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1 Introduction

The Diophantine equation y2 = x3 + k has played a fundamental role in the development of
number theory. The earliest recorded result was given in 1621 by Bachet, who noted that when
k = −2;x = 3 is a solution and other rational solutions can be found by the usual tangent
method. Then Fermat posed a problem for the English mathematicians to show that the only
integer solutions of y2 = x3 − 2 are given by x = 3.

The first proof of the existence of an infinity of rational solutions was given by Fueter [8] in
1930 and this work was extended by Brunner in his doctorate thesis [4]. Cassels [5] studied the
equation y2 = x3−d in cubic number-fields and Baker [2,3] proved that all the integral solutions
of y2 + k = x3 satisfy the following inequality:

max {| x |, | y |} ≤ exp
{
1010 · |k|104

}
,

where |k| denotes the absolute value of k.
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Ellison et al. [6] found all integral solutions of y2 + k = x3 when k = 28. Ljunggren [9] gave
a list of all the unsolved equations with | k |≤ 100. The complete solutions for k = 18, 25, 100

was claimed by London and Finkelstein [7].
Mordell [10] considered some variants of y2 = x3 + k and showed that this equation does not

have any rational solution provided some conditions on the integer k, the class number of real
and imaginary quadratic field and on the fundamental solution of Pell’s equation. He showed that
there is no finite algorithm known for finding solutions if they exist, except for special values of k.

Later in 2018, Wu and Qin [14] considered E(k3) : y2 = x3 + k3 and showed that the rank of
this elliptic curve is zero for certain values of k and also found out explicitly the torsion points.
They used the class number of quadratic field and Pell equation to describe these square-free
integers k such that E(k3)(Q) has rank zero.

Wu and Qin followed the method of Mordell to derive their results. Extending the study
further, we considerE(k6n+3) : y2 = x3+k6n+3 another variant of the Mordell curve y2 = x3+k

and with some conditions on the integer k, similar conditions on the class numbers prove our
results. Wu and Qin’s result is the special case corresponding to n = 0 of this paper’s results.

In this paper, we consider a family of elliptic curves E(k6n+3) : y2 = x3 + k6n+3 for some
integers k and n and show that their rank is zero and the torsion part is isomorphic to Z2.

2 Main result

The following results will be required in the subsequent study.

Lemma 2.1 ([13], Exercise 4.11.). Let G 6= 0 be an integer that is 6th power free. Suppose C be
an elliptic curve, defined by

C : y2 = x3 + G,

and let ψ be a subgroup of C(Q) which consists of all points of finite order. Then

(a) #ψ divides 6.

(b) More accurately, ψ can be defined as:

ψ ∼=


Z/6Z if G = 1,

Z/3Z if G 6= 1 is a square, or if G = −432,
Z/2Z if G 6= 1 is a cube,

1 otherwise .

Lemma 2.2. Let P = (x, y) be a point on the curve y2 = x3 + c. Then the x-coordinate of the
point 2P would be (using [13], Exercise 1.19),

x([2]P ) =
9x4 − 8xy2

4y2
.

Similarly,

y([2]P ) =
−27x6 + 36y2x3 − 8y4

8y3
.
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The following reflection Theorem of Scholz [11] will be required.

Theorem 2.1. Let l be the 3 rank of the ideal class group of Q(
√
D) and m be the 3 rank of the

ideal class group of Q(
√
−3D)(= Q(

√
−D/3 if 3 | D). Then l ≤ m ≤ l + 1. Here D is a

square-free integer.

A simplified version of Scholz theorem states that if 3 divides the class number of a real
quadratic field Q(

√
d), then 3 also divides the class number of the imaginary quadratic field

Q
(√
−3d

)
.

Remark 1. The j-invariant j(E(k6n+3)) = 0 and so there exists a unique 6th power free integer
k such that E is defined by the Weierstrass equation E(k6n+3) : y2 = x3 + k6n+3 (using [12],
Exercise 10.19).

Let hD be the class number of Q(
√
D). The following two theorems are our main results:

Theorem 2.2. Let E(k6n+3) : y2 = x3 + k6n+3 be an elliptic curve, where k is a square-free
negative integer and n a non negative integer. Suppose that

(A) k ≡ 11, 23, 35 (mod 36),

(B) 3 6 | hk.

Then {
(x, y) ∈ E(k6n+3)(Q) : ordp(y) ≤ 0 ∀ prime factors p | 3k

}
= ∅,

and {
(x, y) ∈ E((−3k)6n+3)(Q) : ordp(y) ≤ 0 ∀ prime factors p | 3k

}
= ∅.

Here as usual ∅ denotes an empty set.

Theorem 2.3. Let k be a negative integer which is also square-free and satisfies (A) and (B) in
Theorem 2.2. Then

(I) E(k6n+3)(Q) = TorsE(k6n+3)(Q) = {O, (−k2n+1, 0)},

(II) E((−3k)6n+3)(Q) = TorsE((−3k)6n+3)(Q) = {O, ((3k)2n+1, 0)}.

2.1 Proof of Theorem 2.2

Proof. The equation is
y2 = x3 + k6n+3 (1)

with k being as stated in the theorem.
We make a change of variable in (1) by substituting y = Y

Z′ , where (Y, Z
′
) = 1 and get

Z
′
(Y 2 − k6n+3Z

′2
) = x3Z

′3
. (2)

Now each of the factors Z
′ and (Y 2 − k6n+3Z

′2
) has to be a perfect cube as

(Z
′
, Y 2 − k6n+3Z

′2
) = 1. Thus substituting Z ′

= Z3 in (2), we have

Y 2 − k6n+3Z6 = (Z2x)3.
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Let us replace Z2x = X for simplicity,

Y 2 − k6n+3Z6 = X3, (3)

where (X, Y, Z) = 1.
Now (3) is the homogenized version of (1) and we are looking for integer solutions (X, Y, Z)

of (3).
First we show that (3) has no integer solutions with (Y, 3k) = 1 and (Y, Z) 6= (0, 0). To this

end, let (X, Y, Z) be an integral solution of (3) such that Z > 0, Y > 0, (Y, 3k) = 1 with Z is
minimal.

Clearly (Y, Z) = 1 as (Y, Z ′
) = 1 in (3). Thus (Z,X) = 1. Also (Y, k) = 1, for if a prime p

divides both Y and k, then it will be a prime divisor of both Y and 3k which contradicts the fact
that (Y, 3k) = 1.

Now we claim that X is odd. If possible let X ≡ 0 (mod 2). That would imply that Z ≡ 1

(mod 2) and hence
Y 2 ≡ k6n+3 (mod 4).

As Y 2 ≡ 0, 1(mod 4), this would imply that k6n+3 ≡ 0, 1(mod 4) and thus we get a contradiction
to the fact that k ≡ 11 (mod 36). Thus X is odd and also (X, k) = 1 as k is square-free. Further
the left-hand side of (3) can be split as:

(Y + k3n+1Z3
√
k)(Y − k3n+1Z3

√
k) = X3 (4)

and this factorization is happening in Q(
√
k) with k < 0. It is easy to see that both the ideals

(Y +k3n+1Z3
√
k) and (Y −k3n+1Z3

√
k) are co-prime inOK as (X, 2k) = 1 and (X, Y, Z) = 1.

By assuming condition (B), the class number hk of Q(
√
k) is not divisible by 3. Therefore by

the unique factorization of ideals, (Y + k3n+1Z3
√
k) can be expressed as a cube of some ideal in

OK . Therefore
Y + k3n+1Z3

√
k = η3

for some algebraic integer η ∈ Q(
√
k). Let η = A+B

√
k where A and B are integers. Thus

Y + k3n+1Z3
√
k = (A+B

√
k)3, (5)

where X = A2 − kB2 and (A,B) = 1.
Further equating the real and imaginary parts of (5), we get

Y = A3 + 3AB2k (6)

and
Z3k3n+1 = B(3A2 + kB2). (7)

Now from (7) we get that k | 3A2B (since (3, k) = 1 and k is square-free) and hence k | AB.
Now we show that (k,A) = 1. If possible, let a prime p divides both k and A. Then (6)

will show that p | Y and that would imply p | (k, Y ), which is in contrary to the assumption
(k, Y ) = 1. Thus k | B.
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Let B = B1k and with this (7) is changed to

Z3k3n = B1(3A
2 +B2

1k
3).

A similar analysis would show that B1 = kB2 and we get

Z3k3n−1 = B2(3A
2 + k5B2

2).

Continuing this process, we have

Z3 = B3n+1(3A
2 + k6n+3B2

3n+1), (8)

where B = B3n+1k
3n+1. Two cases are to be considered:

Case I: When (B3n+1, 3) = 1. Then B3n+1 = B3
3n+1′

and Z = B3n+1′Z1. Thus

Z3
1 = 3A2 + k6n+3B6

3n+1′
. (9)

If A ≡ 0 (mod 3), then (6) implies that Y is also a multiple of 3 and this contradicts (Y, 3) = 1.
Hence A 6≡ 0 (mod 3).

Now if Z1 ≡ 0 (mod 3), then from (9) either k or B3n+1
′ is also a multiple of 3 but by

assumption (B3n+1, 3) = 1 and (k, 3) = 1, which implies Z1 6≡ 0 (mod 3).
Further reducing (9) modulo 9, we get

B6
3n+1′

≡ 1 (mod 9).

(Here we use Euler’s theorem
aφ(m) ≡ 1 (mod m)

when (a,m) = 1 with φ denotes the Euler’s φ-function.)
Therefore, from (9)

Z3
1 ≡ 3A2 + k6n+3 (mod 9). (10)

This is not feasible if:

k ≡ 11, 23, 35 (mod 36), A 6≡ 0 (mod 3) and Z1 6≡ 0 (mod 3).

Hence (3) does not have any integer solution when (B3n+1, 3) = 1.

Case II: When (B3n+1, 3) 6= 1. Then B3n+1 = 9B3
3n+1′

and Z = 3B3n+1′Z1. This implies (from
(8)) that

Z3
1 = A2 + 27k6n+3B6

3n+1′
. (11)

Clearly Z1 6≡ 0 (mod 3) as (A,B) = 1.
Further we claim Z1 is odd.
If possible let Z1 is even. Then the right-hand side of (11) is also even. Hence either both

the terms are odd or both are even. Now (A, 9k3n+1B3
3n+1′

) = 1 as (A,B) = 1. Suppose
9k3n+1B3

3n+1′
is even and then from (11), A must also be even which is a contradiction to the fact

that (A, 9k3n+1B3
3n+1′

) = 1. Thus A,B3n+1′ and k are all odd. Hence we get ( by (6) ) that Y is
even and thus X is also even, which contradicts (X, Y, Z) = 1.
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So far we have shown Z1 is odd, it is not a multiple of 3 and also that A is not a multiple of 3.
Now (11) can be re-written as

(A+ 3B3
3n+1′

k3n+1
√
−3k)(A− 3B3

3n+1′
k3n+1

√
−3k) = Z3

1 . (12)

The two factors on the left-hand side of (12) are co-prime to each other. Thus by using Theorem
2.1, we can further conclude that (h−3k, 3) = 1. Thus as before we have,

(A+ 3B3
3n+1′

k3n+1
√
−3k) = η(C +D

√
−3k)3,

where η is a unit in Q(
√
−3k) (k < 0) and that (C,D) = 1.

Now η = εn, where n = 0,±1,±2, . . . and ε = T + U
√
−3k is the fundamental unit. Here

(X, Y ) = (U, T ) is the fundamental solution of

Y 2 + 3kX2 = 1.

If n ≡ 0 (mod 3), then η can be absorbed in (C +D
√
−3k)3, and thus

(A+ 3B3
3n+1′

k3n+1
√
−3k) = (C +D

√
−3k)3 . (13)

As before equating the real and imaginary parts of (13)

A = C3 − 9kCD2 (14)

and

B3
3n+1′

k3n+1 = D(C2 − kD2). (15)

Now k | C2D (from (15)) and thus k | CD.
If k | C then from (14) we get k | A. Then from (11) we have k | Z1 and together we conclude

k | Z. Now from X = A2 − kB2 we get that k | X (as we have already shown that k|A) and that
contradicts (X,Z) = 1.

Thus k | D and set D = D1k. The from (15)

B3
3n+1′

k3n = D1(C
2 −D2

1k
3).

Similarly D1 = D2k and
B3

3n+1′
k3n−1 = D2(C

2 − k5D2
2).

Continuing this process,

(B3n+1′ )
3 = D3n+1(C

2 − k6n+3D2
3n+1),

where D = D3n+1k
3n+1. As before

D3n+1 = D3
3n+1′

, B3n+1′ = D3n+1′B3n+1′′

and
B3

3n+1′′
= C2 − k6n+3D6

3n+1′
.

Thus (B3n+1′′ , C,D3n+1′ ) is another solution of (3) with D3n+1′ 6= 0 (since B3n+1′′ > 0). Also,

|D3n+1′ |≤ |D3n+1|
1
3≤ |B3n+1′ |≤

|Z|
3
.
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This is a contradiction to the fact that Z is minimal. Hence (3) doesn’t have any integer
solution.

If n ≡ ±1 (mod 3) then ηn±1 can be absorbed in (C + D
√
−3k)3. In this case η = T ±

U
√
(−3k) and

(A+ 3B3
3n+1′

k3n+1
√
−3k) = η(C +D

√
−3k)3.

Hence,
(A+ 3B3

3n+1′
k3n+1

√
−3k) = (T ± U

√
−3k)(C +D

√
−3k)3.

Again equating real and imaginary parts, we have

A = TC3 − 9kTCD2 ± (9k2UD3 − 9kUC2D) (16)

and

3B3n+1
′

3 k3n+1 = −3kTD3 + 3TC2D ± (UC3 − 9kCD2U). (17)

Now reducing (16) modulo 3,
A ≡ TC3 (mod 3).

Since A 6≡ 0 (mod 3), (shown already!) this implies that C, T 6≡ 0 (mod 3).
Now we claim that the solution (X, Y ) = (U, T ) (the fundamental solution) of Y 2 + 3kX2 = 1

in Theorem 2.2 satisfies 3 6 | U . Clearly −k ≡ 1 (mod 3). This is so because:

• k is a negative as well as square-free integer,

• k ≡ 11, 23, 35 (mod 36).

Recall ε = T + U(
√
−3k) is the fundamental unit of Q(

√
−3k). As both hk, h−3k are not

divisible by 3, using [1, Theorem II], we get

Thk + Uh−3k ≡ 0 (mod 3). (18)

Since T, h 6≡ 0 (mod 3) in (18), we conclude that U 6≡ 0 (mod 3).
Now reducing (17) modulo 3 gives UC3 ≡ 0 (mod 3). As C 6≡ 0 (mod 3), we have that

U ≡ 0 (mod 3). This contradicts the previous conclusion. Hence (3) does not have any integer
solution when (B3n+1, 3) 6= 1.

Thus (3) has no integer solutions and that in turn implies (1) has no rational solutions. Hence

{(x, y) ∈ E(kn)(Q) : ordp(y) ≤ 0 ∀ prime factors p | 3k} = ∅.

If (x, y) is such a solution, then (1) should always have rational solutions.
Now we prove

{(x, y) ∈ E((−3k)n)(Q) : ordp(y) ≤ 0 ∀ prime factors p | 3k} = ∅.

It is sufficient to show that
Y 2 + (3k)6n+3Z6 = X3 (19)

has no rational solutions with (X, Y, Z) = 1, (Y, Z) = 1, Y 6= 0, Z 6= 0, (Y, 3k) = 1 with Z is
the least possible (as in the previous case).
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Recall that Y and Z cannot be both even. We show that X must be odd. If possible let X ≡ 0

(mod 2), then Z ≡ 1 (mod 2). Therefore

Y 2 + (3k)6n+3 ≡ 0 (mod 4).

Thus Y 2 ≡ k6n+3 (mod 4) (since Y 2 ≡ 0, 1 (mod 4)) and this gives that k6n+3 ≡ 0, 1 (mod 4).
This is inconsistent with the condition on k (since k ≡ 11, 23, 35 (mod 36)). Therefore X is

odd.
Further (19) can be written as:(

Y + 33n+1k3n+1Z3
√
−3k

)(
Y − 33n+1k3n+1Z3

√
−3k

)
= X3.

The above factors on the left-hand side have no common divisors as (X, 2k)=1 and (X, Y, Z)=1.
As 3 6 | h−3k (using assumption in Theorem 2.1),(

Y + 33n+1k3n+1Z3
√
−3k

)
=
(
T + U

√
−3k

)α (
A+B

√
−3k

)3
(20)

with (A,B) = 1 and (U, T ) is the smallest solution to Y 2 + 3kX2 = 1.
If α 6≡ 0 (mod 3), then

(
T + U

√
−3k

)α±1
can be absorbed in

(
A+B

√
−3k

)3
leading to(

Y + 33n+1k3n+1Z3
√
−3k

)
=
(
T ± U

√
−3k

)(
A+B

√
−3k

)3
.

Again equating real and imaginary parts as before, we get

Y = A3T − 9kTAB2 ± (9k2UB3 − 9kUA2B) (21)

and

33n+1k3n+1Z3 = −3kTB3 + 3TA2B ± (A3U − 9kUAB2). (22)

As before we prove that the solution (X, Y )=(U, T ) (the fundamental solution) of Y 2+3kX2=1

in Theorem 2.2 satisfies 3 6 | U . Now reducing (22) modulo 3 entails

A3U ≡ 0 (mod 3). (23)

If 3 | A, then via (21) we get 3 | Y and that contradicts (Y, 3) = 1. Hence A 6≡ 0 (mod 3).
Therefore from (23) we must have U ≡ 0 (mod 3), which is a contradiction. Thus in this case
no solution of (19) can exist.

If α ≡ 0 (mod 3), then
(
T + U

√
−3k

)α
can be absorbed in

(
A+B

√
−3k

)3
and from (20)

we get (
Y + 33n+1k3n+1Z3

√
−3k

)
=
(
A+B

√
−3k

)3
.

Equating real and imaginary parts in this case gives,

Y = A3 − 9kAB2 (24)

and

33nk3n+1Z3 = −kB3 + A2B, (25)
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where X = A2 + 3kB2. Further (25) implies that k | AB. Suppose k | A, then there exists a
prime p such that p | k and p | A. Therefore (24) gives that p | y. This implies that p | (k, Y ),
which contradicts (k, Y ) = 1. Therefore k | B and let B = kB1. Then from (25)

33nk3nZ3 = B1(A
2 − k3B2

1). (26)

Again (26) implies k | B1 and write B1 = kB2. Thus (26) is converted to

33nk3n−1Z3 = B2(A
2 − k5B2

2) with (A,B2) = 1.

Hence on continuing this process

Z333n = B3n+1(A
2 − k6n+3B2

3n+1) with (A,B3n+1) = 1. (27)

Thus (27) implies that either B3n+1 divides 33n or Z.

Case I: Let (B3n+1, 3
3n) 6= 1. Then the possible values of B3n+1 are±1, ±3t and±33n for some

integer 1 < t < 3n.
Let B3n+1 = ±1. Then (27) would imply

33nZ3 = ±(−k6n+3 + A2).

Reducing this equation modulo 3, we get

0 = ±(−k6n+3 + A2) (mod 3).

As A 6≡ 0 (mod 3) and k6n+3 ≡ 2 (mod 3), this would imply

0 ≡ ±(−1) (mod 3),

which is not possible.
Further let B3n+1 = ±3t where 1 < t < 3n. In these cases (27) would imply

33n−tZ3 = ±(−32tk6n+3 + A2). (28)

If we reduce (28) modulo 3 it would giveA ≡ 0 (mod 3) which is a contradiction.
Similarly one treats the case B3n+1 = ±33n.

Case II: Let (B3n+1, Z) 6= 1 and Z = B3n+1Z1. Then from (27), we get

33nB2
3n+1Z

3
1 = A2 − k6n+3B2

3n+1.

This contradicts the assumption that (A,B3n+1) = 1.
Therefore for all the cases when α ≡ 0 (mod 3) and α 6≡ 0 (mod 3) equation (19) does not have
any integer solution. This completes the proof of Theorem 2.2.

We use Theorem 2.2 to prove Theorem 2.3.
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2.2 Proof of Theorem 2.3

Proof. Let G = k6n+3 or (−3k)6n+3, where n is a positive integer. By Lemma 2.1,

TorsE(k6n+3)(Q) =
{
O, (−k2n+1, 0)

}
and

TorsE((−3k)6n+3)(Q) =
{
O,
(
(3k)2n+1, 0

)}
.

On the other hand, by Theorem 2.2, we get

E(G)(Q) =
{
(x, y) ∈ Q2 : y2 = x3 + G, p|3G, ordp(y) ≥ 1

}
.

Thus to prove Theorem 2.3, it suffices to prove the finiteness of the above set.
Let p be a prime such that p | 3G and so making use of the equation E(G), we obtain the

following facts.

(i) If p 6= 3, then ordp(y) ≥ 1 iff ordp(x) = 1.

The fact that p 6= 3 and p | 3G would give p | G. Thus ordp(G) ≥ 1. Now if ordp(y) ≥ 1, we
show that ordp(x) = 1. Since ordp(y) ≥ 1 gives p | y and hence p | x. Thus ordp(x) ≥ 1.
Suppose if (x, y) ∈ E(G)(Q), with ordp(x) > 1 and ordp(y) ≥ 1.

Here we consider two sub-cases:

(c1) Suppose ordp(x) = 2 and ordp(y) = 1. Then ordp(G) = −4 so we arrive at a
contradiction by ordp(G) ≥ 1.

(c2) Suppose ordp(x) = 2 and ordp(y) = 2. Then ordp(G) = −2 so again we arrive at a
contradiction by ordp(G) ≥ 1.

Hence ordp(x) = 1. The other side can be proved similarly.

(ii) ord3(y) ≥ 1 if and only if

ord3(x) =

1 if 3 | G,
0 if 3 - G.

If possible let
E(G)(Q) 6= E(G)(Q)Tors.

Thus there is at least one P = (x, y) ∈ E(G)(Q) \ TorsE(G)(Q) and a prime p with p | 3G and
ordp(y) ≥ 1. We appeal to Lemma 2.2 and using this the following can be proven by induction.

(i) p 6= 3. Then ∀ n ≥ 1 we have ordp(y([2
n]P )) ≤ 0.

(ii) p = 3. Then ∀ n ≥ 2 we have ord3(y([2
n]P )) ≤ 0.

These imply that for any prime p | 3G we must have ordp(y([2n]P )) ≤ 0, which is a contradiction
to the assumption that ordp(y) ≥ 1. This completes the proof of Theorem 2.3.
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We consider a few examples before winding up.

Example 1. Let k = −37. Consider the elliptic curves

E((−37)6n+3) : y2 = x3 − 376n+3

E(1116n+3) : y2 = x3 + 1116n+3.

Here h−37 = 2.
Applying Theorem 2.3, we get,

(i) E(−376n+3)(Q) = TorsE(−376n+3)(Q) = {O, (372n+1, 0)}.

(ii) E((111)6n+3)(Q) = TorsE((111)6n+3)(Q) = {O, (−1112n+1, 0)}.

Example 2. Let k = −97. Consider the elliptic curves

E((−97)6n+3) : y2 = x3 − 976n+3

E(2916n+3) : y2 = x3 + 2916n+3.

Here h−97 = 4.
Applying Theorem 2.3, we obtain,

(i) E((−97)6n+3)(Q) = TorsE((−97)6n+3)(Q) = {O, (972n+1, 0)}.

(ii) E((291)6n+3)(Q) = TorsE((291)6n+3)(Q) = {O, (−2912n+1, 0)}.

3 Concluding remarks

Here we have showed that the family of elliptic curves E(k6n+3) : y2 = x3 + k6n+3 with some
additional conditions on k, the torsion part is always isomorphic to Z2 and the rank of each
member of this family is zero.

In the other case when the exponent of k is not divisible by 3 and with some conditions on k,
we proved/noticed:

• The torsion part is always isomorphic either to Z3 or it is trivial. This follows directly from
Lemma 2.1 and here is an explanation.

If K l is a cube, then it would imply that 3 | l. Which is not possible in our case as we
have taken k to be square-free and l not a multiple of 3. Thus, the torsion part cannot be
isomorphic to Z2.

Now l cannot be zero by the given condition on l and k 6= 1 as k is a square-free integer.
Therefore kn 6= 1. This implies that the torsion part cannot be isomorphic to Z6.

• The rank part is not consistent in the sense that for some exponents of k it is coming out to
be zero, for other exponents of k it is coming out to be positive. Suppose k ≡ 61 (mod 88),
then
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k l Rank Torsion
−115 5 0 Trivial
−203 5 0 Trivial
−291 5 1 Trivial
−115 7 1 Trivial
−203 7 1 Trivial
−291 7 2 Trivial

Table 1. Rank and torsion part of E(kl) : y2 = x3 + kl

with certain conditions on k and l.

When k ≡ 23 (mod 37), then

k l Rank Torsion
−14 5 1 Trivial
−51 5 0 Trivial
−273 7 1 Trivial
−310 7 1 Trivial
−347 7 1 Trivial

Table 2. Rank and torsion part of E(kl) : y2 = x3 + kl

with certain conditions on k and l.

It would of considerable interest to characterize those l’s for which the rank turns out to be
trivial or for which the rank is positive.
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