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Abstract: It is well known that the number Pk(x) =
x((k − 2)(x− 1) + 2)

2
is called the x-th k-gonal

number, where x ≥ 1, k ≥ 3. Many Diophantine equations about polygonal numbers have been
studied. By the theory of Pell equation, we show that ifG(k−2)(A(p−2)a2+2Cab+B(q−2)b2)

is a positive integer but not a perfect square, (2A(p − 2)α − (p − 4)A + 2Cβ + 2D)a+

(2B(q − 2)β − (q − 4)B + 2Cα + 2E)b > 0, 2G(k − 2)γ − (k − 4)G + 2H > 0 and the
Diophantine equation

APp(x) +BPq(y) + Cxy +Dx+ Ey + F = GPk(z) +Hz

has a nonnegative integer solution (α, β, γ), then it has infinitely many positive integer solutions
of the form (at+α, bt+β, z), where p,q,k≥3 and p, q, k, a, b, t, A,B,G ∈ Z+,C,D,E, F,H ∈ Z.
Keywords: Polygonal number, Diophantine equation, Pell equation, Positive integer solution.
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1 Introduction

A polygonal number [3] is a positive number, corresponding to an arrangement of points on the
plane, which forms a regular polygon. The x-th k-gonal number [3, p. 5] is

Pk(x) =
x
(
(k − 2)(x− 1) + 2

)
2

,

where x ≥ 1, k ≥ 3. There are many papers about the polygonal numbers and many properties
of them have been studied, we can refer to the first chapter of [4] and D3 of [6].

Several authors investigated the question of when a linear combination of two polygonal
numbers is a perfect square. Such as M. H. Le [10] (1+9P3(n) = z2, proposed by M. Bencze [1]);
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X. G. Guan [5] (1+
8s2

s2 − 1
P3(n) = z2); M. J. Hu [8] (1 + nP3(y − 1) = z2); J. Y. Peng [12]

(1 + nP3(y − 1) = z2 and mP3(x − 1) + nP3(y − 1) = z2); M. Jiang and Y. C. Li [9]
(1 + nPk(y) = z2 and mPk(x) + nPk(y) = z2); Y. C. Li [11] (mPp(x) + nPq(y) = z2).

For the Diophantine equation

P3(a) + P3(b) = P3(c), (1.1)

K. R. S. Sastry [14] studied the problem: given a natural number N , determine the number T (N)

of Eq. (1.1) such that a = N .
A. Hamtat and D. Behloul [7] proved that all nonnegative integer solutions of Eq. (1.1) are

given by

a = mn, b =
nq −mp− 1

2
, c =

nq +mp− 1

2
,

where pq −mn = 1, nq −mp− 1 ∈ 2N and m,n, p, q ∈ N.
K. R. S. Sastry [15] investigated the positive integer solutions of the Diophantine equation

Pn(a) + Pn(b) = Pn(c), n ≥ 3. (1.2)

E. Scheffold [16] gave a parametric representation for Eq. (1.2), i.e.,

a = (n− 2)r + t, b = (n− 2)r + s, c = (n− 2)r + s+ t,

where n ≥ 3, r, s, t are natural numbers such that

r((n− 2)2r − (n− 4)) = 2st.

H. Cohen [2, Corollary 6.3.6.] introduced the general solutions of the Diophantine equation

Ax2 +By2 = Cz2,

i.e., “assume thatABC 6= 0, let (x0,y0,z0) be a particular nontrivial solution ofAx2+By2 =Cz2,

and assume that z0 6= 0. The general solution in rational numbers to the equation is given by
x = d

(
x0(As

2 −Bt2) + 2y0Bst
)
,

y = d
(
2x0Ast− y0(As2 −Bt2)

)
,

z = dz0(As
2 +Bt2),

where d ∈ Q, s, t ∈ Z, and gcd(s, t) = 1.”

J. Pla [13] investigated some subsets of the rational solutions of the Diophantine equation

aX2 + bXY + cY 2 = dZ2,

where a, b, c, d ∈ Z and gcd(a, b, c) = 1.

2 Main result

We consider the polygonal numbers satisfying the Diophantine equation

APp(x) +BPq(y) + Cxy +Dx+ Ey + F = GPk(z) +Hz, (2.1)

where p, q, k ≥ 3, p, q, k, A,B,G ∈ Z+, C,D,E, F,H ∈ Z. By the theory of Pell equation, we
have the following theorem.
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Theorem 2.1. IfG(k−2)(A(p−2)a2 +2Cab+B(q−2)b2) is a positive integer but not a perfect
square, (2A(p− 2)α− (p− 4)A+ 2Cβ + 2D)a+ (2B(q− 2)β − (q− 4)B + 2Cα+ 2E)b > 0,
2G(k−2)γ− (k−4)G+2H > 0 and Eq. (2.1) has a nonnegative integer solution (α, β, γ), then
it has infinitely many positive integer solutions of the form (at+α, bt+β, z), where t, z are given
by the recurrence relation (3.7) and p, q, k ≥ 3, p, q, k, a, b, A,B,G ∈ Z+, C,D,E, F,H ∈ Z.

3 Proof of the Theorem

Proof of Theorem 2.1. Suppose (α, β, γ) is a nonnegative integer solution of Eq. (2.1), i.e.,

APp(α) +BPq(β) + Cαβ +Dα + Eβ + F = GPk(γ) +Hγ.

Let x = at+ α, y = bt+ β, then Eq. (2.1) is equivalent to

ϕ(a, b)t2 + φ(a, b)t+ ψ(a, b) = Gz((z − 1)(k − 2) + 2) + 2Hz,

where

ϕ(a, b) = A(p− 2)a2 + 2Cab+B(q − 2)b2,

φ(a, b) = (2A(p− 2)α− (p− 4)A+ 2Cβ + 2D)a

+ (2B(q − 2)β − (q − 4)B + 2Cα + 2E)b,

ψ(a, b) = α((p− 2)α− (p− 4))A+ β((q − 2)β − (q − 4))B

+ 2(Cαβ +Dα + Eβ + F ).

Solving it for z, we have

z =
G(k − 4)− 2H +

√
∆

2G(k − 2)
, (3.1)

where
∆ = 4G(k − 2)(ϕ(a, b)t2 + φ(a, b)t+ ψ(a, b)) + ((k − 4)G− 2H)2.

It is necessary to take ∆ = w2. Let

X = G(k − 2)(2ϕ(a, b)t+ φ(a, b)), Z = w, (3.2)

we obtain the Pell equation

X2 −G(k − 2)ϕ(a, b)Z2 = (G(k − 2)φ(a, b))2 −G(k − 2)ϕ(a, b)L2, (3.3)

where
L = 2G(k − 2)γ − (k − 4)G+ 2H.

If φ(a, b) > 0 and L > 0, Eq. (3.3) has a positive integer solution

(X0, Z0) = (G(k − 2)φ(a, b), L).

By the theory of Pell equation, if G(k−2)ϕ(a, b) is a positive integer but not a perfect square,
the Pell equation

X2 −G(k − 2)ϕ(a, b)Z2 = 1 (3.4)

has infinitely many positive integer solutions. Let (u, v) be the least positive integer solution
of Eq. (3.4). It is easy to provide infinitely many positive integer solutions of Eq. (3.3) by the
formula
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Xs + Zs

√
G(k − 2)ϕ(a, b)

=
(
X0 + Z0

√
G(k − 2)ϕ(a, b)

)(
u+ v

√
G(k − 2)ϕ(a, b)

)s
, s ≥ 0.

Thus, Xs+1 = 2uXs −Xs−1,

Zs+1 = 2uZs − Zs−1,

where

X0 = G(k − 2)φ(a, b), X1 = G(k − 2)(Lvϕ(a, b) + φ(a, b)u),

Z0 = L, Z1 = Lu+Gv(k − 2)φ(a, b).

Using the recurrence relations of Xs and Zs twice, we getX2s+2 = 2(2u2 − 1)X2s −X2s−2,

Z2s+2 = 2(2u2 − 1)Z2s − Z2s−2,
(3.5)

where

X0 = G(k − 2)φ(a, b),

X2 = G(k − 2)(φ(a, b)u2 + 2Lϕ(a, b)uv +G(k − 2)ϕ(a, b)φ(a, b)v2),

Z0 = L,

Z2 = Lu2 + 2G(k − 2)φ(a, b)uv +GL(k − 2)ϕ(a, b)v2.

It is easy to prove that

X2s ≡ G(k − 2)φ(a, b) (mod 2G(k − 2)ϕ(a, b)),

Z2s ≡ 2H −G(k − 4) (mod 2G(k − 2)),

where s ≥ 0.
By (3.1) and (3.2), we have

t =
X −G(k − 2)φ(a, b)

2G(k − 2)ϕ(a, b)
, z =

G(k − 4)− 2H + Z

2G(k − 2)
. (3.6)

Substituting (3.6) into (3.5), we obtaint2s+2 = 2(2u2 − 1)t2s − t2s−2 + 2G(k − 2)φ(a, b)v2,

z2s+2 = 2(2u2 − 1)z2s − z2s−2 + 2((k − 2)G− 2H)ϕ(a, b)v2,
(3.7)

where

t0 = 0, t2 = (Lu+Gv(k − 2)φ(a, b))v,

z0 = γ, z2 = Lϕ(a, b)v2 + φ(a, b)uv + γ.

It follows that t2s, z2s ∈ Z+ for all s > 0.
Therefore, ifX0 > 0, Z0 > 0,G(k−2)ϕ(a, b) is a positive integer but not a perfect square and

Eq. (2.1) has a nonnegative integer solution (α, β, γ), then we get infinitely many positive integer
solutions of the form (at+ α, bt+ β, z), where t, z given by the recurrence relation (3.7).
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Example 3.1. When A = B = C = D = E = F = G = H = 1, p = 3, q = 4, k = 5, then
Eq. (2.1) becomes

P3(x) + P4(y) + xy + x+ y + 1 = P5(z) + z,

it has a positive integer solution (6, 7, 9). Let a = b = 1, then u = 4, v = 1. Hence, Eq. (2.1) has
infinitely many positive integer solutions (t2s + 7, t2s + 9, z2s), where{

t2s+2 = 622s − t2s−2 + 426, t0 = 0, t2 = 433,

z2s+2 = 622s − z2s−2 + 10, z0 = 9, t2 = 568,

where s is a nonnegative integer.

Remark 3.2. For D = E = F = H = 0, Eq. (2.1) becomes

APp(x) +BPq(y) + Cxy = GPk(z).

When p = q = k = 4, this was investigated by J. Pla [13].
Further, if C = 0, we have

APp(x) +BPq(y) = GPk(z). (3.8)

Case 1: When p = q = k = 4, Eq. (3.8) becomes

Ax2 +By2 = Gz2.

This is the case studied by H. Cohen [2, Corollary 6.3.6.].
Case 2: When A = B = G = 1, p = q = k, we have

Pk(x) + Pk(y) = Pk(z),

this case was investigated by K. R. S. Sastry [15] and E. Scheffold [16]. In particular, when
p = q = k = 3, we get

P3(x) + P3(y) = P3(z),

this case was studied by K. R. S. Sastry [14] and A. Hamtat and D. Behloul [7].
Case 3: When G = 1, k = 4, the conclusion becomes a linear combination of two polygonal
numbers is a perfect square (see [1, 5, 8–12]).

Remark 3.3. Using the undetermined coefficient method, we obtain some parametric solutions
of Eq. (3.8).
Case 1: (p, q, k, A,B,G, x, y, z) = (3, 3, 3, 1, 1, 1, (2r + 1)tus2, 2r(r + 1)tus2 + r,

(2r2 + 2r + 1)tus2 + r).
Case 2: (p, q, k, A,B,G, x, y, z) =

(
3, 3, 3, (2b+1)2−(2c+1)2

4
, (2a+1)2−(2b+1)2

4
, (2a+1)2−(2c+1)2

4
,

(2a+1)t+a, (2c+1)t+c, (2b+1)t+b
)
, where a > b > c.

Case 3: (p, q, k, A,B,G, x, y, z) = (k, k, k, 4(k − 2)2t2 − 1, 1, 1, as+ (k − 4)t, as,

t(2(k − 2)(k − 4)t+ 2a(k − 2)s− (k − 4))).
Case 4: (p, q, k, A,B,G, x, y, z) = (k − 1, k, k + 1, 1, 1, 1, 1, 2, 2),

(p, q, k, A,B,G, x, y, z) = (3, 4, 5, 1, 1, 1, t− 1, t, t).
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