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1 Introduction

The n-th hyperharmonic number of order r,H(r)
n , is defined recursively as

H(r)
n =

n∑
k=1

H
(r−1)
k and H(1)

n = Hn,

where Hn is the ordinary harmonic number 1+
1

2
+ · · ·+ 1

n
. Here it is understood that H(0)

n =
1

n

for n ≥ 1, and H
(r)
0 = 0 for r ≥ 0. In 1996, Conway and Guy [6, p. 258] provided the following

identity

H(r)
n =

(
n + r − 1

r − 1

)(
Hn+r−1 −Hr−1

)
, (1)

connecting the hyperharmonic numbers with the harmonic numbers. There exist various proofs
of formula (1) in the literature; see, e.g., [2, 4] and [16, pp. 227–229].
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In this paper, we obtain a new formula for the sums of powers of the first n positive integers,
Sk(n) = 1k + 2k + · · · + nk, in terms of hyperharmonic numbers and Stirling numbers of the
second kind

{
k
j

}
. Specifically, in Section 2, we establish the following theorem.

Theorem 1.1. For any integers k ≥ 0 and n ≥ 1, we have

Sk(n) =
(−1)k+1

k + 1

k+1∑
j=1

(−1)jj!

{
k + 1

j

}(
H

(n)
j+1 −

1

j + 1

)
. (2)

As will become clear below, H(n)
j+1 is a polynomial in n of degree j. Then, in Section 3, using

the explicit representation for the hyperharmonic numbers given in (11), we generalize formula
(2) to the sums of powers of the terms of an arithmetic progression with first term r and common
difference m

Sr,m
k (n) =

n∑
j=1

(r + (j − 1)m)k, (3)

where m and r are assumed to be integer variables with m ≥ 1 and r ≥ 0. Furthermore, in Section
4, we express the Bernoulli polynomials Bk(x) in terms of the hyperharmonic polynomials
Hj(x) := H

(x−1)
j+1 , j = 0, 1, . . . , k, and the Stirling numbers of the second kind (see equation

(19)). Finally, in Section 5, we extend the above formula in equation (2) to negative values of n
by making use of the definition of hyperharmonic numbers of negative order set forth by Dil and
Muniroğlu in [9].

2 Proof of Theorem 1.1

Next, we detail the proof of Theorem 1.1.

Proof. We start with the following polynomial formula for Sk(n); see, e.g., [11, Equation (7.5)]:

Sk(n) =
k∑

j=1

ak,j

(
n + j

j + 1

)
, k ≥ 1, (4)

where the coefficients ak,j are given by

ak,j = (−1)k−jj!

{
k

j

}
. (5)

For convenience, we can think of n as being a continuous variable. This is justified by the
fact that, as is well-known, for fixed k there is exactly one polynomial Sk(x) in x such that
Sk(x) = 1k + 2k + · · ·+xk whenever x is a positive integer (see, e.g., [14, Theorem 1] and [18]).
Keeping this in mind, we invoke the following elementary result according to which (see, e.g.,
[18, 21, 23]):

S ′k(n) =
dSk(n)

dn
= kSk−1(n) + (−1)kBk, k ≥ 1, (6)

where the Bk’s are the Bernoulli numbers [1]. Thus, recalling the rule for the derivative of a
product of functions h1(x), h2(x), . . . , hj(x),
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d
dx

(
j∏

i=1

hi(x)

)
=

(
j∏

i=1

hi(x)

)(
j∑

i=1

h′i(x)

hi(x)

)
,

and differentiating each side of equation (4) with respect to n, we obtain

S ′k(n) =
d

dn

(
k∑

j=1

ak,j

(
n + j

j + 1

))

=
k∑

j=1

ak,j
(j + 1)!

d
dn

(
j∏

i=0

(n + i)

)

=
k∑

j=1

ak,j
(j + 1)!

(
j∏

i=0

(n + i)

)
j∑

i=0

1

n + i

=
k∑

j=1

ak,j

(
n + j

j + 1

)(
Hn+j −Hn−1

)
.

By virtue of identity (1), the last equation reduces to

S ′k(n) =
k∑

j=1

ak,jH
(n)
j+1, k ≥ 1. (7)

Now, combining equations (7), (6), and (5), and renaming the index k as k + 1, yields

Sk(n) =
(−1)k+1

k + 1

(
k+1∑
j=1

(−1)jj!

{
k + 1

j

}
H

(n)
j+1 −Bk+1

)
, k ≥ 0. (8)

On the other hand, since Sk(0) = 0, and noting that H(0)
j+1 =

1

j + 1
, from (8) we deduce that

Bk+1 =
k+1∑
j=1

(−1)j
j!

j + 1

{
k + 1

j

}
. (9)

Therefore, from (9) and (8), we finally get (2).

Remark 2.1. Let Dx be the derivative operator with respect to x, i.e., Dxf(x) =
d

dx
f(x).

The above proof of Theorem 1.1 involves essentially an application of the formula giving the
hyperharmonic number H(r)

n as the derivative of a binomial coefficient, namely (see [4, Section
3] and [9, Proposition 11])

Dx

(
x + n + r − 1

n

)∣∣∣∣
x=0

= H(r)
n ,

which is in turn a generalization of the equation [19, Equation (8)] (see also [10, Equation
(Z.60)])

Dx

(
x + n

n

)∣∣∣∣
x=0

= Hn.
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Remark 2.2. Equation (9) is a well-known property of the Bernoulli numbers (see, e.g., [20]).

Remark 2.3. Letting n = 1 in equation (8) yields the identity

Bk = (−1)k+1k +
k∑

j=0

(−1)jj!

{
k

j

}
Hj+1, k ≥ 0.

As a simple example illustrating Theorem 1.1, we may use equation (2) to calculate S3(n).

Example 2.4. For k = 3, equation (2) reads as

S3(n) =
1

4

4∑
j=1

(−1)jj!

{
4

j

}(
H

(n)
j+1 −

1

j + 1

)
= 6H

(n)
5 − 9H

(n)
4 +

7

2
H

(n)
3 −

1

4
H

(n)
2 +

1

120
. (10)

In order to evaluate the involved hyperharmonic numbers H(n)
j , it is useful to employ the following

explicit formula derived in [2, Theorem 1] and, additionally, in [7, Theorem 5]

H
(n)
j =

j∑
t=1

(
n + j − t− 1

j − t

)
1

t
, n, j ≥ 1, (11)

which gives H(n)
j as a weighted sum of the fractions 1

1
,
1

2
, . . . ,

1

j
. From (11), it is easily seen that

H
(n)
j is a polynomial in n of degree j − 1 with leading coefficient 1

(j − 1)!
and constant term 1

j
.

Applying (11), we obtain

H
(n)
2 = n + 1

2
,

H
(n)
3 = 1

2
n2 + n + 1

3
,

H
(n)
4 = 1

6
n3 + 3

4
n2 + 11

12
n + 1

4
,

H
(n)
5 = 1

24
n4 + 1

3
n3 + 7

8
n2 + 5

6
n + 1

5
.

Substituting these expressions into (10) and simplifying, we find that, as expected,
S3(n) =

1

4
n2(n + 1)2.

Remark 2.5. By using equation (11) into (2), we can equivalently express Sk(n) as a weighted
sum of 1

1
,
1

2
, . . . ,

1

k + 1
as follows

Sk(n) =
(−1)k+1

k + 1

k+1∑
t=1

Vk,t(n)
1

t
, k ≥ 0, (12)

where

Vk,t(n) =
k+1∑
i=t

(−1)ii!

{
k + 1

i

}(
n + i− t

i + 1− t

)
. (13)
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Remark 2.6. As shown in [2, Theorem 2], the hyperharmonic numbers, H(r)
n , and the r-Stirling

numbers of the first kind,
[
n
k

]
r
, are related by

H(r)
n =

1

n!

[
n + r

r + 1

]
r

.

Therefore, from Theorem 1.1, we can alternatively write Sk(n) in the form

Sk(n) =
(−1)k+1

k + 1

k+1∑
j=1

(−1)j

j + 1

{
k + 1

j

}([
n + j + 1

n + 1

]
n

− j!

)
. (14)

This formula is to be complemented by the following one[
n + j + 1

n + 1

]
n

=

j+1∑
i=1

(i− 1)!

(
j + 1

i

)
nj+1−i, (15)

expressing
[
n+j+1
n+1

]
n

in terms of the rising factorials nj+1−i, i = 1, 2, . . . , j+1. Hence, substituting
(15) into (14), we get

Sk(n) =
(−1)k+1

k + 1

k+1∑
j=1

(−1)j

j + 1

{
k + 1

j

} j∑
i=1

(i− 1)!

(
j + 1

i

)
nj+1−i.

3 Generalization of Theorem 1.1

Next, using the representation for the hyperharmonic numbers given in (11), we generalize
Theorem 1.1 to the arithmetic progression defined in (3).

Theorem 3.1. For any integers k ≥ 0 and n ≥ 1, we have

Sr,m
k (n) = (−1)k+1 mk

k + 1

k+1∑
t=1

(
Vk,t

(
n− 1 +

r

m

)
− Vk,t

( r

m
− 1
)) 1

t
, (16)

where Vk,t(n) is the polynomial given in (13).

Proof. This follows in a rather straightforward way from the following simple but powerful result
derived in [12]. Let Sk(x) denote the unique polynomial in x such that, for all n ≥ 1, Sk(n) gives
us the sum of powers of the first n positive integers (with Sk(0) = 0). Then, for any real number
x, it turns out that [12]

n∑
j=1

(j + x)k = Sk(n + x)− Sk(x). (17)

Taking x =
r

m
−1 in (17) yields

Sr,m
k (n) = mk

(
Sk

(
n− 1 +

r

m

)
− Sk

( r

m
− 1
))

.

Hence, using the polynomial formula for Sk(n) given in (12), we get (16).

Remark 3.2. Equation (16) reduces to (12) when r = m = 1.
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4 Bernoulli polynomials

In this section we derive an expression for the Bernoulli polynomials Bk(x) involving the
hyperharmonic polynomials Hj(x) := H

(x−1)
j+1 , j = 0, 1, . . . , k, and the Stirling numbers of the

second kind. Starting from the well-known relationship between Sk(n) and Bk(n), namely

Sk(n) =
1

k + 1

(
Bk+1(n + 1)−Bk+1

)
, k ≥ 1,

it follows that B′k+1(n + 1) = (k + 1)S ′k(n).
On the other hand, we have that [1] B′k+1(n + 1) = (k + 1)Bk(n + 1). Therefore, from (7),

we obtain that

Bk(n + 1) =
k∑

j=0

ak,jH
(n)
j+1, k ≥ 0. (18)

Clearly, the right-hand side of (18) is a polynomial in n of degree k. Hence, using equations (5),
(11), and (18), one can naturally extend Bk(n + 1) to a polynomial Bk(x) in which x takes any
real value as follows

Bk(x) =
k∑

j=0

(−1)k−jj!

{
k

j

}
Hj(x), k ≥ 0, (19)

where

Hj(x) := H
(x−1)
j+1 =

1

j

(
x− 1

j + 1

)
+

j−1∑
t=1

(
x + j − t− 1

j + 1− t

)
1

t
, j ≥ 2,

withH0(x) = 1 andH1(x) := H
(x−1)
2 = x − 1

2
.

Note that, sinceHj(0) = − 1

j(j + 1)
for all j ≥ 1, it follows from (19) that

Bk = (−1)k+1

k∑
j=1

(−1)j
(j − 1)!

j + 1

{
k

j

}
, k ≥ 1,

which is a variant of the identity in (9). This formula for the Bernoulli numbers has recently
been derived in [13, Equation (3)]. On the other hand, using (18) and the difference equation [1],
Bk(x + 1)−Bk(x) = kxk−1, we obtain the following alternative formula for Bk(x):

Bk(x) =
k∑

j=0

(−1)k−jj!

{
k

j

}
H

(x)
j+1 − kxk−1, k ≥ 0,

where

H
(x)
j+1 =

1

j + 1
+

j∑
t=1

(
x + j − t

j + 1− t

)
1

t
, j ≥ 1,

and H
(x)
1 = 1.

Let us further note that we can reverse (19) to obtain

Hk(x) =
1

k!

k∑
j=0

[
k

j

]
Bj(x), k ≥ 0, (20)
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where
[
k
j

]
are the (unsigned) Stirling numbers of the first kind. Incidentally, setting x = 0 in (20)

allows us to deduce the following recursive formula for the Bernoulli numbers:
k∑

j=1

[
k

j

]
Bj = −(k − 1)!

k + 1
, k ≥ 1.

A proof of this last identity using the Riordan array method can be found in [22, p. 288].
We end this section with the following important observation.

Remark 4.1. The j-th degree polynomials Hj(x) := H
(x−1)
j+1 introduced in this paper are closely

related to the so-called harmonic polynomials Hj(x) of degree j in x defined in [5, Equation
(28)] by the ordinary generating function

− ln(1− t)

t(1− t)1−x
=
∞∑
j=0

Hj(x)tj,

where Hj(0) = Hj+1. Indeed, it turns out that

Hj(x) = H
(1−x)
j+1 and Hj(x) = Hj(2− x),

or, conversely,

H
(x)
j+1 = Hj(1− x) and Hj(x) = Hj(2− x).

The harmonic polynomials Hj(x), j ≥ 0, have, in particular, the explicit representation (see
[5, Theorem 5.4])

Hj(x) =

j+1∑
t=1

(
j + 1− t− x

j + 1− t

)
1

t
,

which can be recovered by letting j → j + 1 and n→ 1− x in (11).

5 Extension of formula (2) to negative values of n

In [15], Mező defined the hyperharmonic function H
(w)
z involving the Pochhammer symbol (z)w,

gamma Γ(w) and digamma Ψ(w) functions, as

H(w)
z =

(z)w
zΓ(w)

(
Ψ(z + w)−Ψ(w)

)
,

where w, z + w ∈ C \ Z−, and Z− = {0,−1,−2, . . . }. Based on the hyperharmonic function,
Dil [8] presented formulas to calculate special values of H(w)

z subjected to the above restriction of
w, z+w ∈ C\Z−. Subsequently, Dil and Muniroğlu [9] showed a way to define “negative-ordered
hyperharmonic numbers”. According to [9, Definition 25], for positive integers n and r, the
hyperharmonic number of negative order H(−r)

n can be defined by

H(−r)
n =



(−1)rr!

nr+1
, n > r ≥ 1;

n−1∑
i=0

(−1)i
(
r

i

)
1

n− i
, r ≥ n > 1;

1, n = 1.

(21)
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Furthermore, as noted in [9], the identity (see [11, Equation (1.43)])

r∑
i=0

(−1)i
(
r

i

)
1

n− i
=

(−1)r

(n− r)
(
n
r

) ,
ensures the consistency of the definition in (21).

Therefore, for n ≥ 1, we can use (21) to define H
(−n)
j+1 as follows

H
(−n)
j+1 =


j∑

i=0

(−1)i

j + 1− i

(
n

i

)
, j ≥ 1;

1, j = 0,

(22)

so that the extension of formula (2) to negative values of n can effectively be stated as

Sk(−n) =
(−1)k+1

k + 1

k+1∑
j=1

(−1)jj!

{
k + 1

j

} j∑
i=1

(−1)i

j + 1− i

(
n

i

)
, (23)

for k ≥ 0 and n ≥ 1.

Remark 5.1. It is a well-known fact that S1(n) is a factor of Sk(n) for all k ≥ 1, which means
that Sk(−1) = 0 for all k ≥ 1. We can check from (23) that the latter holds true. Indeed, setting
n = 1 in (23) gives

Sk(−1) =
(−1)k

k + 1

k+1∑
j=1

(−1)j(j − 1)!

{
k + 1

j

}
,

which is identically equal to zero for k ≥ 1, according to the identity (A.17) in [3].

Remark 5.2. As we saw in the preceding section, the harmonic and hyperharmonic polynomials
are related by Hj(x) = H

(1−x)
j+1 or, Hj(x) = H

(−(x−1))
j+1 . Since the definition given in (22) is valid

for any n ≥ 1, we can licitly use (22) to obtain the following representation of the harmonic
polynomials introduced in [5, Section 5]

Hj(x) =

j∑
i=0

(−1)i

j + 1− i

(
x− 1

i

)
, j ≥ 1,

and H0(x) = 1. In particular, since
(−1

i

)
= (−1)i, the last formula yields, as it should be,

Hj(0) = Hj+1.

To close this paper, it is worth noting the symmetry property of the power sum polynomials
Sk(n), namely [17]

Sk(−(n + 1)) = (−1)k+1Sk(n), k ≥ 1. (24)

Thus, using (2), (23), and (24), we can express Sk(n) in the alternative form

Sk(n) =
1

k + 1

k+1∑
j=1

(−1)jj!

{
k + 1

j

} j∑
i=1

(−1)i

j + 1− i

(
n + 1

i

)
,

for k ≥ 1 and n ≥ 0.
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