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1 Introduction

Recently, in [9], Özdemir introduced the set of hybrid numbers which contains complex, dual and
hyberbolic numbers, as

K =
{
a+ bi+ cε+ dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0,h2 = 1, ih = −hi = ε+ i

}
.

This number system is a generalization of complex (i2 = −1), hyperbolic (h2 = 1) and dual
number (ε2 = 0) systems where i is a complex unit, ε is a dual unit and h is a hyperbolic unit. We
call these hybrid units. From the definition of hybrid numbers, the multiplication of the hybrid
units is given by the following table:
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• 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε h+ 1 0 −ε
h h −ε− i ε 1

Table 1. The multiplication table for hybrid units

This table shows that the multiplication of hybrid numbers is not commutative. Based on this
definition and table, Özdemir [9] examined many algebraic and geometric properties of hybrid
numbers. For example, he defined a ring isomorphism between the hybrid number ring K and the
ring of real 2× 2 matrices M2×2. This map is ϕ : K −→M2×2 where

ϕ (a+ bi+ cε+ dh) =

[
a+ c b− c+ d

c− b+ d a− c

]
. (1)

For more details and properties related to hybrid numbers, we refer to [9].
The well-known Fibonacci and Lucas sequences are defined by the following recurrence

relations:
Fn+2 = Fn+1 + Fn, (n ≥ 0)

and
Ln+2 = Ln+1 + Ln, (n ≥ 0) ,

respectively, where F0 = 0, F1 = 1, L0 = 2 and L1 = 1. Note that Fn + Fn+2 = Ln+1.
Recently, in [16], Szynal-Liana and Włoch studied the Fibonacci hybrid numbers and obtained

some combinatorial properties of these numbers. For n ≥ 0, they defined the n-th Fibonacci
hybrid and n-th Lucas hybrid numbers as

FHn = Fn + Fn+1i+ Fn+2ε+ Fn+3h

and
LHn = Ln + Ln+1i+ Ln+2ε+ Ln+3h

where FH0 = i+ε+2h, FH1 = 1+i+2ε+3h, LH0 = 2+i+3ε+4h and LH1 = 1+3i+4ε+7h.
The Fibonacci and Lucas hybrid numbers have been studied in various papers. For more

details and properties related to the Fibonacci and Lucas hybrid numbers, see [1–3, 5–8, 10–22].
Recently, in [4], Irmak obtained various identities about Fibonacci and Lucas quaternions by

matrix methods. At the end of his paper, he asked an open question about divisibility identities of
Fibonacci and Lucas quaternions.

In this paper, we consider the Fibonacci and Lucas hybrid number version of this open
question and then we give an answer to this question.
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2 Main result

Theorem 2.1. There are no triples (m,n, s) of integers satisfying the following equations:

(i)
FHm

FHn

= FHs, (2)

(ii)
LHm

LHn

= LHs, (3)

(iii)
FHm

FHn

= LHs, (4)

(iv)
LHm

LHn

= FHs, (5)

(v)
FHm

LHn

= LHs, (6)

(vi)
LHm

FHn

= FHs. (7)

Proof. We only give a proof for (2) and (3), respectively. The rest of our assertions can be
established in similar manner.

(i) Now, we know that from (1) that

ϕ (FHn) = ϕ (Fn + Fn+1i+ Fn+2ε+ Fn+3h)

=

[
Fn + Fn+2 Fn+1 − Fn+2 + Fn+3

Fn+2 − Fn+1 + Fn+3 Fn − Fn+2

]

=

[
Ln+1 2Fn+1

2Fn+2 −Fn+1

]
and

ϕ (LHn) = ϕ (Ln + Ln+1i+ Ln+2ε+ Ln+3h)

=

[
Ln + Ln+2 Ln+1 − Ln+2 + Ln+3

Ln+2 − Ln+1 + Ln+3 Ln − Ln+2

]

=

[
5Fn+1 2Ln+1

2Ln+2 −Ln+1

]
.

Assume that there exists at least one solution satisfying Eq. (2). By the hybrid isomorphism (1)
and ϕ (FHm) = ϕ (FHs)ϕ (FHn), we get the following matrix equation:[

Lm+1 2Fm+1

2Fm+2 −Fm+1

]
=

[
Ls+1 2Fs+1

2Fs+2 −Fs+1

][
Ln+1 2Fn+1

2Fn+2 −Fn+1

]

=

[
Ls+1Ln+1 + 4Fs+1Fn+2 2Ls+1Fn+1 − 2Fs+1Fn+1

2Fs+2Ln+1 − 2Fs+1Fn+2 4Fs+2Fn+1 + Fs+1Fn+1

]
.
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Then we have the following system of equations:

Ls+1Ln+1 + 4Fs+1Fn+2 = Lm+1 (8)

Ls+1Fn+1 − Fs+1Fn+1 = Fm+1 (9)

Fs+2Ln+1 − Fs+1Fn+2 = Fm+2 (10)

4Fs+2Fn+1 + Fs+1Fn+1 = −Fm+1 (11)

If we sum the left-hand sides and the right-hand sides of Eq. (9) and Eq. (11), then we obtain

Fn+1 (Ls+1 + 4Fs+2) = 0.

Since Ls+1 + 4Fs+2 = Fs + 5Fs+2 6= 0 for s ∈ Z, Fn+1 must be equal to 0. So n = −1. If we
take n = −1 in Eq. (9) and Eq. (11), we get m = −1. If we take n = −1 and m = −1 in Eq. (8)
and Eq. (10), we get the following equations:

1 = Ls+1 + 2Fs+1 = Fs+4 (12)

1 = 2Fs+2 − Fs+1 = Ls+1 (13)

From the Eq. (13), s must be equal to 0. But s = 0 is not a solution of Eq. (12). Thus

ϕ (FHm) 6= ϕ (FHs)ϕ (FHn) .

So there are no triples (m,n, s) of integers satisfying Eq. (2).

(ii) Assume that there exists at least one solution satisfying Eq. (3). By the hybrid isomorphism
( 1) and ϕ (LHm) = ϕ (LHs)ϕ (LHn), we get the following matrix equation:[

5Fm+1 2Lm+1

2Lm+2 −Lm+1

]
=

[
5Fs+1 2Ls+1

2Ls+2 −Ls+1

][
5Fn+1 2Ln+1

2Ln+2 −Ln+1

]

=

[
25Fs+1Fn+1 + 4Ls+1Ln+2 10Fs+1Ln+1 − 2Ls+1Ln+1

10Ls+2Fn+1 − 2Ls+1Ln+2 4Ls+2Ln+1 + Ls+1Ln+1

]
.

Thus we get the following system of equations:

5Fm+1 = 25Fs+1Fn+1 + 4Ls+1Ln+2 (14)

Lm+1 = 5Fs+1Ln+1 − Ls+1Ln+1 (15)

Lm+2 = 5Ls+2Fn+1 − Ls+1Ln+2 (16)

−Lm+1 = 4Ls+2Ln+1 + Ls+1Ln+1 (17)

If we sum the left-hand sides and the right-hand sides of Eq. (15) and Eq. (17), then we get

Ln+1 (5Fs+1 + 4Ls+2) = Ln+1 (13Fs+1 + 4Fs+2) = 0.

Since Ln+1 6= 0 and 13Fs+1 + 4Fs+2 6= 0 for n, s ∈ Z then

ϕ (LHm) 6= ϕ (LHs)ϕ (LHn) .

So there are no triples (m,n, s) of integers satisfying the Eq. (3).
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3 Conclusion

In this paper, we show that there are no triples (m,n, s) of integers satisfying Eqs. (2)–(7). In fact,
since the multiplication of hybrid numbers is not commutative, we can consider the Eqs. (2)–(7)
with two different versions. For example, for Eq. (2), we can investigate the isomorphisms
ϕ (FHm) = ϕ (FHs)ϕ (FHn) and ϕ (FHm) = ϕ (FHn)ϕ (FHs) separately. Since calculations
are similar, we omit the second versions of these equations in this paper.
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[6] Kızılateş, C. (2020). A Note on Horadam Hybrinomials. Preprints, 2020010116, DOI:
10.20944/preprints202001.0116.v1.

[7] Liana, M., Szynal-Liana, A., & Włoch, I. (2019). On Pell Hybrinomials. Miskolc
Mathematical Notes, 20(2), 1051–1062.

[8] Mangueira, M. C. S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2020). The
Hybrid Numbers of Padovan and Some Identities. Annales Mathematicae Silesianae, 34(2),
256–267.
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