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Abstract: An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex
in V (G) has neighbors in at least min{d(v), r} different color classes. The r-dynamic chromatic
number of graph G denoted as χr(G), is the least k such that G has a coloring. In this paper
we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line
graph, para-line graph and sub-division graph of the comb graph Pn�K1 denoted byC(Pn�K1),
M(Pn �K1), T (Pn �K1), L(Pn �K1), P (Pn �K1) and S(Pn �K1) respectively by finding
the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.
Keywords: r-dynamic coloring, Comb graph, Central graph, Middle graph, Total graph, Line
graph, Sub-division graph, Para-line graph.
2020 Mathematics Subject Classification: 05C15, 05C75.

1 Introduction

In this paper, all graphs are simple and finite. For a graph G, let δ(G) and ∆(G) denote
the minimum and maximum degree of G. The r-dynamic coloring was first introduced by
Montgomery [10]. An r-dynamic coloring of a graph is a map c from V (G) to the set of colors
such that:
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(i) if uv ∈ E(G), then c(u) 6= c(v), and

(ii) for each vertex v ∈ V (G), |c(N(v))| ≥ min {d(v), r},

where N(v) denotes the set of all vertices adjacent to v and d(v) its degree and r is a positive
integer. The first condition characterizes proper coloring and it is called the adjacency condition
and second condition is the r-adjacency condition. The r-dynamic chromatic number of a graph
G is denoted by χr(G), is the minimum k such that G admits such a proper k-coloring. The
1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic
chromatic number of a graph G is studied by the name dynamic chromatic number in [1–4, 7].

There are many upper bounds and lower bounds for χd(G) in terms of graph parameters.
For a graph G with ∆(G) ≥ 3, Lai et al. [7] proved that χd(G) ≤ ∆(G) + 1, except for a
cycle graph C5. An upper bound for the dynamic chromatic number of a regular graph G and
the independence number of the graph G, α(G), was introduced in [5]. In fact, it was proved
that χ2(G) ≤ χ(G) + 2 log2 α(G) + O(1). Taherkhani gave [11] an upper bound for χ2(G)

in terms of the chromatic number, the maximum degree ∆ and the minimum degree δ that is
χ2(G) − χ(G) ≤ [∆e/δ log(2e(∆2 + 1))], where G is again a d-regular graph. Li et al. proved
in [8] that in determining the value of χr(G) for planar bipartite graphs with maximum degree
at most 3 and arbitrary high girth is an NP-hard problem. Furthermore, Li and Zhou [8] showed
that to determine whether there exist a 3-dynamic coloring or not, for a claw free graph with the
maximum degree 3 is an NP-complete problem.

2 Preliminaries

Let G be a simple and finite graph with vertex V (G) and edge set E(G). The middle graph [9] of
G denoted by M(G), is defined as follows, the vertex set of M(G) is V (G)∪E(G). Two vertices
x, y of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and
x, y are adjacent in G. (ii) x is in V (G), y is in E(G), and x, y are incident in G.

Let G be a graph with vertex set V (G) and edge set E(G). The total graph [9] of G, denoted
by T (G), is defined in the following way. The vertex set of T (G) is V (G) ∪ E(G). Two vertices
x, y of T (G) are adjacent in T (G) in case one of the following holds: (i) x, y are in V (G) and x
is adjacent to y in G. (ii) x, y are in E(G) and x, y are adjacent in G. (iii) x is in V (G), y is in
E(G), and x, y are incident in G.

The central graph [12] C(G) of a graph G is obtained from G by adding an extra vertex on
each edge ofG, and then joining each pair of vertices of the original graph which were previously
non-adjacent.

The line graph [6] of G, denoted by L(G), is the graph whose vertex set is the edge set of G.
Two vertices of L(G) are adjacent whenever the corresponding edges of G are adjacent.

The sub-division graph S(G) is obtained simply by inserting a new vertex for each edge of G.
The line graph of a sub-division graph is the para-line graph P (G).
Let Pn be a path graph with n vertices andK1 be a complete graph with one vertex. The comb

graph Pn �K1 is defined as the corona product of path graph Pn with the complete graph K1 by
taking one copy of Pn and |V (Pn)| copies of K1 and making the ith vertex of Pn adjacent to the
ith copy of K1 where 1 ≤ i ≤ n. Comb graph has 2n vertices and 2n− 1 edges.
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Figure 1. Comb graph P7 �K1

In the following section we obtain the r-dynamic chromatic number of the central graph,
middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph
Pn � K1 denoted by C(Pn � K1), M(Pn � K1), T (Pn � K1), L(Pn � K1), P (Pn � K1) and
S(Pn �K1), respectively.

3 Main results

Lemma 3.1. χr(G) ≥ min{r,∆(G)}+ 1.

Theorem 3.2. Let n ≥ 3, C(Pn �K1) be the central graph of comb graph then

χr(C(Pn �K1)) =


n, for r = 1

2n, for 2 ≤ r ≤ ∆− 1

2n+ 3, for r = ∆

Proof. Let

V (C(Pn�K1)) = {vi : 1 ≤ i ≤ n}∪{v′

i : 1 ≤ i ≤ n−1}∪{ui : 1 ≤ i ≤ n}∪{u′

i : 1 ≤ i ≤ n}

where v
′
i and u

′
i are the vertices corresponding to the edge vivi+1 and viui of (Pn � K1),

1 ≤ i ≤ n. The maximum and minimum degrees of C(Pn �K1) are ∆(C(Pn �K1)) = 2n− 1

and δ(C(Pn �K1)) = 2. Define the mapping c : V → Z+.

Case 1: When r = 1, the r-dynamic coloring is n are as follows:

• c(vi) = i, 1 ≤ i ≤ n

• c(ui) = i, 1 ≤ i ≤ n

• c(v′
i) =

{
4, for i 6= 3, 4, 1 ≤ i ≤ n− 1

2, for i = 3, 4, 1 ≤ i ≤ n− 1

• c(u′
i) =

{
3, for i 6= 3, 1 ≤ i ≤ n

4, for i = 3, 1 ≤ i ≤ n

Hence the r-adjacency condition is fulfilled, therefore χr(C(Pn �K1)) = n for r = 1.

If χr(C(Pn �K1)) < n, then the r-adjacency condition will not be fulfilled.
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Case 2: When 2 ≤ r ≤ ∆− 1, the r-dynamic coloring is 2n are as follows:

• c(vi) = i, 1 ≤ i ≤ n

• c(ui) = i+ n, 1 ≤ i ≤ n

• c(v′
i) = i+ n, 1 ≤ i ≤ n

• c(u′
i) =

{
n, for i = 1, 1 ≤ i ≤ n− 1

i− 1, for 2 ≤ i ≤ n− 1

Hence the r-adjacency condition is fulfilled, therefore χr(C(Pn � K1)) = 2n for
2 ≤ r ≤ ∆ − 1. If χr(C(Pn � K1)) < 2n, then the r-adjacency condition will not be
fulfilled.

Case: 3 When r = ∆, the r-dynamic coloring is 2n+ 3 are as follows:

• c(vi) = i, 1 ≤ i ≤ n

• c(ui) = i+ n, 1 ≤ i ≤ n

• c(u′
i) = 2n+ 1, 1 ≤ i ≤ n

• c(v′
i) =

{
2n+ 2, for i odd
2n+ 3, for i even

Hence the r-adjacency condition is fulfilled, therefore χr(C(Pn�K1)) = 2n+3 for r = ∆.
If χr(C(Pn �K1)) < 2n+ 3, then the r-adjacency condition will not be fulfilled.

Lemma 3.3. Let n ≥ 4, M(Pn �K1) be the middle graph of comb graph then

χr(M(Pn �K1)) ≥

{
4, for 1 ≤ r ≤ 3

r + 1, for 4 ≤ r ≤ ∆

Proof. Let

V (M(Pn�K1)) = {vi : 1 ≤ i ≤ n}∪{v′

i : 1 ≤ i ≤ n−1}∪{ui : 1 ≤ i ≤ n}∪{u′

i : 1 ≤ i ≤ n}

where v′
i and u′

i are the vertices corresponding to the edge vivi+1 and viui of (Pn�K1), 1 ≤ i ≤ n.
By the definition of middle graph the vertices {v′

i, v
′
i+1, u

′
i+1, vi+1} induces a clique of order 4,

hence χr(M(Pn �K1)) ≥ 4. For 4 ≤ r ≤ ∆ by Lemma 3.1 χr(G) ≥ min{r,∆(G)}+ 1. This
concludes the proof.

Theorem 3.4. Let n ≥ 4, M(Pn � K1), then the r-dynamic chromatic number of the middle
graph of a comb graph is

χr[M(Pn �K1)] =

{
4, for 1 ≤ r ≤ 3

r + 1, for 4 ≤ r ≤ ∆
.

Proof. The maximum and minimum degrees of M(Pn � K1) are ∆(M((Pn � K1))) = 6 and
δ(M(Pn �K1)) = 2. Define the mapping c : V → Z+. We divide the proof into two cases.
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Case 1: When 1 ≤ r ≤ 3, by Lemma 3.3 the lower bound is χr(M((Pn �K1))) ≥ 4. To show
the upper bound, we use the following colorings:
• c(v1, v2, . . . , vn) = {3, 4, 3, 4, . . .}
• c(u′

1, u
′
2, . . . , u

′
n) = {4, 3, 4, 3, . . .}

• c(u1, u2, . . . , un) = 1

• c(v′
1, v

′
2, . . . , v

′
n) = {2, 1, 2, 1, . . .}

Thus we require 4 colors, that is χr(M(Pn �K1)) ≥ 4. Hence χr(M(Pn �K1)) = 4.

Case 2: When 4 ≤ r ≤ ∆ , by Lemma 3.3 the lower bound is χr(M((Pn�K1))) ≥ 4. To show
the upper bound, we use the following colorings.
Subcase (i): when r = 4, consider the coloring:

– c(v1, v2, . . . , vn) = {1, 2, 3, 1, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {3, 1, 2, 3, 1, 2, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}
Thus we require r + 1 colors when r = 4.

Subcase (ii): When r = 5, consider the coloring:
– c(v1, v2, . . . , vn) = {2, 3, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {1, 4, 1, 4, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}
Thus we require r + 1 colors when r = 5.

Subcase (iii): When r = 6, consider the coloring:
– c(v1, v2, . . . , vn) = {4, 1, 5, 2, 3, 4, 1, 5, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {2, 3, 4, 1, 5, 2, 3, 4, 1, 5, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}
Thus we require r + 1 colors when r = 6.

Now from the subcases (i), (ii) and (iii) the r-adjacency condition is fulfilled. Therefore,
χr(M(Pn �K1)) ≤ r + 1. Hence χr(M(Pn �K1)) = r + 1.

Lemma 3.5. Let n ≥ 3, T (Pn �K1) be the total graph of comb graph, then

χr(T (Pn �K1)) ≥

{
4, for 1 ≤ r ≤ 3

r + 1, for 4 ≤ r ≤ ∆
.

Proof. Let

V (T (Pn�K1)) = {vi : 1 ≤ i ≤ n}∪{v′

i : 1 ≤ i ≤ n−1}∪{ui : 1 ≤ i ≤ n}∪{u′

i : 1 ≤ i ≤ n},
where v′

i and u′
i are the vertices corresponding to the edge vivi+1 and viui of (Pn�K1), 1 ≤ i ≤ n.

By the definition of total graph the vertices {v′
i, v

′
i+1, u

′
i+1, vi+1} induce a clique of order 4,

hence χr(T (Pn �K1)) ≥ 4. For 4 ≤ r ≤ ∆ by Lemma 3.1 χr(G) ≥ min{r,∆(G)} + 1. This
concludes the proof.
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Theorem 3.6. Let n ≥ 3, T (Pn � K1) the r-dynamic chromatic number of the total graph of
comb graph is

χr(T (Pn �K1)) =

{
4, for 1 ≤ r ≤ 3

r + 1, for 4 ≤ r ≤ ∆

Proof. The maximum and minimum degrees of T (Pn � K1) are ∆(T (Pn � K1)) = 6 and
δ(T (Pn �K1)) = 2. We divide the proof into two cases. Define the mapping c : V → Z+.

Case 1: When 1 ≤ r ≤ 3, by Lemma 3.5 the lower bound is χr(T (Pn�K1)) ≥ 4. To show the
upper bound, we use the following colorings:

• c(v1, v2, . . . , vn) = {2, 3, 2, 3, . . .}

• c(u′
1, u

′
2, . . . , u

′
n) = {3, 2, 3, . . .}

• c(u1, u2, . . . , un) = {1, 4, 1, 4, . . .}

• c(v′
1, v

′
2, . . . , v

′
n) = {4, 1, 4, 1, . . .}

Thus we require 4 colors that is χr(T (Pn �K1))≤ 4. Hence χr(T (Pn �K1)) = 4.

Case 2: When 4 ≤ r ≤ ∆, by Lemma 3.5 the lower bound is χr(T (Pn�K1)) ≥ 4. To show the
upper bound, we use the following colorings:

Subcase (i): When r = 4, consider the coloring:

– c(v1, v2, . . . , vn) = {1, 2, 3, 1, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {3, 1, 2, 3, 1, 2, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}

Thus we require r + 1 colors when r = 4.

Subcase (ii): When r = 5, consider the coloring:
– c(v1, v2, . . . , vn) = {2, 3, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {1, 4, 1, 4, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}
Thus we require r + 1 colors when r = 5.

Subcase (iii): When r = 6, consider the coloring:

– c(v1, v2, . . . , vn) = {4, 1, 5, 2, 3, 4, 1, 5, 2, 3, . . .}
– c(v

′
1, v

′
2, . . . , v

′
n) = {2, 3, 4, 1, 5, 2, 3, 4, 1, 5, . . .}

– c(u
′
1, u

′
2, . . . , u

′
n) = {r, r + 1, r, r + 1, . . .}

– c(u1, u2, . . . , un) = {r + 1, r, r + 1, r, . . .}

Thus we require r + 1 colors when r = 6.

Now from the subcases (i), (ii) and (iii) the r-adjacency condition fulfilled. Therefore,
χr(T (Pn �K1)) ≤ r + 1. Hence χr(T (Pn �K1)) = r + 1.
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Lemma 3.7. Let n ≥ 4, L(Pn �K1) be the line graph of comb graph, then

χr(L(Pn �K1)) ≥


3, for 1 ≤ r ≤ 2

4, for r = 3

5, for r = 4

.

Proof. Let V (L(Pn�K1)) = e1, e2, e3, . . . , en, e
′
1, e

′
2, e

′
3, . . . , e

′
n−1. The maximum and minimum

degrees of L(Pn � K1) are ∆(L(Pn � K1)) = 4 and δ(L(Pn � K1)) = 1. For 1 ≤ r ≤ 2

by the definition of line graph the vertices ei, e
′
i, e

′
i+1 induces a clique of order 3. Hence

χr(L(Pn �K1)) ≥ 3.
For r = 3 by Lemma 3.1

χr(L(Pn �K1)) ≥ min{r,∆(L(Pn �K1)} ≥ min{3,∆(L(Pn �K1))}+ 1 = 3 + 1 = 4.

For r = 4 by Lemma 3.1

χr(L(Pn �K1)) ≥ min{r,∆(L(Pn �K1))} ≥ min{4,∆(L(Pn �K1))}+ 1 = 4 + 1 = 5.

This concludes the proof.

Theorem 3.8. Let n ≥ 4, L(Pn �K1) the r-dynamic chromatic number of a line graph of comb
graph is

χr(L(Pn �K1)) =


3, for 1 ≤ r ≤ 2

4, for r = 3

5, for r = 4

.

Proof. Define the mapping c : V → Z+. We divide the proof into three cases.
Case 1: For 1 ≤ r ≤ 2. By the Lemma 3.7 the lower bound is χr(L(Pn �K1)) ≥ 3. To show

the upper bound, we use the following colorings:
• c(e1, e2, . . . , en) = 1

• c(e′1, e
′
2, . . . , e

′
n) = {2, 3, 2, 3, . . .}

Thus we require 3 colors, that is χr(L(Pn �K1)) ≤ 3. Hence χr(L(Pn �K1)) = 3 when
1 ≤ r ≤ 2.

Case 2: For r = 3. By the Lemma 3.7 the lower bound is χr(L(Pn�K1)) ≥ 4. The r-dynamic
coloring are as follows:
• c(e1, e2, . . . , en) = {1, 3, 1, 3, . . .}

• c(e′1, e
′
2, . . . , e

′
n) = {2, 4, 2, 4, . . .}

Thus we require 4 colors, that is χr(L(Pn �K1)) ≤ 4. Hence χr(L(Pn �K1)) = 4 when
r = 3.

Case 3: For r = 4. By the Lemma 3.7 the lower bound is χr(L(Pn�K1)) ≥ 5. The r-dynamic
coloring are as follows:

• c(e1, e2, . . . , en) = {1, 3, 1, 3, . . .}

• c(e′1, e
′
2, . . . , e

′
n) = {2, 4, 5, 2, 4, 5, . . .}

Thus we require 5 colors, that is χr(L(Pn �K1)) ≤ 5. Hence χr(L(Pn �K1)) = 5 when
r = 4.
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Lemma 3.9. Let n ≥ 3, P (Pn �K1) be the para-line graph of comb graph then

χr(P (Pn �K1)) ≥

{
3, for 1 ≤ r ≤ 2

4, for r = ∆
.

Proof. Let V (P (Pn � K1)) = {ei; 1 ≤ i ≤ 2n} ∪
{
e
′
i; 1 ≤ i ≤ 2n− 2

}
, where ei is the vertex

corresponding to the edge vivi+1 and e′i is the vertex corresponding to the edge viui of (Pn� k1),
1 ≤ i ≤ n. For 1 ≤ r ≤ 2, by the definition of para-line graph the vertices e2i+2, e

′
i+1, e

′
i+2

induces a clique of order 3. Hence χr(P (Pn �K1)) ≥ 3.
For r = ∆ by Lemma 3.1 χr(L(Pn �K1)) ≥ min{r,∆(P (Pn �K1))} + 1 = 3 + 1 = 4.

Therefore χr(L(Pn �K1)) ≥ 4. This concludes the proof.

Theorem 3.10. Let n ≥ 3, P (Pn�K1) the r-dynamic chromatic number of para-line graph of a
comb graph is

χr(P (Pn �K1)) =

{
3, for 1 ≤ r ≤ 2

4, for r = ∆
.

Proof. The maximum and minimum degrees of L(Pn � K1) are ∆(L(Pn � K1)) = 3 and
δ(L(Pn �K1)) = 1. Define the mapping c : V → Z+.

Case 1: For 1 ≤ r ≤ 2. By the Lemma 3.9 the lower bound is χr(L(Pn �K1)) ≥ 3. To show
the upper bound, we assign colors as follows:

• c(e1, e2, . . . , en) = {1, 2, 1, 2, . . .}

• c(e′1, e
′
2, . . . , e

′
n) = {1, 3, 1, 3, . . .}

Thus we require 3 colors, that is χr(P (Pn �K1)) ≤ 3. Hence χr(P (Pn �K1)) = 3 when
1 ≤ r ≤ 2.

Case 2: For r = 3. By the Lemma 3.9 the lower bound is χr(P (Pn �K1)) ≥ 4. To show the
upper bound, we assign colors as follows:

• c(e1, e2, . . . , e2n−1) = {3, 1, 3, 1, . . .} and c(e2n) = 4

• c(e′1, e
′
2, . . . , e

′
n) = {1, 2, 1, 2, . . .}

Thus we require 4 colors, that is χr(P (Pn �K1)) ≤ 4. Hence χr(P (Pn �K1)) = 4 when
r = 3.

Theorem 3.11. Let n ≥ 3, and S(Pn �K1) be the sub-division graph of (Pn �K1), then

χr(S(Pn �K1)) = r + 1, 1 ≤ r ≤ 3

Proof. Let V (S(Pn � K1)) = {vi : 1 ≤ i ≤ n} ∪
{
v

′
i : 1 ≤ i ≤ n− 1

}
∪ {ui : 1 ≤ i ≤ n} ∪{

u
′
i : 1 ≤ i ≤ n

}
where v′

i and u′
i are the vertex corresponding to the edge vivi+1 and viui of

(Pn�K1), 1 ≤ i ≤ n. The maximum and minimum degrees of S(Pn�K1) are ∆(S(Pn�K1)) =

3 and δ(S(Pn�K1)) = 1. By Lemma 3.1 χr(S(Pn�K1)) ≥ min{r,∆(S(Pn�K1))}+1 = r+1,
for 1 ≤ r ≤ 3. To show the upper bound, we assign colors as follows:
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Case 1: When r = 1,

• c(v1, v2, . . . , vn) = 1

• c(v′
1, v

′
2, . . . , v

′
n) = 2

• c(u′
1, u

′
2, . . . , u

′
n) = 2

• c(u1, u2, . . . , un) = 1

Thus we require 2 colors, that is χr(S(Pn �K1)) ≤ 2. Hence χr(S(Pn �K1)) = 2 when
r = 1.

Case 2: When r = 2,

• c(v1, v2, . . . , vn) = {1, 2, 1, 2, . . .}
• c(v′

1, v
′
2, . . . , v

′
n) = 3

• c(u′
1, u

′
2, . . . , u

′
n) = {2, 1, 2, 1, . . .}

• c(u1, u2, . . . , un) = 3

Thus we require 3 colors, that is χr(S(Pn �K1)) ≤ 3. Hence χr(S(Pn �K1)) = 3 when
r = 2.

Case 3: When r = 3,

• c(v1, v2, . . . , vn) = {1, 2, 1, 2, . . .}
• c(v′

1, v
′
2, . . . , v

′
n) = {3, 4, 3, 4, . . .}

• c(u′
1, u

′
2, . . . , u

′
n) = {2, 1, 2, 1, . . .}

• c(u1, u2, . . . , un) = 4

Thus we require 4 colors, that is χr(S(Pn �K1)) ≤ 4. Hence χr(S(Pn �K1)) = 4 when
r = 3. Therefore χr(S(Pn �K1)) ≤ r + 1, 1 ≤ r ≤ 3. Hence χr(S(Pn �K1)) = r + 1,

1 ≤ r ≤ 3.

4 Conclusion

In this paper we have investigated the r-dynamic chromatic number of some operations such as
central graph, middle graph, total graph, line graph, para-line graph, and subdivision graph of
the comb graph Pn �K1. We have used the upper bound and lower bound method to obtain the
r-dynamic chromatic number. Let G be any connected graph, till now there is no sharp lower
bound for the r-dynamic chromatic number, so it is left as an open problem.
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