Pauli quaternions [21]. There is also a very interesting
relation between the Pauli quaternions and three-dimensional Clifford algebra [6].

Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span
the space of observables of the two-dimensional complex Hilbert space. In the context of Pauli’s
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work, σ k represents the observable corresponding to spin along the k-th coordinate axis in
three-dimensional Euclidean space [3, 7].

The Pauli matrices (after multiplication by i to make them anti-Hermitian) also generate
transformations in the sense of Lie algebras: the matrices i σ1 , i σ2 , i σ3 form a basis for the
real Lie algebra, which exponentiates to the special unitary group SU(2). The algebra generated
by the three matrices σ1 , σ2 , σ3 is isomorphic to the Clifford algebra and the algebra generated
by i σ1 , i σ2 , i σ3 is isomorphic to the quaternions.

The Pauli matrices are closely related to two-dimensional representations of SO(3) and SU(2)
groups (SO(3) and SU(2) groups are isomorphic). And they are used in representing rotation.
A necessary and sufficient condition for a rotation to be representative is that it satisfies the Pauli
matrices. But it can be easily verified that only two-dimensional representations of SO(3) satisfy
this property [3].

In 2017, Kim [16] defined the Pauli quaternions HP and De Moivre’s formula of these
quaternions, as follows

q = x0 1 + x1 σ1 + x2 σ2 + x3 σ3 (6)

Also, the quaternion units have the rules (5).
The Pauli-quaternion product can be written as

q.p =


x0 x1 x2 x3
x1 x0 −ix3 ix2
x2 ix3 x0 −ix1
x3 −ix2 ix1 x0




y0
y1
y2
y3

 .

The base elements of the Pauli-quaternions satisfy the following commutative multiplication
scheme (Table 1).

x 1 σ1 σ2 σ3

1 1 σ1 σ2 σ3

σ1 σ1 1 iσ3 −iσ2
σ2 σ2 −iσ3 1 iσ1

σ3 σ3 iσ2 −iσ1 1

Table 1. Multiplication scheme of the Pauli-quaternionic units

The conjugate of the Pauli-quaternion [16] as follows:

q = x0 1 + x1 σ1 + x2 σ2 + x3 σ3,

q∗ = x0 1− x1 σ1 − x2 σ2 − x3 σ3.
(7)

Moreover, q q∗ = q∗ q = (x20 − x21 − x22 + x23) 1. Also, the norm of Pauli-quaternion is defined as

Nq = ‖q × q∗‖ =
√
|x20 − x21 − x22 + x23|. (8)
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If Np = 1, then p ∈ H∗
p = Hp − E is called unit Pauli quaternions. Also, spacelike and timelike

Pauli quaternions have multiplicative inverse, denoted by p−1, where

E = {x01 + x1σ1 + x2σ2 + x3σ3|x20 = x21 + x22 + x23 }

and their property p p−1 = p−1 p = 1. On the other hand, lightlike Pauli quaternions have no
inverses [20].

In this paper, the Pauli–Fibonacci quaternions will be defined. In addition, the Honsberger
identity, the d’Ocagne’s identity, the generating function, Binet’s formula, Cassini’s identity,
Catalan’s identity for these quaternions are given.

2 The Pauli–Fibonacci quaternions

The Pauli–Fibonacci and Pauli–Lucas quaternions can be defined by the basis {1, i σ1 , i σ2 , i σ3 },
where iσ1, iσ2 and iσ3 satisfy the conditions (5) as follows

QpF n =Fn + Fn+1 σ1 + Fn+2 σ2 + Fn+3 σ3 (9)

and
QpLn =Ln + Ln+1 σ1 + Ln+2 σ2 + Ln+3 σ3 (10)

The addition, substraction and multiplication by real scalars of two Pauli–Fibonacci quaternions
gives the Pauli–Fibonacci quaternion. Then, the addition and subtraction of the Pauli–Fibonacci
quaternions are defined by

QpF n ±QpFm = (Fn ± Fm) + (Fn+1 ± Fm+1) .σ1
+(Fn+2 ± Fm+2) .σ2 + (Fn+3 ± Fm+3) .σ3.

(11)

The multiplication of a Pauli–Fibonacci quaternion by the real scalar λ is defined as

λQpF n = λFn + λFn+1 .σ1 + λFn+2 .σ2 + λ Fn+3 .σ3. (12)

By using (Table 1) the multiplication of two Pauli–Fibonacci quaternions is defined by

QpF n × QpFm = (Fn Fm + Fn+1 Fm+1 + Fn+2 Fm+2 + Fn+3 Fm+3).1

+(Fn Fm+1 + Fn+1 Fm + i (−1)m Fn−m) .σ1
+(Fn Fm+2 + Fn+2 Fm + i (−1)m Fn−m) .σ2
+(Fn Fm+3 + Fn+3 Fm + i (−1)m+1 Fn−m) .σ3

= QpFm × QpF n.

(13)

The scalar and the vector part of QpF n which is the n-th term of the Pauli–Fibonacci quaternion
with (QpF n) are denoted by

SQpFn
= Fn and VQpFn

= Fn+1 σ1 + Fn+2 σ2 + Fn+3 σ3. (14)

187



Thus, the Pauli–Fibonacci quaternion QpF n is given by QpF n = SQpFn
+VQpFn

. Then, relation
(13) is defined by

QpF n × QpFm = SQpFn
SQpFm

+ 〈VQpFn
, VQpFm

〉+ SQpFn
VQpFm

+ SQpFm
VQpFn

+ VQpFn
∧ VQpFm

.
(15)

Also, the Pauli–Fibonacci quaternion product may be obtained as follows:

QpF n × QpFm =


Fn Fn+1 Fn+2 Fn+3

Fn+1 Fn −iFn+3 iFn+2

Fn+2 iFn+3 Fn −iFn+1

Fn+3 −iFn+2 iFn+1 Fn




Fm

Fm+1

Fm+2

Fm+3

 .

The conjugate of the Pauli–Fibonacci quaternion QpF n is denoted by QpF n and it is

QpF n = Fn − Fn+1 σ1 − Fn+2 σ2 − Fn+3 σ3. (16)

The norm of QpF n is defined as follows

‖QpF n‖
2 = QpF n QpF n = |F 2

n − F 2
n+1 − F 2

n+2 − F 2
n+3|. (17)

In the following theorem, some properties related to Pauli–Fibonacci quaternions are given.

Theorem 1. Let Fn andQpF n be the n-th terms of Fibonacci sequence (Fn) and Pauli–Fibonacci
quaternion (QpF n), respectively. In this case, for n ≥ 1 we can give the following relations:

QpF n+1 = QpF n +QpF n−1, (18)

QpF n+1 +QpF n−1 = QpLn, (19)

QpF n+2 −QpF n−2 = QpLn, (20)

QpF n − QpF n+1 σ1 −QpF n+2 σ2 −QpF n+3 σ3 = Fn − Fn+2 − Fn+4 − Fn+6. (21)

Using (9) and (10) proof can easily be done.

Theorem 2 (Honsberger identity). For n,m ≥ 0 the Honsberger identity for the Pauli–Fibonacci
quaternions QpF n and QpFm is given by

QpF nQpFm +QpF n+1QpFm+1 = 2QpF n+m+1 + 9Fn+m+1 + 5Fn+m+2 (22)

Proof. By using (9) we get,

QpF nQpFm +QpF n+1QpFm+1 = (Fn+m+1 + Fn+m+3 + Fn+m+5 + Fn+m+7)

+2 (Fn+m+2 σ1 + Fn+m+3 σ2 + Fn+m+4 σ3)

= 2QpF n+m+1 + 9Fn+m+1 + 5Fn+m+2.

where the identity FnFm + Fn+1Fm+1 = Fn+m+1 is used.
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Theorem 3 (Generating function). LetQpF n be the Pauli–Fibonacci quaternion. For the generating
function for these quaternions is as follows:

gQpFn
(t) =

n∑
s=0

QpF n t
n =

QpF 0 + (QpF 1 −QpF 0) t

1− t− t2
(23)

Proof. Using the definition of generating function, we obtain

gQpFn
(t) = QpF 0 +QpF 1 t+ · · · +QpF n t

n + · · · . (24)

Multiplying by (1− t− t2) both sides of (24) and using (18), we have

(1− t− t2) gQpFn
(t) = QpF 0 + (QpF 1 −QpF 0) t .

Thus, the proof is completed.

Theorem 4 (Binet’s formula). Let QpF n be the Pauli–Fibonacci quaternion. For n ≥ 1, Binet’s
formula for these quaternions is as follows:

QpF n =
1

α− β

(
α̂ αn − β̂ βn

)
(25)

where

α̂ = 1 + ασ1 + α2 σ2 + α3 σ3, α =
1 +
√
5

2

and

β̂ = 1 + β σ1 + β2 σ2 + β3 σ3, β =
1−
√
5

2
.

Proof. Using (9) and Binet’s formula of the Fibonacci quaternion [9], the proof is easily seen.

QpF n = Fn 1 + Fn+1 .σ1 + Fn+2 .σ2 + Fn+3 .σ3

= (
αn − βn

α− β
) 1 + (

αn+1 − βn+1

α− β
)σ1 + ε (

αn+2 − βn+2

α− β
)σ2 + (

αn+3 − βn+3

α− β
)σ3

=
αn (1 + ασ1 + α2 σ2 + α3 σ3)− βn (1 + β σ1 + β2 σ2 + β3 σ3)

α− β
=

1√
5

(
α̂ αn − β̂ βn

)
where α̂ = 1 + ασ1 + α2 σ2 + α3 σ3, β̂ = 1 + β σ1 + β2 σ2 + β3 σ3.

Theorem 5 (d’Ocagne’s identity). For n,m ≥ 0 the d’Ocagne’s identity for the Pauli–Fibonacci
quaternions QpF n and QpFm is given by

QpFmQpF n+1 −QpFm+1QpF n = (−1)n Fm−n (σ1 + 3σ2 + 4σ3 )

−i Lm−n (σ1 + σ2 − σ3 ).
(26)
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Proof. By using (9) we get,

QpFmQpF n+1 −QpFm+1QpF n = [ (−1)n Fm−n + i ( (−1)n+1 Lm−n) ]σ1
+[ (−1)n (3Fm−n + i ( (−1)n+1 Lm−n) ]σ2
+[ (−1)n (4Fm−n + i ( (−1)n Lm−n) ]σ3.

where the identities FnFm + Fn+1Fm+1 = Fn+m+1 ,Fn+2 − Fn−2 = 3Fn, Fn+3 − Fn−3 = 4Fn

and Fn+1 − Fn−1 = Ln are used [17, 23, 24].

Theorem 6 (Cassini’s identity). Let QpF n be the Pauli–Fibonacci quaternion. For n ≥ 1,
Cassini’s identity for QpF n is as follows:

QpF
2
n −QpF n+1QpF n−1 = (−1)n+1 [ (1− i)σ1 + (3− i)σ2 + (4 + i)σ3 ]. (27)

Proof. By using (9) we get

(QpF n)
2 −QpF n+1QpF n−1 = [ (F 2

n − Fn+1Fn−1) + (F 2
n+1 − Fn+2Fn)

+(F 2
n+2 − Fn+3Fn+1) + (F 2

n+3 − Fn+4Fn+2) ]

+[ (Fn+1Fn − Fn+2Fn−1)− i (−1)n+1 ]σ1
+[ (Fn+2Fn − Fn+3Fn−1)

+(FnFn+2 − Fn+1Fn+1)− i (−1)n−1 ]σ2
+[ (Fn+3Fn − Fn+4Fn−1)

+(FnFn+3 − Fn+1Fn+2)− i (−1)n ]σ3
= (−1)n+1 [ (1− i)σ1 + (3− i)σ2 + (4 + i)σ3 ].

where the identity of the Fibonacci numbers FmFn+1 − Fm+1Fn = (−1)nFm−n is used
[17, 23, 24].

Theorem 7 (Catalan’s identity). Let QpF n be the Pauli–Fibonacci quaternion. For n ≥ 1,
Catalan’s identity for QpF n is as follows:

QpF
2
n −QpF n+rQpF n−r = (−1)n−r Fr [ ((1− i)σ1 + (3− i)σ2 + (4 + i)σ3) ]. (28)

Proof. By using (9) we get

QpF
2
n −QpF n+rQpF n−r = [ (F 2

n − Fn+r Fn−r)− (F 2
n+1 − Fn+r+1 Fn−r+1)

+(F 2
n+2 − Fn+r+2 Fn−r+2)

+(F 2
n+3 − Fn+r+3 Fn−r+3) ]

+[ (Fn Fn+1 − Fn+r Fn−r+1)

+(Fn+1 Fn − Fn+r+1 Fn−r) + i (−1)n−r+1 ]σ1
+[ (Fn Fn+2 − Fn+r Fn−r+2)

−(Fn+2 Fn − Fn+r+2 Fn−r) + i (−1)n−r+1 ]σ2
+[ (Fn Fn+3 − Fn+r Fn−r+3)

+(Fn+3 Fn − Fn+r+3 Fn−r)− i (−1)n−r+1 ]σ3
= (−1)n−r Fr [ (1− i)σ1 + (3− i)σ2 + (4 + i)σ3 ].

where the identities of the Fibonacci numbers F 2
n − Fn+r Fn−r = (−1)n−r F 2

r and
FmFn − Fm+rFn−r = (−1)n−rFm+r−n Fr are used [17, 23, 24].
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3 Representations of Pauli–Fibonacci quaternions

In this section R-linear transformations are introduced, representing left and right multiplication
in HpFn by using the De Moivre’s formula for a corresponding matrix representation. Let χ be a
Pauli–Fibonacci quaternion, then, ϕLp(χ) and ϕRp(χ) defined as follows: for χ ∈ HpFn,

ϕLp :HpFn → HpFn

χ→ ϕLp(χ) = AϕLp
χ

AϕLp
=


Fn Fn+1 Fn+2 Fn+3

Fn+1 Fn −i Fn+3 i Fn+2

Fn+2 i Fn+3 Fn −i Fn+1

Fn+3 −i Fn+2 i Fn+1 Fn


and

ϕRp :HpFn → HpFn

χ→ ϕRp(χ) = χAϕRp

AϕRp
=


Fn Fn+1 Fn+2 Fn+3

Fn+1 Fn i Fn+3 −i Fn+2

Fn+2 −i Fn+3 Fn i Fn+1

Fn+3 i Fn+2 −i Fn+1 Fn

 ,

respectively. For any QpFm, QpFn ∈ HpFn and λ ∈ R, the following properties hold:

ϕLp(QpFm +QpFn) = ϕLp(QpFm) + ϕLp(QpFn)

ϕLp(λQpFn) = λϕLp(QpFn)

ϕRp(QpFm +QpFn) = ϕRp(QpFm) + ϕRp(QpFn)

ϕRp(λQpFn) = λϕRp(QpFn),

ϕLp(QpFn)ϕRp (QpFn) = ϕRp(QpFn)ϕLp(QpFn).

Furthermore, linear mappings of ψLp (QpFn) and ψLp (QpFn) defined as

ψLp :(HpFn,+, .)→ (M(4,R),⊕,⊗)

ψLp(Fn + Fn+1 σ1 + Fn+2 σ2 + Fn+3 σ3)→


Fn Fn+1 Fn+2 Fn+3

Fn+1 Fn −i Fn+3 i Fn+2

Fn+2 i Fn+3 Fn −i Fn+1

Fn+3 −i Fn+2 i Fn+1 Fn


and

ψRp :(HpFn,+, .)→ (M(4,R),⊕,⊗)

ψRp(Fn + Fn+1 σ1 + Fn+2 σ2 + Fn+3 σ3)→


Fn Fn+1 Fn+2 Fn+3

Fn+1 Fn i Fn+3 −i Fn+2

Fn+2 −i Fn+3 Fn i Fn+1

Fn+3 i Fn+2 −i Fn+1 Fn


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are one-to-one and onto. Also, the following properties hold:

ψLp((QpFm)(QpFn)) = ψLp(QpFm)ψLp(QpFn)

and
ψRp((QpFm)(QpFn)) = ψRp(QpFm)ψRp(QpFn).

Therefore, the mappings ψLp and ψRp are isomorphisms [5, 16].

4 Conclusion

In this paper, algebraic and analytic properties of Pauli–Fibonacci quaternions are investigated.
Matrix representations of these quaternions are also given. I hope that these results will be
important in applied mathematics, quantum physics, Lie groups and kinematics.
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[20] Özdemir, M., & Ergin, A. A. (2006). Rotations with unit timelike quaternions in Minkowski
3-space. Journal of Geometry and Physics, 56(2), 322–336.

[21] Silberstein, L. (1912). LXXVI. Quaternionic form of relativity. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 23(137), 790–809.

[22] Swammy, M. N. S. (1973). On generalized Fibonacci quaternions. The Fibonacci Quarterly,
11(5), 547–550.

[23] Vajda, S. (1989). Fibonacci and Lucas Numbers, and the Golden Section. Ellis Horwood
Limited Publ., England.

[24] Hoggatt, V. E. (1969). Fibonacci and Lucas Numbers. Houghton Mifflin, Boston.

[25] Yuce, S., & Aydın, F. T. (2016). A new aspect of dual Fibonacci quaternions. Advances in
Applied Clifford Algebras, 26(2), 873–884.

193


