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Abstract: In this article, a study is carried out around the Perrin sequence, these numbers
marked by their applicability and similarity with Padovan’s numbers. With that, we will present
the recurrence for Perrin’s polynomials and also the definition of Perrin’s complex bivariate
polynomials. From this, the recurrence of these numbers, their generating function, generating
matrix and Binet formula are defined.
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1 Introduction

Historically, [8] reports that the Perrin’s sequence was mentioned implicitly by Edouard Lucas in
1876, however, only in 1899 this sequence was defined by François Perrin. Perrin’s sequence is
similar to Padovan’s sequence, differing only in the initial conditions, this sequence is linear and
recurring of integers numbers, denoted by Pen. Thus, we have the recurrence defined below [3].

Definition 1. The recurrence of Perrin’s sequence is given by [11]:

Pen = Pen−2 + Pen−3, n ≥ 3,

having Pe0 = 3,Pe1 = 0 and Pe2 = 2 as initial conditions.

In order to explore and study Perrin’s numbers, Perrin’s polynomials and Perrin’s complex
bivariate polynomials will be studied based on [2], in which the authors define the Fibonacci
and Lucas complex bivariate with definitions and theorems inherent to these numbers, where
according to Li and MacHenry [7] the Perrin sequences is F -representable. Historically, [1]
reports that Fibonacci polynomials were studied for the first time in 1883, by Eugene Charles
Catalan (1814–1894) and later by the mathematician Ernest Erich Jacobsthal (1881–1965).

With that, Catalan introduced the Fibonacci family of polynomial functions [4, 10]. Already
Kaygisiz and Sahin [6] pointed out that Pell numbers, Pell–Lucas numbers, bivariate Fibonacci
numbers, Perrin sequences, and Exponential Perrin sequences have permanental and determinantal
representations.

According to [9], the basic bivariate polynomials present an evolutionary process of the
polynomial terms of the sequence. That is, first, polynomials are considered with one variable and
two variables, then the imaginary component i is inserted, then these polynomials are explored in
their complex form.

2 Perrin’s polynomials

In Kaygisiz and Sahin [6] defined generalized Perrin polynomials based on the generalized Lucas
polynomials, that are a general form of several polynomials and number sequences. Based on
the Fibonacci polynomials and in the work of Kaygisiz and Sahin [6], a recurrence for Perrin’s
polynomials is studied, to further carry out a study on the Perrin’s complex bivariate polynomials.

Definition 2. Perrin’s polynomials pn(x), for n > 3, are given by the formula [5]:

pn(x) = x2pn−2(x) + pn−3(x),

on what p1(x) = 0, p1(x) = 2, p2(x) = 3 and pn(1) = Pn, being the n-th term in Perrin’s
sequence.

Thus, we have the first terms of this sequence presented in the following Table 1.
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n pn(x)

1 0

2 2

3 3

4 2x2

5 2 + 3x2

6 3 + 2x4

7 4x2 + 3x4

...
...

Table 1. First terms of Perrin’s polynomial sequence

With this, some properties, inherent to this polynomial sequence, are discussed, thus
approaching its matrix form, generating function and Binet formula, being, therefore, new ways
to obtain the terms of this sequence.

Theorem 2.1. The generator matrix of Perrin’s bivariate polynomials, for n > 1 and with n ∈ N,
is given by:

vQn =
[
3 2 0

] 0 1 0

x2 0 1

1 0 0


n

=
[
pn+3(x) pn+2(x) pn+1(x)

]
on what v represents the vector with the sequence initialization values, and Q represents the
generating matrix.

Proof. Through the principle of finite induction, we have the following. For n = 1, we have:

vQ1 =
[
3 2 0

] 0 1 0

x2 0 1

1 0 0

 =
[
2x2 3 2

]
=
[
p4(x) p3(x) p2(x)

]
.

We validate the equality discussed above. Assuming it is valid for n = k, k ∈ N, we have that:

vQk =
[
3 2 0

] 0 1 0

x2 0 1

1 0 0


k

=
[
pk+3(x) pk+2(x) pk+1(x)

]
Now, verifying that it is valid for n = k + 1, we have that:

vQk+1 =
[
3 2 0

] 0 1 0

x2 0 1

1 0 0


k  0 1 0

x2 0 1

1 0 0


=
[
pk+3(x) pk+2(x) pk+1(x)

] 0 1 0

x2 0 1

1 0 0


=
[
x2pk+2(x) + pk+1(x) pk+3(x) pk+2(x)

]
=
[
pk+4(x) pk+3(x) pk+2(x)

]
.
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The characteristic equation of this Perrin polynomial sequence is given by t3 − x2t− 1 = 0,
where x2 is the polynomial variable. So, we have that t1, t2 and t3 are the roots of the characteristic

equation, with: t1 = A + B, t2 = − 1

2
(A + B)+

i
√
3

2
(A− B), t3 = −1

2
(A + B)− i

√
3

2
(A− B),

being A = (
1

2
+
√

∆)
1
3 , B = (

1

2
−
√

∆)
1
3 and ∆ =

1

4
− x6

27
.

From this analysis we can obtain Binet’s formula with the Theorem 2.2.

Theorem 2.2. The Binet formula of the Perrin polynomial sequence is expressed by:

pn(x) = C1t
n
1 + C2t

n
2 + C3t

n
3 ,

where C1, C2, C3 are the coefficients and t1, t2, t3 the roots of the equation t3 − x2t− 1 = 0.

Proof. According to Definition 2 and the characteristic equation, we can solve the linear system
to obtain the values of the coefficients C1, C2, C3.

Furthermore, we have that the discriminant ∆ =
1

4
− x6

27
, refers to the characteristic equation,

being able to identify the shape of the roots. So when ∆ 6= 0, all roots will be distinct, thus
obtaining x6 6= 27

4
. Therefore, if this condition does not exist, the reported coefficients cannot

exist, since the roots will be the same, without the Binet formula.

Theorem 2.3. The generating function of the Perrin polynomial sequence, for n ∈ N, is given
by:

g(t) =
∞∑
n=0

pn(x)tn =
3− t2

(1− x2t2 − t3)
.

Proof. Let g(t) be the generating function of the Perrin polynomial sequence pn(x), then:

g(t)− g(t)x2t2 − g(t)t3 = p0(x) + p1(x)t + (p2(x)− p0(x))t2,

g(t)(1− x2t2 − t3) = 3− t2,

g(t) =
3− t2

(1− x2t2 − t3)
.

3 Perrin’s complex bivariate polynomials

In this section, Perrin’s complex bivariate polynomials will be introduced, based on the work
of [3].

Definition 3. Perrin’s complex bivariate polynomials pn(x, y), for n > 3, are given by the
formula:

pn(x, y) = ix2pn−2(x, y) + y2pn−3(x, y),

on what p0(x, y) = 3, p1(x, y) = 0, p2(x, y) = 2 and i2 = −1.

Thus, we have the first terms of this sequence presented in the Table 2 below.
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n pn(x, y)

0 3

1 0

2 2

3 3y2

4 2x2i

5 2y2 + 3x2y2i

6 −2x4 + 3y4

...
...

Table 2. First terms of Perrin’s complex bivariate polynomial sequence

Furthermore, some properties, inherent to this complex polynomial sequence, are discussed,
investigating its matrix form, generating function and Binet formula.

Theorem 3.1. The generating matrix of Perrin’s complex bivariate polynomials, for n > 1 and
with n ∈ N, is given by:

uQn
c =

[
2 0 3

] 0 1 0

ix2 0 1

y2 0 0


n

=
[
pn+2(x) pn+1(x) pn(x)

]
where u represents the vector with the sequence initialization values, and Qc represents the
complex generating matrix.

Proof. Through the principle of finite induction, we have the following. For n = 1, we have that:

vQ1
c =

[
2 0 3

] 0 1 0

ix2 0 1

y2 0 0

 =
[
3y2 2 0

]
=
[
p3(x) p2(x) p1(x)

]
We validate the equality discussed above. Assuming it is valid for n = k, k ∈ N, we have that:

vQk
c =

[
2 0 3

] 0 1 0

ix2 0 1

y2 0 0


k

=
[
pk+2(x) pk+1(x) pk(x)

]
Now, verifying that it is valid for n = k + 1, we have that:

vQk+1
c =

[
2 0 3

] 0 1 0

ix2 0 1

y2 0 0


k  0 1 0

ix2 0 1

y2 0 0


=
[
pk+2(x) pk+1(x) pk(x)

] 0 1 0

ix2 0 1

y2 0 0


=
[
ix2pk+1(x) + y2pk(x) pk+2(x) pk+1(x)

]
=
[
pk+3(x) pk+2(x) pk+1(x)

]
.
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The characteristic equation of this complex bivariate Perrin polynomial sequence is given
by q3 − ix2q − y2 = 0, on what x2 and y2 are the polynomial variables and i the imaginary
component. So, we have that q1, q2 and q3 are the roots of the characteristic equation, with:

q1 = C + D, q2 = −1

2
(C + D)+

i
√
3

2
(C − D), q3 = −1

2
(C + D)− i

√
3

2
(C − D), having

C = (
y2

2
+
√

∆)
1
3 , D = (

y2

2
−
√

∆)
1
3 and ∆ =

y4

4
− i3x6

27
.

From this analysis we can obtain Binet’s formula with the Theorem 3.2.

Theorem 3.2. The Binet formula of the Perrin polynomial sequence is expressed by:

pn(x, y) = K1q
n
1 + K2q

n
2 + K3q

n
3

on what K1, K2, K3 are the coefficients and q1, q2, q3 the roots of the equation q3− ix2q− y = 0.

Proof. Similar to Theorem 2.2, we have the Definition 2 and the characteristic equation, we can
solve the linear system to obtain the values of the coefficients K1, K2 and K3 .

Furthermore, we have that the discriminant ∆ =
y2

4
− i3x6

27
, refers to the characteristic

equation, being able to identify the shape of the roots. So when ∆ 6= 0, all roots will be distinct,

thus obtaining ix6 6= 27y2

4
. Thus, if this condition does not exist, the coefficients cannot exist.

Thus, there is no Binet formula.

Theorem 3.3. The generating function of Perrin’s complex bivariate polynomial sequence, for
n ∈ N, is given by:

gc(t) =
∞∑
n=0

pn(x, y)tn =
3− t2

(1− ix2t2 − y2t3)
.

Proof. Let gc(t) be the generating function of the complex bivariate polynomial sequence of
Perrin pn(x, y), then:

gc(t)− gc(t)ix
2t2 − gc(t)y

2t3 = p0(x, y) + p1(x, y)t + (p2(x, y)− p0(x, y))t2,

gc(t)(1− ix2t2 − y2t3) = 3− t2,

gc(t) =
3− t2

(1− ix2t2 − y2t3)
.

4 Perrin complex bivariate polynomials
for non-positive integer indices

We emphasize that the main result of this work, is presented in this section, reporting the
generalization of Perrin’s complex bivariate numbers, performing an extension to the field of
numbers with non-positive integer indices.

Extending to the field of non-positive integers, we then have Perrin’s complex bivariate
polynomials for non-positive integer indices. With that, we have the first terms presented in
Table 3 below.
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−n p−n(x, y)
...

...

−6 −6x4+12x6i
y8

+ −2x10i−3x12+3y8

y12

−5 −4x2i−9x4

y6
+ 2x8−3x10i

y10

−4 2−6x2i
y4

+ 2x6+3x8

y8

−3 −2x4i+3x6i
y6

−2 −2x2i−3x4

y4

−1 2−3x2i
y2

0 3

Table 3. First negative terms of Perrin’s complex bivariate polynomial sequence

Theorem 4.1. The matrix form of Perrin’s complex bivariate sequence for non-positive integer
indices, with n > 0 and n ∈ N, is given by:

uQ−nc =
[
2 0 3

]0 0 1
y2

1 0 0

0 1 − ix2

y2


−n

=
[
p−n+2(x) p−n+1(x) p−n(x)

]
where u represents the vector with the sequence initialization values, and Q−1c represents the
complex generating matrix inverse.

Proof. Through the principle of finite induction, we have the following. For n = 1, we have that:

vQ−1c =
[
2 0 3

]0 0 1
y2

1 0 0

0 1 − ix2

y2


−1

=

[
0 3

2

y2
− 3x2i

y4

]
=
[
p1(x) p0(x) p−1(x)

]
.

We validate the equality discussed above. Assuming it is valid for n = k, k ∈ N, we have that:

vQ−kc =
[
2 0 3

]0 0 1
y2

1 0 0

0 1 − ix2

y2


−k

=
[
p−k+2(x) p−k+1(x) p−k(x)

]
.

Now, verifying that it is valid for n = k + 1, we have that:

vQ−(k+1)
c =

[
2 0 3

] 0 1 0

ix2 0 1

y2 0 0


−k  0 1 0

ix2 0 1

y2 0 0


−1

=
[
p−k+2(x) p−k+1(x) p−k(x)

]0 0 1
y2

1 0 0

0 1 − ix2

y2


−1

=

[
p−k+1(x) p−k(x)

p−k+2(x)− x2ip−k(x)

y2

]
=
[
p−k+1(x) p−k(x) p−k−1(x)

]
.
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Theorem 4.2. The generating function of Perrin’s complex bivariate sequence for non-positive
integer indices is given by:

gcn(t) =
∞∑
n=0

p−n(x, y)tn =
(1 + t)(−3y

2−2t+3x2it
y2

) + (2i + 3x2)(x
2t2

y4
)

(y2t3 − t− 1)
.

Proof. Let gcn(t) be the generating function of the complex bivariate polynomial sequence of
Perrin pn(x, y), then:

gcn(t)y2t3 − gcn(t)t− gcn = −p0(x, y)t− (p0(x, y) + p−1(x, y))t− (p−1(x, y) + p−2(x, y))t2,

gcn(t)(y2t3 − t− 1) = (1 + t)(
−3y2 − 2t + 3x2it

y2
) + (2i + 3x2)(

x2t2

y4
),

gcn(t) =
(1 + t)(−3y

2−2t+3x2it
y2

) + (2i + 3x2)(x
2t2

y4
)

(y2t3 − t− 1)
.

5 Conclusion

This work presents a study around Perrin’s sequence presenting its polynomial form and its
complex bivariate polynomial form, in which, its numbers were worked on functions of variables
and explored in its complex form after the insertion of the imaginary component i. It was possible
to present the recurrence of these numbers, their generating matrix, Binet formula and generating
function.

We reinforce the presentation, in this paper, of the investigation of Perrin’s complex bivariate
numbers, with positive and non-positive integer indices, based on the work of Catalani [3], which
deals with the Fibonacci bivariate form.

For future work, we propose investigations around these complex bivariate polynomials and
polynomial numbers, applying this mathematical content to other areas.
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