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1 Introduction

The Fibonacci numbers, F},, and the Lucas numbers, L,,, are defined, for all integers n by the
Binet formulas:
o — 6n
F, = , Lyp=a"+p", (D
a—p

where « and f3 are the zeros of the characteristic polynomial, 2> — z — 1, of the Fibonacci
sequence. Thus o + § = 1 and af = —1; so that « = (1 + \/5)/2 (the golden ratio) and
B = —1/a = (1 —+/5)/2. Koshy [10] and Vajda [13] have written excellent books dealing with

Fibonacci and Lucas numbers.

Our task in this paper is to show how every power series gives rise to a Fibonacci series and a
companion series involving Lucas numbers. For example, the power series

00 . Zj
ZC(J)7 =logl'(1—2) -7z, |2/ <1,
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where ~ is the Euler—-Mascheroni constant, ((n) is the Riemann zeta function and ['(z) is the
gamma function, leads to the following series involving Lucas numbers and the zeta function
(Theorem 6.8, section 6):

>

=2

¢(j)

2 Lz =logD(1 — o’ 2)0(1 — 872) — yzL,;
J

particular instances of which, for non-zero even integers 7, are (Example 8)

Z ]‘ = log (mesc(ma” /L)) — 7,

and

>

J=2

= —2log|L,| + log (mcsc(ma” /L)) + 7.

In Section 2, we prove the theorem regarding how to obtain Fibonacci series from power series.
[llustrative examples are then presented in Sections 3—6.

2 Fibonacci series from power series

Theorem. For real or complex z, let a given well-behaved function h(z) have, in its domain,
the representation h(z) = Y. g(j)2'9) where f(j) and g(j) are given real sequences and

J=c1
c1, o € [—00,00]. Let r and s be integers. Then,

;leg Pty = 5 (") + BE'2) + 202 (') W) . (F)
S 0Ly = 2 (ha72) + ) + T (e —h) . )

Jj=c

whenever the series on the left-hand side of each of (F) and (L) converges.

Proof. We have

Cc2

> 902V =h(z). )

Jj=c1
Writing oz for z in (2) and multiplying both sides by o, we obtain

c2
Z g(j)o/"f(j)-i-szf(j) = a*h(a"z). 3)

Jj=c1

Similarly, writing 5"z for 2 in (2) and multiplying both sides by °, we obtain

Zg 6rf ])-&-s ﬁs (ﬂTZ) 4)

Jj=c1
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From (3) and (4), we have

a Zg Tf(] +s% _'_ . Zg rf (j)+s? 10) = G h(a Z) (5)
] c1 j=c1
and
a Z rf ])Jrsz T s Z g +SZ 58 (BTZ) 9 (6)
] c1 Jj=c
where we have used the fact that, for any integer m,
L, + F,V5 Ly, — FouV/o
am—%—andﬁm—%. @)
Subtraction of (6) from (5) while making use of (7) again to resolve o® and 3° produces identity (F).
Addition of (5) and (6) gives identity (L). O

Setting s = 0 in (F) and (L), we have the particular cases,

S g(5)270 Frygy = % (h(a2) — h(F"=)) . E1)

j=c1
c2

290D Lysg) = hla2) + h(72). (L1)
Jj=c1
In Sections 3—-6 we will apply identities (F) and (L) to derive Fibonacci series from certain
power series.

3 Fibonacci series from trigonometric functions

Theorem 3.1. If r and s are integers and z is a real or complex variable, then,

- (_1>j 2+1 _ . zL, FTZ\/S
p mFgerrSZ = str S1n 9 COS 9
(®)

N L, . [F.zV5 2L,
Sin COS
V5 2 2 )7
= ] L, F.2\5
LQTJJFSZQJH =L, ,sin (Z ) cos Al
— 2] + 2 2

F L
+ F,_,V/5sin ( TZ\/B> cos (Z r> )

J

(€))

2

Proof. Consider the Maclaurin series expansion of sin z:
< L2541
(—1)) ——— =sinz.
— (27 +1)!
Use g(j) = (—=1)7/((25 + 1)), f(4) =2j+ 1,1 = 0, co = oo and h(z) = sin z in identities (F)
and (L); noting the identities

+
sinx £ siny = 2sin (xzy) oS (x;;y) . [
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In particular,

- 1)7 2 F.z\5 L,

—)FT(QJH) s _ 2 g (B35 (2 , (10)
= (25 4+ 1)! NG 2 9
- ] . ZLT' FTZ\/S
Z 2) n 1 r(2j+1)22]+1 = 2sin (T) Cos ( 5 > . (11)
Jj=0

Example 1. If r is an integer, then,

- Fr2j+1) 1
= - 12
; 2j+1 Bz F5 2 (12)
- ¢(25) Frojy B
DTy AT = 17 (13)
22J+1(2j -+ ].)ng Lr]+ 4Lr
= 2j) Ly 1
@) Lo 1 (14)
— (2j +1)By; LT 2
i C(2J> LT(2J+1) — LT (15)
22+ 1) By 50 AR
Proof. To prove (12) and (13), set z = 27/(F.\/5), 2 = m/L,, in (10), in turn. To prove (14)
and (15), set z = 21/L,, z = 7/(F,+/5), in (11), in turn. Note the use of (38). O
Theorem 3.2. If r and s are integers and z is a real or complex variable, then,
> / L, F.zv5
Z Fzr]_i_SZ = F) cos : cos k]
2 2
= (16)
LS . ZLr . FTZ\/E
— sin sin
V5 2 2 ’
> / L, F.zv/5
Z L2m+sz = L, cos : CoS 2v/5
2 2
= (17)

L, F.zv5
— Fs\/gsin z sin 2V/5 .

2 2
Proof. Consider the Maclaurin series for cos z:

i 2]| = COS z2.

j=0

Use f(7) =27, 9(J) = (—1)7/(27!), c1 = 0, co = oo and h(z) = cos z in (F) and (L), noting the

identities
r+vy r—y
Ccos T + cosy = 2cos — cos 5 )

CoOsT — Ccosy = —2sin (IT—HJ) sin <x;y) . O
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In particular,

(=1t o2 L, F.2\/5
3 %sz% — “ gin(Z ) sin [ £2Y5 , (18)
= (29)! V5 2 2
= (—1) : zL, F.2\/5
Z @) Lo,;2%7 = 2 cos 5 ) cos 5 . (19)
7=0
Example 2. Ifr is an integer; then,
 $(29) Fary
Sxiy), (20)
j; By; LY
 C(27) Py
— — () 21
; By 15 =0 (21)
Z 92j Bs; ng =1, (22)
=1
— ((2)) Loy
, — =1, 23
jzz; 22]ng F7«2J5] ( )
Proof. Set z = 21/L,, z = 2w /(F,+/5) in (18) to prove (20) and (21). Set z = 7/L,, 2
7/(F,/5) in (19) to prove (22) and (23). Note the use of (38) O

4 Infinite series involving Fibonacci numbers
and Bernoulli numbers

The Bernoulli numbers, B;, are defined by the generating function

z Z]
62_1 :ZB]?, Z<27T. (24)
§=0
The first few Bernoulli numbers are
1 1 1 1
By=1,Bi=—,By,=-,B3=0,By=——,B;s=0, Bg=—, B,=0, .... 25
0 ) 1 27 2 67 3 ) 4 307 5 ) 6 427 7 ) ( )

Basic properties of the Bernoulli polynomials are highlighted in recent articles by Frontczak [3]
and by Frontczak and Goy [8] where new identities involving Fibonacci and Bernoulli numbers,
and Lucas and Euler numbers are presented. Additional information on Bernoulli polynomials
can be found in Erdélyi et al [2, §1.13].

Theorem 4.1. Let r and s be integers and z be any real or complex variable such that z < 2ma™".

Then,
> Bg - zF o'z Bz
EZI ]‘ 2m+322‘7 1 <cot < 5 ) + cot ( 5 )> — F;

J
L () ()
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> BQ ozl o’z Bz
E ] Loyjisz 24 = 1 <cot<2>+cot<2))—Ls
j=1
FT s 5 T T
+ % (cot (%) — cot (6;)) )

Proof. Setting x = 1z, z real, in the following identity [9, Formula 1.213]:

> ng 2j T x
= ——1 <2
Z(2j)!x e—1 T b <2

J=1

and taking the real part, we have

Z (_1)j (g;;!,z% - ECOt (%) -1

J=1

(27)

Now use f(j) = 24, 9(j) = B2j/(25)l, & = 1, co = oo and h(z) = z/2cot(z/2) — 1
in (F) and (L). The identities of Theorem 4.1 follow after some algebra, including also the use of

identities (7). Note that in the final simplification, we used
F.Ls+ F,L, =2F,,,, Vajda[l3, (16a)],

and
L.Ls+5F.F;, =2L,.,, Vajda[l3,(17a)and (17b)].

In particular, for integer r and z < 27ra™", we have
= By, 94 z o'z Bz
Z (—1) =L F 912" = ——= (cot <—> — cot < )) + (=1)"F},,
= (24)! 2v/5 2 2
> By, 9j  ? o’z Bz ,
jzl <—1) WL r(2j—1)%" = 5 cot 9 + cot B — (—1) LT .

Example 3. Let r be an integer. Then,

o0

. By Fr2j—1 ; r
P el e Ve

j=1

= By Ly2j—1 , T_
}:(—1)(2%' L% L2m)¥ = (—1)"'L,.
i=1 r

Proof. Set z = 21 /(F,+/5) in (28) and 2z = 27/L, in (29).

Note that, in view of identity (38), identities (30) and (31) can also be written as

2 _1r—1
ZC] 2]1):( ) Fr27

2] 1 2
= ¢(2) (=",
Z sz—lLr(2jfl) = 9 L,
j=1 "

which are the same identities (96) and (99) of Example 5.
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(30)

(31)

(32)
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S Infinite series involving Fibonacci numbers
and Euler numbers

The Euler numbers F; are defined by the exponential generating function:

The first few Euler numbers are

E():l, Egz—l, E4:57 E@Z—Gl, ceey WithE2j+1:0f0erO.

Theorem S.1. If r and s are integers and z is a real or complex variable, then,

o

S Bl - ) )
7=0
+ ;W (sec(a”z) —sec(8"2)) ,

E 1 Ly r r
D et = 5 e s)  5ec(5°2)

F.\/5
%

(sec(az) —sec(f"2)) .
Proof. Consider the identity [9, Formula 1.411 9.]

2
g ] 2]—secz, 2 < n?/4,

7=0

Use f(7) =27, 9(j) = |Ea]/(24)!, c1 = 0, co = 0o and h(z) = sec z in (F) and (L).

In particular,

| By TR

E —F5. 29 = — (sec(a”z) —sec(f"2)) ,
~ (2])! 2rj \/5( ( ) (ﬂ ))

o0

E
Z |(2;;!L2TJZ2J = sec(a"z) 4+ sec(f"z) .
=0

6 Infinite series involving Fibonacci numbers

and the Riemann zeta function

(34)

(35)

(36)

(37)

As noted by Frontczak and Goy [7], studies in infinite series involving Fibonacci numbers and

Riemann zeta numbers have not been previously documented. The narrative has changed, however,

following research results by the aforementioned authors, as contained in their recent papers:

Frontczak [4-6] and Frontczak and Goy [7]. In this section, we explore more infinite series

involving the Fibonacci numbers and the Riemann zeta numbers.

50



The Riemann zeta function, {(n), n € C, defined by
j=1

is analytically continued to all n € C with ®(n) > 0, n # 1 through

¢(n) 21 nZ

Jj=1

J+1

For positive even arguments, the numbers ((2n) are directly related to the Bernoulli numbers,
Bgn:

Q%FPWM%%&W (38)

No such simple formula is known for the zeta function at odd integer arguments.

More information on the Riemann zeta function can be found in the books by Edwards [1]
and Srivastava and Choi [12].

The zeta number generating functions, found in Srivastava and Choi [12, p. 270-271, p. 280—
281], also Erdélyi et al [2, §1.7.1], which we require to establish the infinite series here, are
expressed in terms of the Gamma function and the digamma function.

The Gamma function is defined for R(z) > 0 by

I(z) = /O T et g = /0 " (log(1/6)" dt,

and is extended to the rest of the complex plane, excluding the non-positive integers, by analytic
continuation. The Gamma function has a simple pole at each of the points z = - - - , =3, =2, —1, 0.
The Gamma function extends the classical factorial function to the complex plane: I['(z) =

(z—1)L
The digamma function, ¢(z), is the logarithmic derivative of the Gamma function:

"(2)
P(z)

0(z) = 108 T(2) =

6.1 Functional equations for the gamma and the digamma fumction

Here is a list of basic functional equations for the gamma function (see Erdélyi et al [2, §1.2]):

['(z+1)=zI'(2), (39)

L) (—z) = —mese(nz)/z, (40)
[(z)I'(1—2) =mese(nz), (41)
I'(1/2+ 2)I'(1/2 — 2) = wsec(nz), (42)
M1+ 2)I'(1 —2) =mzcese(mz) . (43)



Writing —x for z and —y for z, in turn, in (39), we find

(1 —2)l(1 —y) =ayl'(—=2)I'(-y).

More functional equations that are required for our discussion will now be derived.

A consequence of (40) is

o1 1

I'(—2)l(—y) =
so that

log (I'(—)I'(—y)) = log(27*/ (zy)) — log (I'(z)T'(y))
+ log (cos(z + y) — cos(z — y)

From (43), it follows that if x + y = 1, then,

r (%m) r (%w) - <%—x)7rsec(7rx).

We require the following basic properties of the digamma function:

Y+ 1) = () 1
¥(2) — (—2) = —m cot w2 — %
W(1+2) — (1 — 2) = % -
0(2) — (1 — 2) = —cot 7z,
1

@/}(%jLz) w<§—z) =7mtanmz,
(8

n

1
(Z+n):¢<z>+;z+]—'—l’
1m—l ]
w(mz)zlogquE;l/}(z%—E

As a consequence of identity (49) we have the following useful identity:

(=) = ¢(=y) = ¥(x) = P(y) + w(cot(mx) — cot(my)) —

We observe from relation (48) that if z — y = 1, then,

Y() —vly)=—-, y#0,

<

while relation (51) is equivalent to saying that if z + y = 1, then,
W) = ¢(y) = —m cot(mz)

52

ay T(@)T(y) cos(x —y) — cos(x +y)’

).

)

L=y

Y

(44)

(45)

(46)

(47)

(48)
(49)

(50)
(1)

(52)

(53)

(54)

(55)

(56)

(57)



From relation (50), we have

Y(I+x) =Y +y) =91 —x) =Y —y)

1 1
— — = — n(cot(rz) — cot(my)).
+ iy 7(cot(mz) — cot(my))
Thus, if z +y = 1, = ¢ Z, then,
1 1
P(14+2x) —Y(l1+y) = —mcot(rx) + ST & ¢ {0,1},
while if x + y = 2, z ¢ Z, we have
1 1 1

P +z) = P(l+y) =-
If z + y = 1, identity (52) also implies

l—-z = 22—z

P(1/2+x) —(1/2+y) = —m tan(nz) + 2$2_ 1 x#1/2,
while if x —y = 1, we have
(/24 x) —P(1/2+y) = 2x2—1’ r#£1/2.

Writing z — 1 for z in (50) gives

B(2 — 2) = ¥(2) + 7 eot(m(z — 1)) — —

z—1"

and hence, also .

Y(2+2)=¢(—2) —mcotm(z+ 1) + 1

From (63) we get
2 sin(m(z — y))

—meot(mz), x¢{0,1,2}.

Y2 =) =92 —y) =v(@) =) — ST N T cos(n(@ 1 )

r—Yy
l—z—y+ay’

which, writing x for —z and y for —y and makng use of (55), also gives
r—Yy Ty
24+x) —Y2+y) =Y(x) - — — .
P2 +x) —P(2+y) =) —d(y) w  1tsiyta
Using m = 2 in (54) gives

¥(22) =log2 + %w(z) + %1/} <z + %) )

which also means that,

6(20) ~ v(2) = 5 (0(a) = w() + 5 (0 (w4 3 ) —w v+ 3) )

If z + y = 1, then relation (68), in view of (51) and (52), gives

»(2x) —(2y) = —7 cot(2mx) +

20— 1’
while if x — y = 1, it produces
1 1
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(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



6.2 Evaluations at the relevant arguments

Lemma 6.1. We have

D(a)'(B) = mese(ma) = wese(nf), (71)

L(a*T(5?%) = —7mesc(mf), (72)
['(—a)T'(—=p) = —mese(nf), (73)
[(—a*)T(—p?%) = —mesc(nfB), (74)
I(a®/2)(8°/2) = \/gsec(ﬂﬁ), (75)
L(a"/L)T(6"/L,) = wese(ma” /L) , (76)
[(—a"/L)T(=B"/L,) = (=1)'nL%csc(ma” /L,) . (77)

Proof. Setting z = a in (41) gives (71). Use of z = —a, y = —[ in (44) gives (72). In view of
(44), we have (73) and (74). Identity (75) is proved by setting = (3 in identity (47). To prove
(76), set z = " /L, in (41). O

Lemma 6.2. We have

Y(a) = (8) = —mcot mar, (78)

W(e?) — (8% = —mcot mar + V5, (79)

W(2a) —¥(28) = % — meot /5, (80)

V(a®) — (B = i — meot /5, (81)

(%) ( ) i_mt%ﬁ, (82)

Y(avB) —p(BV5) = \/3 (83)

4 (L—> ¢ (i—) — ot (”LO‘) — tan (;FL\@) , (84)
() -+ (2e) 55
( ) ( ) — _tan (gFL‘/g) — (=1)" FyV/5, (86)
() o) =5 v

Proof. Setting z = « in (51) proves (78). Identity (80) comes from choosing + = a, y = (8
in (69). Setting x = «, y = [ in (59) proves (79). Use of z = 2a, y = 27 in (60) produces
(81). Setting (z,y) = (a, ) in (61) gives (82). Identities (84) and (85) are proved be setting
(z,y) = (& /Ly, 3" /L,) in (56) and (z,y) = (o /(E,V/5), 87 /(F,/5)) in (57). Identities (86)
and (87) are obtained from (84) and (85) wth the aid of (55). L]
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6.3 Fibonacci-Zeta infinite series

Theorem 6.1. Let r be an integer. Let z be a real or complex variable such that |z| < o~". Then,

T (cot (rza") — cot (wzf")) .

S i — L bars) — b(8)) —
;coﬂmjz— (W(a"z) — (B72)) 7

V5

Proof. Consider [12, p. 270, identity (13)]:

oo

ST+ = —p(1—2) -7, |zl <1.
j=1

Use f(7) =7,9(j) =C(+1),c1 =1,c3 =0 and h(z) = —¢(1 — z) — v in identity (F1). O

Example 4. If r is an integer with |r| > 1, then

S Ut T (T W5 (88)
= U Vb 2 L
- j— C(] + 1) T ™ F"/‘\/g
—1)771 -~ F.;=——tan | = — (1) Fy, . 89
Proof. Set z = +1/L, in the identity of Theorem 6.1 and use (84) and (86). [l

-

Theorem 6.2. Let r and s be integers. Let z be a real or complex variable such that |z| < «
Then,

S g i P (e
2j =Mt Vi cos(nzF,+/5) — cos(nzL,)

j=1 (90)
L, (( a2 sin 7r5’“z)
45 sinta’z )’
Z L2r]+s - 10g ( )
o 25 cos( 7rzF \/_ cos(sz ) o)
\/_ ((—1)’"042’" sin Wﬁ’”z)
sina’z

Proof. Consider [12, p. 271, identity (17)]:

S =g (), <1,
= J sin 7z

Use f(7) = 24, 9(7) = €(24)/j, c1 = 1, co = 00 and h(z) = log(nz/sin(7z)) in identities (F)
and (L) . O
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r

Theorem 6.3. Let r and s be integers. Let z be a real or complex variable such that |z| < o~

Then,
- ‘ . Fa mwsin(mwzLy,) (=1)"L,
2 Fr‘ SZ2J 1 _ + (_ n
]Z:; (@) P 2 cos(mz2F\/5) — cos(mzL,) 2z
92)
n L., msin(rzF,/5) B (=1)"F/5
2v/5 \ cos(m2F.\/5) — cos(rzL,) 2z ’
iC@j)LQ ot L (— msin(rzLy) + (_1)%)
= e 2 cos(mzF\/5) — cos(mzL,) 2z
93)

N ForV/5 7 sin(r2F/5) B (-=1)"F\/5
2 cos(mzF\/5) — cos(mzL,) 2z '

Proof. Consider [12, p. 271, identity (18)]:

o0

. 1
ZC(Qj)zzJ—l = —gcoth—l— 25 |z] < 1.

Use f(j) =27 — 1, 9(j) = €(2)), c1 = 1, cg = oo and h(z) = —(7/2) cot(rz) + 1/(22) in

identities (F) and (L). O
In particular, setting s = —7 in the identities of Theorem 6.3 yields
iC(Qj)F ponl = L msin(m2Fv/5) _CEUEYS (94)
o ry V5 \ cos(mzF,\/5) — cos(mzL,) 2z ’
SN - in(rzL,) (—1)"L
9NV Ly 2 = msin(mz L, N r 95
;C( 3 Lras- cos(mzF,\/5) — cos(nzL,) 2z )
Example 5. If r is an integer, then,
¢(2)) =y
Z FE 155 Fraj—1) = 5 F?, (96)
¢(27) 7T w L, (—1)7"
r2j—1) = —=1 Fy, 97
Z2Jl5j i) = 5 5 12 97)
o~ C(27) T mEVE\ (=)
;sz_lﬂ(gj_l) — Etan 3L Fy, |r|>1, (98)
— (2) 1)
IEIDINRC ) o

Proof. Set z = 1/(F,\/5) in (94) and in (95) to obtain (96) and (97). Set z = 1/L, in (94) and
in (95) to obtain (98) and (99). O

Frontczak [4, Theorem 2.1] also obtained the special case » = 1 of identities (96) and (97).
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Theorem 6.4. Let r be an integer and z be any real or complex variable such that |z| < 2a~
Then,

[e.9]

SO (CG+1) = 1)Fy = —% (b(az) — P(F72)) -

J=1

T (cot(mza”) — cot(nz5"))

V5

Proof. Consider [12, p. 280, identity (146)]:

SCU+D) -1 = —p2—2)+1-7, || <2.

Jj=1

Use f(j) = j.g(j) =C(i+1)—1,c1 =1, ¢ = coand h(z) = (2 —2) +1— v in
identity (F1). [l

Example 6. [fr is an integer, then

Z—Li Frj = \/gtan (2 L ) (_1) F27'-

7j=1
Proof. Set z = 1/L, in the identity of Theorem 6.4 and use (84). ]

Frontczak [4, Theorem 2.2, identity (2.3)] obtained the » = 1 case of Example 6.

'

Theorem 6.5. Let r be an integer and z be any real or complex variable such that |z| < 2«

Then,
]Zl (2] + 1) = 1) Py 2% % (W(a"2) — b(B2)) — 2% (cot(mza”) — cot(m28"))
F2r22 + i(—l)rFr.

(A (—1)r2)2 — 1222 22
Proof. Consider [12, p. 280, identity (149)]:
= 1
> (C2j+1) —1)z¥ =5 W2+ +p2-2)+1-7 |f<2.
j=1

Use f(j) =24,9(j) =((2j+1)—1,¢1 = 1,¢0 = ocand h(z) = —p(2+2)/2—¢(2—2) /2+1—~
in identity (F1).

Note that we used
V2—z)—¢2-y)+v2+z) Y2 +y)
— 2(a) — 20(y) — 2 sin(m(z — y))

cos(m(z —y)) — cos(m(z +y)) (100)
N 2(z* — y*) T —y
(I+ay)?—(z+y)?* ay
which follows from identities (65) and (66). [l
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Example 7. If r is an integer, then,

= (C2j+ 1) -1 L2Fy, (-1
: Fyj = — - F, 101
; LY T 1 I B B (101)
(25 +1)—1) 5F2Fy, (—1)1
e r By, . 102
; 51 F 2 10(—1)r—1F2 + 1 T (102)

Proof. Set z = 1/L,, = = 1/(F,\/5) in the identity of Theorem 6.5 and use identities (84)

and (85). We used
cot (Wi ) + cot <7T£ ) =0

o (2] o () :

-

and

Theorem 6.6. Let r be an integer and z be any real or complex variable such that |z| < 2«
Then,

N Forjis 5 F 17 27222(1 — Ly,
3 (C(2) — )22 = T2 << )2m222(1 — Lop2? + 24)
J 2 COS(WFZ\/_—COS 7TLZ

+£10g(04 —a’2? sin(rfB"z )

[y

j=

(103)

25 pr — 322 sin(rarz

N ] 1) 1—
Z(C(Qj)—l)L%—?Hz?J Ié lo g(( )( 2; \/(_ Lo, 2? Zz
=1 cos(mF, z cos(mL,z) 100

FS\/glog <a — a2 sm(w%;)

2 pr — B3 22 sin(ra”

+

Proof. Consider [12, p. 281, identity (150)]:

o0 52i 1— 52

Z ¢(25) —1)— log<LZ)), 2] < 2.
= J sin 7z

Use f(5) = 24, g(j) = €(27) — 1, ¢1 = 1, co = oo and h(z) = log(mz(1 — z?)/sin(nz)) in
identities (F) and (L) . [l

Theorem 6.7. Let r be an integer and z be any real or complex variable such that |z| < 2a7".

Then,

Z (C(zj) - 1)F2rj+s'z2j71

=1
Foiy msin(mz L) (=D)L, 32* — L222 +1
= - 1 5 (105)
2 COS(WFTZ\/E) — cos(mL,2) 2z 24— Lop2? +1
N Loy, 7 sin(m2F.\/5) (—=1)"E,/5 324 —5F22%2 41
2v/5 \ cos(mF,2v/5) — cos(rL,2) 2z 24— L9, 22 +1
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Z (C(Qj) - 1)L2rj+sz2j_1

j=1
Ly, msin(wzL, —1)"L, 32— L222+1
N 2+ (_COS(WFTZ\/B() — co)s(erz) - ( 2)2 zt — LQ:ZZ —_l—'—l) (106)
\ Fur/5 < 7 sin(m2F,\/5) (F1)FV5 32 - 52 4 1)
2 cos(mF,zv/5) — cos(mL,z2) 2z 2 —Lo22+1 |
Proof. Consider [12, p. 281, identity (151)]:
o0 2
jzl (C(27) — 1)z¥ 7t = —gcot Tz + %, |z] < 2.
Use f(j) =27 —1,9(j) =¢(25) —1,¢; = 1, ¢ = oo and
h(z) = —mcot(mz)/2 + (32° — 1)/(22(2* — 1))
in identities (F) and (L).
Note that we used (Vajda [13, Formula (17c)])
Ly, + (—=1)"2 = L? (107)
and (Vajda [13, Formula (23)])
Ly, — (—=1)"2 = 5F2. (108)
This completes the proof. O]

Theorem 6.8. Let r be an integer and z be any real or complex variable such that |z| < o~

Then,
S g i log (D1 — a)0(1 = 572)) — 2L,

J
7j=2
Proof. Consider [12, p. 270, identity (9)]:

ad J

Zcm% —logT(1—2) — vz, o] <1.

j=2
Use f(j) = 7,9(j) =((j),c1 =2, co =0 and h(z) =logT'(1 — z) — vz in identity (L1). [
Corollary 6.1. If r is an even integer and z is a real variable such that |z| < o, then,

Z SU) g, 23 = 2l0g 2| + log (T(~a")T(~F")) — 2L

Example 8. If r is an even integer, then

= log (wesc(ma” /L)) — 7, (109)
Z( 1) 7E L,; = —2log|L,| + log (w csc(ma” /L)) + . (110)
T 7«]
7j=2
Proof. Set z = +1/L, in the identity of Corollary 6.1 and use identities (76) and (77). [l
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Theorem 6.9. Let r be an integer and z be any real or complex variable such that |z| < o™

Then,
00 9 + 1 . ) )
L 71— log (C(1 = "2)T(1 = 572)) = 3L,
j=1
1 ( (—1)r27222 )
— —log .
2 cos(mzF,+/5) — cos(nzL,)
Proof. Let
NG+ :
t = L, J+
(]) j+ 1 (5+ )Z
Then,
N 627 +1) : : ¢(27) :
t(2g) = WLT(2j+1)22J+17 (25 -1) = Q—er(zj)ZZJ :

Use these in the summation formula
D oH25) =) tG) - > 2 1),
j=1 j=1 j=1

while taking note of Theorem 6.2 (identity (91)) and Theorem 6.8. O

7 Concluding comments

We have shown, through identities (F) and (L), how every power series, h(z), gives rise to a
Fibonacci-Lucas series. Examples were drawn from infinite series involving Bernoulli numbers,
Euler numbers, the Zeta function as well as from infinite series representations of trigonometric
functions. The identities (F) and (L) are quite general and apply to both finite and infinite series.
To drive home this point we now derive linear binomial Fibonacci—Lucas identities associated
with a variation on the Waring formula (in which case h(z) is not an infinite series):

[n/2] . ' ' A )+l _ (1 — /1= 2"+
h(Z) . Z (_1)]' (nj j)2n2]12] _ (1 +v1 ) (1 1 ) )

s 1—2

Note that h(z) is dual to the identity found in Riordan [11, p.57]. Proceeding as in the previous

examples, we find

[n/2]

(0o,
=0 J
F, ((1 +vV1T—am )" — (1 —-/1—az)"!

(14 VT=Fm2)" — (1 - m)"ﬂ

N L, ((1 +vV1T—am2)"™ — (1 —-/1—arz)"!
)

2v/5 1—az
(T (- W>)
1—prz ’
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2 -
S (s
§=0

L (<1 +VT—arz)™ — (1 - yT—arz)"*!
2 VI—a
n (1+/I=F2)" —(1— mym)
T—3
0 (e (VAo
’ Vi—a:
(1++/1=752)" — (1 - m)mﬂ)

Choosing » = 1, z = —1 in the above identities and some algebra, we find the binomial

I\

Fibonacci-Lucas identities stated in the next theorem.
Theorem 7.1. For a non-negative integer n and any integer s,

Ln/2] .
n — .
> ( ; J>2“J“Fj+s = Foniopt = (=1)*Fuya s, (111)

J=0

[n/2] .
n— iy s
> ( .])2" L = Lontsr1 + (1) Lyso_s. (112)

=0 7

Theorem 7.1 has several interesting consequences of which we can mention a couple.
Writing 2n — 1 for nin (111) and (112) gives

Corollary 7.1. For a non-negative integer n and any integer s,

n—1 <2n — .1 —j) 4n7ij+s _ { Lypis 1F3,, neven;

=0 J Fn+571L3n7 n Odd;

o —1 — I\ i 5F s 1F5,, neven;
. 4 ]Lj—i—s =

=0 J Ln+s—1L3n7 n odd.

Setting s =n + 2 in (111) and (112), we obtain

Corollary 7.2. For a non-negative integer n and any integer s,

ln/2] .
n — Y
> ( . ])2" T Fjinsz = Fans, (113)

J=0 J

[n/2] .
n — .
Z ( , j> 2" L e = Langs + (—1)"2. (114)

i=o N/
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