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1 Introduction

Let n > 1 be a positive integer, and a be a real variable. The sum of a-th powers of divisors of n

is defined by
= E d?, ey
dln

where d runs through all distinct positive divisors of n. Particularly, o1 (n) = o(n) is the sum of
divisors of n, and o¢(n) = d(n) = number of distinct divisors of n. Remark that

1 o(n
SN B I

Similarly,
0_a(n) = —- )

for any real number a. It is well-known that (o,(n)),, is a multiplicative function of the natural

variable n, i.e.,
ga(n-m) = ay(n) - o.(m) 3)

forany n,m > 1; (n,m) = 1.
41



T
In other words, if n = H pi* (r > 1) is the prime factorization of n, then
i=1

ra(a;+1) 1

oq(n) = Haa(p?i) = lepa——l “4)
=1 v

=1
The unitary sum of divisor function ¢ (n) is defined as

o= Y @ )

d|n,(d,n/d)=1

i.e., the sum of a-th powers of the unitary divisors of n, where d | n is a unitary divisor of n, if
(d,n/d) = 1. Tt is well-known also (see e.g. [2, 3, 6]) that (¢ (n)), is a multiplicative function
of n, i.e., fot the above prime factorization of n one has

r

or(n) = [ ozt =TT (5 +1). (6)
=1

i=1
There are many known inequalities for o,(n) and o7 (n), when a = 1 or a = k = positive integer.
For example, a result of Sdndor—T6th [2] states that

Ok (TL) k/2 (7)
d(n)
forn > 1, k > 1 integers. A result by the author [5] states that
d
oi(n) _ d(n) "

< .
op(n) — d*(n)
In what follows, we will obtain extensions and refinements of (7), (8); and many related inequalities
will be offered. For other inequalities, see [7].

2 Monotonocity and convexity properties

Theorem 1. The applications f,g : R — R, defined by f(a) = 04(n) and g(a) = oi(n) are
log-convex functions for any fixed integer n > 1.

Proof. The log-convexity of the function f(a) means that the function F'(a) = log f(a) is convex.
It is well-known, that for continuous functions, a function is convex iff it is Jensen-convex. As
f(a) is sum of continuous functions, clearly it is continuous, too. Thus, we have to prove that
log f(a) is Jensen-convex, i.e.,

1ng(a —2|— b) < log f(a) —2|— log f(b) ©)
or equivalently
fQ(a . b) < f(a)- F(b). (10)

where a, b are real numbers.



In order to prove (10), we apply the Cauchy—Bunyakovsky inequality (see [1])

a/2 Yi = df/z, where 1 = d; < dy < --- < d, = n are the distinct divisors of n. As

1 Y

forxz, = d

S fla), Y= ) YA = f(at)2)

by (11) we get relation (10).
Applying the same inequality to z; = (d¥)¥/2, y;(d})"? where 1 < df < dj < --- < d‘=n
are the distinct unitary divisors of n, we get

92(a . b) < g(a) - g(b),

2

i.e., the function g(a) will be log-convex, too. O

Remark 1. As there is equality in (11) only if (x;) and (y;) are proportional, i.e. z;/y; = A
(1=1,2,...,r) A\ = constant, clearly there is an equality in (10) only for a = b.

Corollary 1.

|:0—(a+b)/2(n):|2 < oa(n)op(n) < [Mr- (12)

The sequence of general term
ox(n)
ok_1(n)

te = (k> 1)

is strictly increasing for any fixed n > 1.
— Indeed, the second inequality of (12) follows by xy < (:”Tﬂ’f, where © = 04(n),y = op(n).
Fora=k—1,b=k+ 1we set from (12) that (61,(n))? < o)_1(n) - o11(n); i.e. ty < tpi1.

Corollary 2.
n
=) < ) (4
forany a € R.

Indeed, let b = —a in (12). By relation (2) we get the left-hand side of (13).
Let now a — a + b, b — a — b in the left-hand side of (12). We get the inequality

(04())? < () - Tus(n). (14)
By letting b = a in (14), we get the right-hand side of (13).
Remark 2. All the above inequalities (12)—(14) hold true also for o (n) in plane of o,(n), etc.
Theorem 2. The functions F, G : (0,00) — R defined by
F(a) = 0u(n) /3% Gla) = o;(n)/3 (15)

are strictly increasing functions. The functions Fy,Gq : (—o00,0) — R with the same definitions

as above, are strictly decreasing.
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Proof. Let p be a prime number. As F(p®) = 0,(p®)/p**/? = s(a), we will prove first that s(a)
is strictly increasing. Then, as

1 9a(pi")
F(a> - H aa; /2
i=1 Pi
F(a) will be strictly increasing as the product of strictly increasing positive functions.
By (4) one has

ac
log s(a) = log (p"*™) — 1) —log(p* — 1) — - logp = S(a).

One has for the derivative of S(a) that

(a+1)p*logp p'logp «

pa(aJrl) -1 pe—1 5 1ng.

S'(a) =

By letting p® = x, after some elementary computations, we get
2(x — 1) - (x2T1 = 1)
log p

Now, remark that M (1) = 0,

S'(a) - =27 () — 2T (a+2)+ 1 (a+2) —a= M(z).

M(z)=(a+2) [a-2*"" = (a+1)-2°+1] = (a+2) - N().

Here N(1) = 0and N'(z) = (a+ 1) - 2> ' - (x — 1) > 0,as z = p* > 1, @ > 1. Therefore,
N(z) is strictly increasing, implying N(xz) > N(1) = 0, so M’'(xz) > 0. Thus, finally, we get
M(z) > M(1) = 0,s0 5(a) > 0, and thus S(a) is strictly increasing. This means that s(a) is
strictly increasing, and the first part of Theorem 2 is proved.
For the second part, remark that o} (p®*) = p®* + 1, and it will be sufficient to consider the
monotonicity of
log(p™" +1) — % logp = h(a).

As
h(a)  p™ 1 x*—1

alogp  p@+1 2 2@+1)
where z = p® > 1 for a > 0. Clearly z* — 1 > 0, so h/(a) > 0, and the proof of second part of
the theorem follows. For a < 0 we get 0 < = < 1, and all can be replaced for F; and G, will be

strictly decreasing. ]
Corollary 3.
Za((:)) >n%forn > 1, a#0. (16)
As
lim 7(p") = lim Zw =a+1

a—0 p‘w‘/2 a=0  p*—1
(by L’Hospital’s rule) and as

F(a) > lim f(a) = (a1 +1) -+ (a, +1) = d(n),

relation (16) follows from the first part of Theorem 2. From Fi(a) > lim,_, F(a) for a < 0, we

get the same inequalities.
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Corollary 4.

04 (1)

A >nY2forn > 1, a#0. (17)

This follows in a similar manner, from the second part of Theorem 2, first for G(a), then for

G1(a).
Theorem 3. The function H : (0,00) — R, defined by
H(a) = o,(n)/oi(n) (n > 1 fixed)
is strictly decreasing. The function Hy : (—o00, 0) — R with the same definition is strictly increasing.
Proof. Forn = pi" ---p% one has
H(n) = 0a(pt) -~ 0a(py")/oa(08") - - - oo (p) = fila) - frla);
where fi(a) = o,(p")/ok(p"), so it will be sufficient to prove that
k(a) = oa(p®) /oy (") = [p"HY = 1] /(" = D(p™* + 1)
will be strictly decreasing for fixed prime p > 1. One has
log k(a) = log(p®®t! — 1) — log(p® — 1) — log(p°*™ + 1) = K(a).
One has
K'(a) (a+1)-p™ I ap®etl)

palogp_ pa(a+1)_1 _pa_l paa+17

and after some elementary computations we can write

[P — 1] (p* — (™ +1)

Kla): p*logp
= (@412 (z—1)-(@*+1)— (@41 2" =) —a-2*" (z—1) (2T = 1)
= R(z),

where z = p® > 1. Now, R(z) can be written as R(z) = a - z*™! — 22 — a - 27! + 1. We will
prove that —R(z) = 2** — o - 2T + - 271 — 1 > 0. One has

—R(z)=a -2°7% [22°7" — (a+ 1)2* + a — 1].

LetU(z) = 22° — (a+1)2?+a—1.Here U(1) = 0and U’ (z) = 2(a+1)-z-(z*"1—1) > O as
x>landa—12> 0. Thus U(x) > U(1) = 0, so we get R'(x) < 0 implying R(x) < R(1) = 0.

Thus we have proved that K'(a) < 0. As % = K'(a), this implies finally that £'(a) < 0, i.e.,

(a)
k(a) is strictly decreasing. For a < 0 one has 0 < x < 1, and we get that H,(z) is strictly

increasing. O]
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Corollary 5. For any a # 0 one has

Gu(n) _ d(n)
ox(n) @) (1%
Indeed, as
Ha) < Jim H() =1,

by Theorem 3 we can write

oq(n) a1+1"'ar+1:d(n)
or(n) ~ 2 > &)

a

From Hy(a) < liI(l;l Hi(a) we get the same inequality.
a—0—

Remark 3. Inequality (18) extends (8) from positive integers k to all real numbers a # 0. Finally,

in this context, we will prove:
Theorem 4. The function T'(a) : (0,00) — o0, defined by

a4(n)
oa(v(n))’
(where ~(n) is the “core” of n) is strictly increasing. The function Ty(a) : (—00,0) — R with

T(a) = (19)

the same definition is strictly decreasing.

Proof. Ifn =pi*---p{", theny(n) =p1---pr;s00i(y(n)) = (pf+1)--- (p*+1). Thus, it will
be sufficient to prove that the function z(a) = o,(p®)/p® + 1 will be strictly increasing. As

log z(a) = log(p*®*V) — 1) — log(p® — 1) — log(p® + 1) = Z(a),

one has

Z(a) = (@ +1)-p"®Dlogp  p*logp p"logp

T el o pr—1  prtl
and after some elementary computations (which we omit here) we can find that
W =D = DG+ D2

logp

where z = p* > 1. Let q(z) = (o — 1) - 2™ — (o + 1)z*~! 4+ 2. We have ¢(1) = 0 and
¢(x)=(a®—1) 272 (22 —1) > 0asx > 1 and @ > 1. Thus ¢(z) > ¢(1) = 0 and this yields
Z'(a) > 0, so z(a) will be strictly increasing. For a < 0 we have 0 < x < 1, and we get that

—1) -2 —(a+ 1) 22t 2],

Ti(a) is strictly decreasing. O

Corollary 6. For any a # 0 and n > 1 one has
d(n) _ _0a(n)

() = o) o

This follows by
: _ d(n)
700 = 5y

and Theorem 4.

Remark 4. Inequality (20) offers a counterpart to (18).
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3 Applications of other inequalities for sums

The classical Chebyshev inequality (see [1]) states that if (z;) and (y;) (¢ = 1,2,...,7) are two
sequences with the same (reversed) type of monotonicity, then

x1y1+"'+$7‘yr xl—i_'..—'—x’f’ yl+"'+yr

. = . e . .

21)

Letting x; = df, y; = df, where 1 = d; < dy < --- < d, = n are all divisors of n, we get the
following:
d(n) - oap(n) > o.(n)op(n) fora-b>0, (22)
d(n) - oarp(n) < og(n)op(n) fora-b<0. (23)
Indeed, for a - b > 0, the sequences (d?) and (d?) will have the same type of monotonicity, and

for a - b < 0, the reversed one.
From the left-hand side of (12), combined with (23), we get:

[a(a+b)/2(n)}2 < gu(n)op(n) < d(n) - o4y fora-b>0. (24)

Particularly, by letting CLTM = ¢, the weakest part of (24) offers (0.(n))? < d(n)oa.(n), which
is the right-hand side of (13). Thus, (24) offers an improvement of right-hand side of (13) for
a-b>0.

The Milne’s inequality (see [1,4]) states that if (x;) and (y;) are positive r-tuples, then

T

S (@i i) - Zx‘”f’y <sz Zyz (25)

=1 i=1

with equality if and only if (z;) and (y;) are proportional.
Apply now the Cauchy—-Bunyakovsky inequality (11) for z; = \/a? + b?, y; = a;l:z =k We
a; i

get
r 2 b?

T 2 T
OO SZITD oFt 20
i=1 i=1 =1t

Now, Milne’s inequality (25) applied for z; = a?, y; = b? and combined with (26) gives

(;ab> Z b iaw—(Z“)(;lﬁ) e

where a;, b; are real numbers and a?+b? # 0. This is in fact a refinement of Cauchy-Bunyakovsky
inequality. Let now a; = d?/ 2, b; = df/ 2, where 1 = dy < dy < --- < d, = n are the distinct
divisors of n. We get the following refinement of the left-hand side of (12):

(U(a+b)/2(n)) < A(a,b,n) < a4(n) - op(n), (28)

where
da+b

Afa,b,n) = (o(a) + o(b) - Y Tt
din

The Pélya—Szegd inequality (see [1]) states that if 0 < a < z; < Aand 0 < b < y; < B
(1=1,2,...,r).
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Then

r 1/2 r 1/2 .
> ) 1{ [AB \/ﬁ
2 ; < S - e— ..
(Z;x) (;y> — 2 o VB ;l‘y (29)

Let x; = d?/ 2, Yi = df/ ? (d; the divisors of n). After some elementary computations, we get:
2
<naT+b + 1)

1 2

O'a<n)0'b(n) S Z . W . (O'(aer)/Q(TL)) if a-b> 0, (30)
. <na/2 12 2 )

ogq.(n)op(n) < 1 PRy . <a(a+b)/g(n)> if a-b<0. (31)

These can complemenet the right-hand side of inequality (28).
Finally, the discrete version of Zagier’s inequality (see [1]) states that

S < (32)
max{in,Zyi} =1
i=1 =1
where 0 < z;, y; < 1, where both of (x;) and (y;) are decreasing sequences.
For z; = df/ 2, Y = df/ 2 (d; = divisors of n), we get from (32):
7a(1) - 04(7) < O(agpy/2(n) for a,b<O0. (33)
max {aa/Q(n), Tb/2 (n)}
Letting a = —A, b = — B and using (2) and (33), we get:
oan)-o8(0) 4 ) for A> B0, (34)
op/2(n) A
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