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1 Introduction

Let f(x) ∈ Q(x) be a polynomial without multiple roots and with deg f(x) ≥ 2. Many authors
studied the non-trivial integer or rational (parametric) solutions of the Diophantine equations

z2 = f(x)2 + f(y)2 (1)

and
z2 = f(x)2 − f(y)2. (2)

The positive integer or rational solutions of Eqs. (1) and (2) mean to form right triangles with
two legs given by the values of polynomials f(x) and f(y), or one leg given by f(y) and the
hypotenuse given by f(x). Let us recall that the solution (x, y, z) is a non-trivial solution of
Eq. (1) [respectively, Eq. (2)] if f(x)f(y) 6= 0 [respectively, f(x) 6= |f(y)| and f(y) 6= 0].
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In 1962, W. Sierpiński [8] obtained infinitely many non-trivial positive integer solutions of
Eq. (1) for f(x) = x(x+ 1)

2
. In 2010, M. Ulas and A. Togbé [10] studied the non-trivial rational

(parametric) solutions of Eqs. (1) and (2) for some quadratic and cubic polynomials. In the same
year, B. He, A. Togbé and M. Ulas [4] investigated the non-trivial positive integer solutions of
Eq. (1) for f(x) = x(x+ 1)

2
,
x(x+ 1)(x+ 2)

6
and the non-trivial positive integer solutions of Eq. (2)

for f(x) = x2 + a. In 2018, Y. Zhang and A. S. Zargar [14] proved that Eq. (1) has infinitely

many non-trivial rational solutions for f(x) = x(x − 1)(x + 1)(x+
1− k2

2k
), k ∈ Z\{0,±1},

and similar result was obtained for Eq. (2) when f(x) = x(x − 1)(x + 1)(x− 2k

k2 + 1
),

k ∈ Z\{0,±1}, which gives a positive answer to Question 4.3 of [10] for quartic polynomials.
In 2019, A. E. A. Youmbai and D. Behloul [11] extended the results of [14] to the polynomials
f(x) = x

∏n
t=0(x − kt)(x + kt) of degree 2n + 3 and gave a positive answer to Question 4.3

of [10] for the polynomials f(x) = x
∏n

t=0(x + kt) of degree n + 2. In 2021, Y. Zhang and
Q. Z. Tang [12] showed that Eqs. (1) and (2) have infinitely many non-trivial integer solutions for
polynomials f(x) with integer coefficients and degree n.

In 1783, L. Euler [2] studied the non-trivial rational solutions of Eq.(1) for f(x) = x+
1

x
.

In 2019, Y. Zhang and A. S. Zargar [15] investigated the non-trivial rational (parametric) solutions
of Eqs. (1) and (2) for some simple Laurent polynomials f(x), such as f(x) = x + b+

c

x
,

(x+ 1)(x+ b)(x+ c)

x
with non-zero integers b and c. In the same year, Y. Zhang, Q. Z. Tang and

Y. N. Zhang [13] got the conditions for f(x) = b + c
x

with non-zero integers b and c such that
Eqs. (1) and (2) have infinitely many non-trivial solutions x, y ∈ Z and z ∈ Q, which gave a
positive answer to Question 3.2 of [15]. Meanwhile, they [13] studied the non-trivial rational
solutions of Eqs. (1) and (2) for Laurent polynomials

f(x) =

∏n
t=0(x+ kt)

x
,

∏n
t=0(x− kt)(x+ kt)

x
,

n ≥ 1, k ∈ Z\{0,±1}, and gave a positive answer to Question 3.1 of [15].

2 Main results

In this paper, we consider the non-trivial positive integer solutions of the Diophantine equations

z2 = f(x)2 + f(x)f(y) + f(y)2 (3)

and
z2 = f(x)2 − f(x)f(y) + f(y)2. (4)

The positive integer solutions of Eqs. (3) and (4) mean to construct integral triangles with two
sides given by the values of polynomials f(x) and f(y) with the intersection angle 120◦ or 60◦

(see Figure 1), which are not Heron triangles. Let us recall that an integral triangle is a triangle
with integral sides, and a Heron triangle is a triangle with integral sides and integral area.
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Figure 1

Several authors [1,3,6,7] studied the integral triangles with an intersection angle 120◦ or 60◦.
When f(x) = x2, Eqs. (3) and (4) are

z2 = x4 + x2y2 + y4

and
z2 = x4 − x2y2 + y4,

which have no non-trivial positive integer solutions, we can refer to [2, p. 636–637] and [5].
The non-trivial solution (x, y, z) of Eq. (3) [respectively, Eq. (4)] means that f(x)f(y) 6= 0

[respectively f(x)f(y) 6= 0 and f(x) 6= f(y)].
Using the theory of Pell equation, we prove:

Theorem 2.1. When f(x) = x(Bx+ C)

2
with positive integer B and non-zero integer C, Eqs. (3)

and (4) have infinitely many non-trivial positive integer solutions.

Theorem 2.2. When

f(x) =
m−1∏
i=0

(x− i) (m ≥ 2),

Eq. (3) has infinitely many non-trivial positive integer solutions.

Theorem 2.3. When

f(x) = x
m−2∏
i=0

(x− ki) (m ≥ 3, k ≥ 2),

Eqs. (3) and (4) have infinitely many non-trivial positive integer solutions.

Theorem 2.4. When

f(x) = x
m−2∏
i=0

(x−
i∑

j=0

ki) (m ≥ 3, k ≥ 2),

Eqs. (3) and (4) have infinitely many non-trivial positive integer solutions.

In Theorems 2.2, 2.3 and 2.4, when m = 2, f(x) = x(x− 1), it is the case B = 2, C = −2
in Theorem 2.1.
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3 Proofs of the Theorems

Proof of Theorem 2.1.
Case 1) The case for Eq. (3).

For f(x) = x(Bx+ C)

2
, put y = 2t(Bx+ C), then Eq. (3) reduces to

z2 =
(Bx+ C)2

4

(
(16B4t4 + 4B2t2 + 1)x2 + 2Ct(2Bt+ 1)(8B2t2 + 1)x+ 4C2t2(2Bt+ 1)2

)
.

To get integral values of x and z, it needs to study the integer solutions x and s of the quadratic
equation

4s2 = (16B4t4 + 4B2t2 + 1)x2 + 2Ct(2Bt+ 1)(8B2t2 + 1)x+ 4C2t2(2Bt+ 1)2.

Let
X = D1x+M1, Y = 2s,

where
D1 = (4B2t2)2 + 4B2t2 + 1, M1 = Ct(2Bt+ 1)(8B2t2 + 1),

then we get the Pell equation

X2 −D1Y
2 = −3C2t2(2Bt+ 1)2. (5)

It is easy to show that D1 = (4B2t2)2 + 4B2t2 + 1 is not a perfect square for t > 2, B > 0, then
the Pell equation X2 − D1Y

2 = 1 has infinitely many positive integer solutions. Suppose that
(u, v) is a positive integer solution of X2 −D1Y

2 = 1.

1.1) When B > 0, C < 0, note that

(X0, Y0) =
(
Ct(2Bt+ 1)(8B2t2 + 1),−2Ct(2Bt+ 1)

)
is an integer solution of Eq. (5), then an infinity of integer solutions of Eq. (5) are given by

Xn + Yn
√
D1 =

(
Ct(2Bt+ 1)(8B2t2 + 1)− 2Ct(2Bt+ 1)

√
D1

)
×
(
u+ v

√
D1

)n
, n ≥ 0,

which leads to
Xn = uXn−1 +D1vYn−1, Yn = uYn−1 + vXn−1.

Thus,
Xn = 2uXn−1 −Xn−2, X0 = Ct(2Bt+ 1)(8B2t2 + 1),

X1 = −Ct(2Bt+ 1)(2D1v − (8B2t2 + 1)u);

Yn = 2uYn−1 − Yn−2, Y0 = −2Ct(2Bt+ 1),

Y1 = Ct(2Bt+ 1)(8B2t2v − 2u+ v).

Using the recurrence relations of Xn and Yn twice, we get

Xn+2 = (4u2 − 2)Xn −Xn−2, Yn+2 = (4u2 − 2)Yn − Yn−2.

Replacing n by 2n, we have

X2n+2 = (4u2 − 2)X2n −X2n−2, Y2n+2 = (4u2 − 2)Y2n − Y2n−2, n ≥ 1.

91



From
x =

X −M1

D1

, s =
Y

2
,

we obtain

x2n+2 = (4u2 − 2)x2n − x2n−2 + 4M1v
2, x0 = 0,

x2 = 2Ct(2Bt+ 1)v((8B2t2 + 1)v − 2u);

s2n+2 = (4u2 − 2)s2n − s2n−2, s0 = −Ct(2Bt+ 1),

s2 = −Ct(2Bt+ 1)(u2 − (8B2t2 + 1)vu+ v2D1).

From
u2 = 1 + (16B4t4 + 4B2t2 + 1)v2,

we have (
(8B2t2 + 1)v

)2 − (2u)2 = −3v2 − 4 < 0,

so
(8B2k2 + 1)v − 2u < 0.

In view of
C < 0, v > 0,

we have
x2 ∈ Z+,

and
x2 > −2C > −2C

B
.

From the recurrence relation of x2n, it is easy to check that

x2n > −2C > −2C

B

and
2k(Bx2n + C) > x2n

hold for n ≥ 1, which means that y2n = 2k(Bx2n + C) > x2n. For x in [−2C
B
,+∞), the

polynomial f(x) = x(Bx+ C)

2
is strictly monotonically increasing and f(−2C

B
) > 0, so

f(y2n) > f(x2n) > 0, n ≥ 1.

Thus, when f(x) = x(Bx+ C)

2
with positive integer B and negative integer C, Eq. (3) has

infinitely many non-trivial positive integer solutions

(x, y, z) = (x2n, 2t(Bx2n + C), s2n(Bx2n + C)) ,

where n ≥ 1.

1.2) When B > 0, C > 0, note that

(X0, Y0) =
(
Ct(2Bt+ 1)(8B2t2 + 1), 2Ct(2Bt+ 1)

)
is a positive integer solution of Eq. (5).
The remaining process can be given by similar way.
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Case 2) The case for Eq. (4).

For f(x) = x(Bx+ C)

2
, take y = 2t(Bx+ C), then Eq. (4) becomes

z2 =
(Bx+ C)2

4

(
(16B4t4 − 4B2t2 + 1)x2 + 2Ct(2Bt+ 1)(8B2t2 − 1)x+ 4C2t2(2Bt+ 1)2

)
.

We need to study the equation

4s2 =(16B4t4 − 4B2t2 + 1)x2 + 2Ct(2Bt+ 1)(8B2t2 − 1)x+ 4C2t2(2Bt+ 1)2.

Put
X = D2x+M2, Y = 2s,

where
D2 = (4B2t2)2 − 4B2t2 + 1, M2 = Ct(2Bt+ 1)(8B2t2 − 1),

we have
X2 −D2Y

2 = −3C2t2(2Bt+ 1)2. (6)

Obviously, D2 = (4B2t2)2 − 4B2t2 + 1 is not a perfect square for t > 2, B > 0, so the Pell
equationX2−D2Y

2 = 1 has infinitely many positive integer solutions. Assume that (u, v) solves
the Pell equation X2 −D2Y

2 = 1.

2.1) When B > 0, C < 0,

(X0, Y0) =
(
Ct(2Bt+ 1)(8B2t2 − 1),−2Ct(2Bt+ 1)

)
is an integer solution of Eq. (6).
Similarly, we can give the remainder of the proof as above.

2.2) When B > 0, C > 0, Eq. (6) has a positive integer solution

(X0, Y0) =
(
Ck(2Bt+ 1)(8B2t2 − 1), 2Ct(2Bt+ 1)

)
.

The remainder of the proof is similar as 1.1) above.

Example 3.1. When B = k − 2, C = −(k − 4), k > 4, f(x) =
x ((k − 2)x− (k − 4))

2
, which

denotes the polygonal number, then Eq. (3) has infinitely many non-trivial positive integer solutions

(x, y, z) = (x2n, 2t ((k − 2)x2n − (k − 4)) , ((k − 2)x2n − (k − 4)) s2n),

where

x2n+2 = (4u2 − 2)x2n − x2n−2 + 4M1v
2, x0 = 0,

x2 = −2tv(k − 4)(2t(k − 2) + 1)

(8(k − 2)2t2v + v − 2u);

s2n+2 = (4u2 − 2)s2n − s2n−2, s0 = t(k − 4)(2t(k − 2) + 1),

s2 = t(k − 4)(2t(k − 2) + 1)

(u2 − (8(k − 2)2t2 + 1)vu+ v2D1),
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D1 =16(k − 2)4t4 + 4(k − 2)2t2 + 1,

M1 =− t(k − 4)(2t(k − 2) + 1)(8(k − 2)2t2 + 1)

and (u, v) satisfying

u2 − (16(k − 2)4t4 + 4(k − 2)2t2 + 1)v2 = 1.

Remark 3.2. If there exist two similar integral triangles, as constructed in Theorem 2.1, then
there are n1, n2 ∈ Z+ (n1 6= n2) such that

f(x2n1)

f(y2n1)
=
f(x2n2)

f(y2n2)
.

The above equality is satisfied if and only if

x2n1 = x2n2 ,

which is obviously impossible. Therefore, the integral triangles are not similar in Theorem 2.1.

Proof of Theorem 2.2. For f(x) =
∏m−1

i=0 (x− i), let y = x− 1, then Eq. (3) leads to

(
x2 + x(x−m) + (x−m)2

)m−1∏
i=1

(x− i)2 = z2.

This implies that
x2 + x(x−m) + (x−m)2 = s2,

which is equivalent to the Pell equation

X2 − 3Y 2 = −3m2, (7)

where
X = 6x− 3m, Y = 2s.

Let us observe that (X0, Y0) = (3m, 2m) is a positive integer solution of Eq. (7), and
(u, v) = (2, 1) is the least positive integer solution of X2 − 3Y 2 = 1.
The remainder of the proof can be given by similar method.

Example 3.3. When m = 3, f(x) = x(x− 1)(x− 2), Eq. (3) becomes

x2(x− 1)2(x− 2)2 + x(x− 1)(x− 2)y(y − 1)(y − 2) + y2(y − 1)2(y − 2)2 = z2.

It has infinitely many non-trivial positive integer solutions

(x, y, z) = (x2n, x2n − 1, (x2n − 1)(x2n − 2)s2n),

where {
x2n+2 =14x2n − x2n−2 − 18, x0 = 3, x2 = 24;

s2n+2 =14s2n − s2n−2, s0 = 3, s2 = 39,

and n ≥ 1.
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Remark 3.4. For f(x) =
∏m−1

i=0 (x − i), we study the non-trivial positive integer solutions of
Eq. (4) for some m. When m = 3, it has infinity many non-trivial positive solutions

(x, y, z) = (x2n, 2x2n − 2, s2n(x2n − 1)(x2n − 2)),

where {
x2n+2 = 91202x2n − x2n−2 − 144000, x0 = 0, x2 = 480;

s2n+2 = 91202s2n − s2n−2, s0 = 12, s2 = 3612,

and n ≥ 1. When m = 4, in the range 3 < x < y < 10000 , we only find three non-trivial
positive integer solutions

(x, y, z) = (13, 22, 167640), (147, 513, 68227820640),

(222, 289, 6009373656).

And for m = 5, in the range 4 < x < y < 10000, we get three non-trivial positive integer
solutions

(x, y, z) = (7, 8, 5880), (20, 21, 2209320), (25, 27, 8528400).

To Eq. (4), it seems difficult to get the similar result as Eq. (3) for general m.

Proof of Theorem 2.3. For

f(x) = x
m−2∏
i=0

(
x− ki

)
(m ≥ 3, k ≥ 2),

let y = kx, then Eqs. (3) and (4) lead to

z2 =

(
x

m−3∏
i=0

(x− ki)

)2 (
(x− km−2)2 ± km−1(kx− 1)(x− km−2) + k2m−2(kx− 1)2

)
.

Since we are interested in the integer solutions (x, z) of the above equations, we need to investigate

(x− km−2)2 ± km−1(kx− 1)(x− km−2) + k2m−2(kx− 1)2 = s2.

1) First we consider the case of sign +.
Put

X = 2D3x−M3, Y = 2s,

where
D3 = (km)2 + km + 1, M3 = km−2(2km+1 + km + k + 2),

then
X2 −D3Y

2 = −3k2m−2(km−1 − 1)2. (8)

Note that
(X0, Y0) =

(
km−1(2km + 1)(km−1 − 1), 2km−1(km−1 − 1)

)
is a positive integer solution of Eq. (8).
The rest of the procedure are the same as 1.1) in Theorem 2.1.
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2) Then we consider the case of sign −.
Put

X = 2D4x−M4, Y = 2s,

where
D4 = (km)2 − km + 1, M4 = km−2(2km+1 − km − k + 2),

then we obtain
X2 −D4Y

2 = −3k2m−2(km−1 − 1)2. (9)

It is easy to see that

(X0, Y0) =
(
km−1(2km − 1)(km−1 − 1), 2km−1(km−1 − 1)

)
is a positive integer solution of Eq. (9).
Apparently, we can receive the result which identifies with the Theorem 2.3.

Example 3.5. When m = 3, f(x) = x(x− 1)(x− k), put y = kx, Eq. (3) equals

(x(x− 1))2
(
(k6 + k3 + 1)x2 − k(2k4 + k3 + k + 2)x+ k2(k2 + k + 1)

)
= z2.

It has infinitely many non-trivial positive integer solutions

(x, y, z) = (x2n, kx2n, x2n(x2n − 1)s2n),

where

x2n+2 = (4u2 − 2)x2n − x2n−2

− 2v2k(2k4 + k3 + k + 2), x0 = k,

x2 = k(k(k − 1)(k + 1)(2k3 + 1)v2

+ 2ku(k − 1)(k + 1)v + 1);

s2n+2 = (4u2 − 2)s2n − s2n−2, s0 = k2(k2 − 1),

s2 = k2(k2 − 1)(2u2 + (2k3 + 1)vu− 1),

and (u, v) is a positive integer solution of

X2 − (k6 + k3 + 1)Y 2 = 1.

Proof of Theorem 2.4. For

f(x) = x
m−2∏
i=0

(
x−

m−2∑
j=0

kj
)
(m ≥ 3, k ≥ 2),

let y = kx+ 1, A =
∑m−2

j=0 k
j , then Eqs. (3) and (4) reduce to

z2 =

(
x

m−3∏
i=0

(x−
i∑

j=0

kj)

)2 (
(x− A)2 ± km−1(kx+ 1)(x− A) + k2m−2(kx+ 1)2

)
.

Let us study the equations

(x− A)2 ± km−1(kx+ 1)(x− A) + k2m−2(kx+ 1)2 = s2.

96



1) Look the sign +.
Take

X = 2D5x−M5, Y = 2s,

where
D5 = (km)2 + km + 1, M5 = −2k2m−1 + Akm − km−1 + 2A,

then we get the Pell equation

X2 −D5Y
2 = −3k2m−2(Ak + 1)2. (10)

We find that the pair

(X0, Y0) =
(
km−1(2km + 1)(Ak + 1), 2km−1(Ak + 1)

)
is a positive integer solution of Eq. (10).
Following the method of 1.1) in Theorem 2.1, the result is clearly established.

2) When the sign is −.
Let

X = 2D6x+M6, Y = 2s,

where
D6 = (km)2 − km + 1, M6 = 2k2m−1 + Akm − km−1 − 2A,

then we get the Pell equation

X2 −D6Y
2 = −3k2m−2(Ak + 1)2. (11)

Note that
(X0, Y0) =

(
km−1(2km − 1)(Ak + 1), 2km−1(Ak + 1)

)
is a positive integer solution of Eq. (11).
The remainder of the proof is similar as 1.1).

Example 3.6. When m = 3, f(x) = x(x− 1)(x− 1− k), put y = kx+ 1, Eq. (3) equals

(x(x− 1))2
(
(k6 + k3 + 1)x2 + (2k5 − Ak3 + k2 − 2A)x+ k4 − Ak2 + A2

)
= z2,

where A = 1 + k. It has infinitely many non-trivial positive integer solutions

(x, y, z) = (x2n, kx2n + 1, x2n(x2n − 1)s2n),

where

x2n+2 = (4u2 − 2)x2n − x2n−2

− 2v2(−2k5 + Ak3 − k2 + 2A), x0 = A,

x2 = k2v(2vk3 + 2u+ v)(Ak + 1) + A;

s2n+2 = (4u2 − 2)s2n − s2n−2, s0 = k2(Ak + 1),

s2 = k2(2u2 + (2k3 + 1)vu− 1)(Ak + 1),

and (u, v) is a positive integer solution of

X2 − (k6 + k3 + 1)Y 2 = 1.

97



4 Some related questions

In our theorems the polynomials f(x) are reducible. For irreducible polynomials, we did not get
similar results. So we raise the following questions.

Question 4.1. Are there irreducible polynomials f(x) ∈ Q(x) with deg f(x) ≥ 2 such that
Eqs. (3) and (4) have infinitely many non-trivial positive integer solutions?

For f(x) =
∏m−1

i=0 (x − i) (m ≥ 2), by searching on computer, we find Eq. (4) has some
non-trivial positive integer solutions for m = 4, 5 (see Remark 3.4), but fail to obtain infinitely
many ones. Therefore, we have:

Question 4.2. Does Eq. (4) have infinitely many non-trivial positive integer solutions for

f(x) =
m−1∏
i=0

(x− i),

where m ≥ 4?

Noting that the areas of the integral triangles, constructed in our Theorems, are

A =
f(x)f(y) sin(θ)

2
,

which are not rational, so they are not Heron triangles. It is natural to ask:

Question 4.3. Are there Heron triangles whose two adjacent sides are given by the values of
polynomials f(x) and f(y) with a fixed Heron angle?

For any angle θ, if sin(θ) and cos(θ) are rational, then we call θ is a Heron angle. In other
words, Question 4.3 is equivalent to the existence of positive integer solutions (x, y, z) to the
Diophantine system z

2 = f(x)2 − 2f(x)f(y) cos(θ) + f(y)2,

A =
f(x)f(y) sin(θ)

2
∈ Z+,

(12)

where cos(θ) =
1− s2

1 + s2
and sin(θ) =

2s

1 + s2
.

When s = 1/2, we have cos(θ) =
3

5
and θ = 37◦. For f(x) = x(x+ 1), we can use the same

method in Theorem 2.1 to show that z2 = f(x)2 − 2f(x)f(y) cos(37◦) + f(y)2 has infinitely
many non-trivial positive integer solutions

(x, y, z) = (xn, xn + 1, 2(xn + 1)sn), n ≥ 1,

where {
xn = 18xn−1 − xn−2 + 16, x0 = 0, x1 = 28;

sn = 18sn−1 − sn−2, s0 = 1, s1 = 13.

From the recurrence relation of xn, it is easy to check that

x2n ≡ 0 (mod 5), x2n−1 ≡ 3 (mod 5), n ≥ 1,

98



which means that
xn(xn + 1)2(xn + 2) ≡ 0 (mod 5)

holds for n ≥ 1. Therefore,

An =
f(xn)f(yn) sin(37

◦)

2
=

2xn(xn + 1)2(xn + 2)

5
∈ Z+.

So Eq. (12) has infinitely many non-trivial positive integer solutions.
In 2017, Sz. Tengely and M. Ulas [9] showed that the Diophantine equations

z2 = f(x)2 ± g(y)2

have infinitely many non-trivial polynomials solutions with integer coefficients for
f(x) = xk(x+ a), g(x) = xk(x+ b) with k ≥ 1, a2 + b2 6= 0. Similarly, we can raise:

Question 4.4. Are there polynomials f(x), g(y) ∈ Q(x) such that the Diophantine equations

z2 = f(x)2 + f(x)g(y) + g(y)2

and
z2 = f(x)2 − f(x)g(y) + g(y)2

have infinitely many non-trivial positive integer solutions?

It seems that there exist some interesting results for Questions 4.3 and 4.4, we hope to come
back to study them in the near future.
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