Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 27, 2021, No. 3, 39-43

DOI: 10.7546/nntdm.2021.27.3.39-43

Note on translated sum on primitive sequences

Ilias Laib

ENSTP, Garidi Kouba, 16051, Algiers,
and Laboratory of Equations with Partial Non-Linear Derivatives,
ENS Vieux Kouba, Algiers, Algeria
e-mail: 1aib23@yahoo. fr

Received: 21 September 2020 Revised: 21 July 2021 Accepted: 27 August 2021

Abstract: In this note, we construct a new set S of primitive sets such that for any real number
r > 60 we get: . .

;4 a(loga + ) ~ ;p(logp + )’ A €S,

where P denotes the set of prime numbers.
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1 Introduction

A sequence A of strictly positive integers is said to be primitive if none of its elements divide
another. From the sequence of prime numbers P = (p,,),,~, We can construct an infinite collection
of primitive sequences. Indeed, all the following sequences

AZ = {p?lpg2”'pzk|a17~"aak57d€N7 a1++ak’:dad2]—}a
A = (pePn>k), BE = Ak U A,

are primitive. According to the prime number theorem, the n-th prime number p,, is asymptotically
equal to n log n; this ensures the convergence of the series

S(P)=) !

o plogp

A computation for S(P) was obtained in [2] by Cohen as:
S(P) = 1.63661632335126086856965800392186367118159707613129. .. .
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Throughout this paper we assume that A ¢ {@, {1}}. In [3], ErdGs proved that the series
S(A) converges for any primitive sequence A and in [4], Erd8s asked if it is true that S(A) <
S(P) for any primitive sequence A. In [5], Erd6s and Zhang showed that S(A) < 1.84 for any
primitive sequence 4, and in [1], Clark improved this result S(A) < e (where + is the Euler
constant) in the special case when A is a primitive set of composite numbers. Several years
later in [8], Lichtman and Pomerance proved that S(A) < e¢” ~ 1.781. Moreover, in [5], Erdss
conjectured that S(A) < S(P) for any primitive sequence .A, then in [11, 12], Zhang proved this
conjecture in some special cases of primitive sequences. In [7], the authors show that the analogue
of the Erdds conjecture, which was studied by Farhi in [6], is not satisfied for the translated sums

of the form: ]

= —f > 81.
S(A, x) ;a(loga+x) orz > 8

Later in [9], the authors show that for = large enough, there exists a primitive sequence A, such
that S(A, z) >> S(P, x). In this article, we improve the result of [7] as follows:

Theorem 1.1. Let ky = 130947 and xq = 60. For any integer k > ko, we have:
S(B%, ) > S(P,z) for v > .

To prove this theorem, we need the following lemmas.

2 Lemmas

Lemma 2.1. ([10]) For any real number x > 1, we have:

1 1
> = >loglogz+f— 5o Where B = 0.261497212847643 . . .
O,

peP,p<e &
Lemma 2.2. Let x1,x1,...,x, be non-zero real numbers, then we have:
) 2
Z TiTj = 5 ( Z %) + Z zi | . (D
1<i<j<n 1<i<n 1<i<n
Proof. By induction. [

Lemma 2.3. ([7]) For all integer £ > 1 and all integer d > 2, we have the (disjoint) union
AS+1 - "42 U {apk+1|a < Agi_i :

Lemma 2.4. Let k' = 58. For any real number x > (0, the sequence (8 (B%, x))

increasing.

ko B strictly

Proof. According to Lemma 2.2, for any integer £ > 1 we have:

slos (s s ()

acat ¢ 1<i<y<k PibPi
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For 1 <1 < k, we have p; < py, so

e a((za) h s

ac Ak 1<z<k

2%@% ")

1<i<k P

According to Lemma 2.3, we have:
Byt = ASTTU AR = A5 U {ap,, la € AT} U AN,

SO

1
(B 0) = () = o (8 (1" o ) = )
k+1

k+1

Knowing that pj,; is the largest element of A**!, so we have:

k+1
1 1 5
S (A logp,,, + ) = = P’
( 1 EPri1 ) Z a(log& -+ logp]Hl + $) - 2logpk+1 +x 1 Pn

k+1
ac A7y
A computer calculation gives

k+1 k' +1
Z_ > Z =2.0023...> 2fork >k,

therefore,
1 2 1
S (A1 1o TrT) i > a
( 1 &Pir ) logp,,, += 2logp,,, +x  logp,,, +z
x
(2 1ngk+1 + l') (10gpk+1 + ZL‘)
08 (B5,2) — 5 (Bh.) > 0. -

3 Proof of Theorem 1.1

For any integer k£ > 1, the number p? is the largest element of the primitive sequence A%, so for
any a € AX we have log a < 21og py.. Then for any z > 0, we have:

1 1 1 1
Z a(loga +z) Z a(loga + ) Z a(loga + x) N GZM a(loga + x)

acBy ac AU Ak acAb

1 1
210gpk+$ ZAk an 10gpn+x)

From (1) and Lemma 2.1, we obtain:

.
1 1
- > = log2) ( logl —

Za>2(x+ og )(ogogpwrﬁ 210g o m)z x+10g2

ac Ak =1

41



SO

1 (x +log2)
>
2 a(loga+z) — 2(2logpy, + ) Z an 1ogpn+a:

a662
1
_ (atlog) Qoglogpk+6 i) Zk: Ly
2(2log pr+) = pn(logpntz) = pu(logpntz)
To obtain the inequality required in Theorem 1.1, it is necessary to choose £ and z so that
1
(x 4 log 2) (loglogpk—i-ﬁ 210g—pk+p_k) -

2(2log py, + x)

It is clear that the function

(loglogpl€ +8— 2log —+ pik) (z + log 2)
22logpr )

is strictly increasing for x € R*. Let choose k and x such that z is an integer and the minimum

x— hy (x) = for k > 1,

for which the above inequality holds. Then

—1———2 1
> —. 2)
_{_i) Zo

2 10g Pk Dk

loglog pi + 8 — 5707~

4log pr. — log 2 (log log pr, + 8 —

Since xy > 0, so for the £ we choose, we must verify that:

1 1
loglogpy — ——5—+——2+3>0.
2log"pr  Pw

The growth of the function ¢t — ¢ (¢) = loglogt —

ST t—i—%—Z—i—Bfort > 1, gives us p, > 317
then £ > 66. So for k£ > 66 the inequality (2) equivalent to Uj, < xy, where

4log py, — log 4

= — log 2.
loglog pr + 6 — 210g o —|———2
Let k; = 373707, then for y > log (px, ) , the function
4y — log 4
yr— f(y) = —log 2,

logy + /8 23/2 eiy -2

is strictly increasing, because for y > log (pg, ) , we have —6 + 23 + 2Iny > 0 and

ev (1112% +(=6+2Iny+28)y%e’ + (2—In2)y* + 23> + (yIn2 — 3) ey>
(2y% — 4y2e¥ — e¥ + 2y%e¥ Iny + 2y2ﬁey)2

So the sequence (U, is strictly increasing, then we get minU = min U;. A
q ( k)k>373707 y g g 66<k<373707

computer calculation gives kmank ~ 59.9, then x¢o = 60. Let us choose ko to be the smallest

> 0.

f'ly) =8y

integer such that U, < 60. A computer calculation gives ky = 130947 and py, = 1740611. So, if
we take A = B5°, we get S(B5, 2) > S(P, x) for z > xy. According to Lemma 2.4, we have:

S(BE x) > S(B5, x) > S(P,x) for k > ko and x > xq.
This completes the proof. [

42



Remark 1. By Lemma 2.4, we can ask the following question. Is it true that for x > 0, there
exists k such that S(B%, x) > S(P, x).
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