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1 Introduction

Let n ≥ 1 be a positive integer, and a be a real variable. The sum of a-th powers of divisors of n
is defined by

σa(n) =
∑
d|n

da, (1)

where d runs through all distinct positive divisors of n. Particularly, σ1(n) = σ(n) is the sum of
divisors of n, and σ0(n) = d(n) = number of distinct divisors of n. Remark that

σ−1(n) =
∑
d|n

1

d
=

1

n
·
∑
d|n

n

d
=

1

n

∑
d|n

d =
σ(n)

n
.

Similarly,

σ−a(n) =
σa(n)

na
(2)

for any real number a. It is well-known that (σa(n))n is a multiplicative function of the natural
variable n, i.e.,

σa(n ·m) = σa(n) · σa(m) (3)

for any n,m ≥ 1; (n,m) = 1.
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In other words, if n =
r∏
i=1

paii (r ≥ 1) is the prime factorization of n, then

σa(n) =
r∏
i=1

σa
(
paii
)

=
r∏
i=1

p
a(ai+1)
i − 1

pai − 1
. (4)

The unitary sum of divisor function σ∗a(n) is defined as

σ∗a =
∑

d|n,(d,n/d)=1

da, (5)

i.e., the sum of a-th powers of the unitary divisors of n, where d | n is a unitary divisor of n, if
(d, n/d) = 1. It is well-known also (see e.g. [2, 3, 6]) that (σ∗a(n))n is a multiplicative function
of n, i.e., fot the above prime factorization of n one has

σ∗a(n) =
r∏
i=1

σ∗a(p
ai
i ) =

r∏
i=1

(
pa·aii + 1

)
. (6)

There are many known inequalities for σa(n) and σ∗a(n), when a = 1 or a = k = positive integer.
For example, a result of Sándor–Tóth [2] states that

σk(n)

d(n)
> nk/2 (7)

for n > 1, k ≥ 1 integers. A result by the author [5] states that

σk(n)

σ∗k(n)
<

d(n)

d∗(n)
. (8)

In what follows, we will obtain extensions and refinements of (7), (8); and many related inequalities
will be offered. For other inequalities, see [7].

2 Monotonocity and convexity properties

Theorem 1. The applications f, g : R → R+, defined by f(a) = σa(n) and g(a) = σ∗a(n) are
log-convex functions for any fixed integer n ≥ 1.

Proof. The log-convexity of the function f(a) means that the function F (a) = log f(a) is convex.
It is well-known, that for continuous functions, a function is convex iff it is Jensen-convex. As
f(a) is sum of continuous functions, clearly it is continuous, too. Thus, we have to prove that
log f(a) is Jensen-convex, i.e.,

log f

(
a+ b

2

)
≤ log f(a) + log f(b)

2
(9)

or equivalently

f 2

(
a+ b

2

)
≤ f(a) · f(b), (10)

where a, b are real numbers.
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In order to prove (10), we apply the Cauchy–Bunyakovsky inequality (see [1])(
r∑
i=1

xiyi

)2

≤

(
r∑
i=1

x2i

)
·

(
r∑
i=1

y2i

)
(11)

for xi = d
a/2
i , yi = d

b/2
i , where 1 = d1 < d2 < · · · < dr = n are the distinct divisors of n. As

n∑
i=1

dai = f(a),
r∑
i=1

dbi = f(b),
r∑
i=1

d
(a+b)/2
i = f((a+ b)/2),

by (11) we get relation (10).
Applying the same inequality to xi = (d∗i )

a/2, yi(d
∗
i )
b/2, where 1 ≤ d∗1 < d∗2 < · · · < d∗r = n

are the distinct unitary divisors of n, we get

g2
(
a+ b

2

)
≤ g(a) · g(b),

i.e., the function g(a) will be log-convex, too.

Remark 1. As there is equality in (11) only if (xi) and (yi) are proportional, i.e. xi/yi = λ

(i = 1, 2, . . . , r) λ = constant, clearly there is an equality in (10) only for a = b.

Corollary 1. [
σ(a+b)/2(n)

]2
≤ σa(n)σb(n) ≤

[
σa(n) + σb(n)

2

]2
. (12)

The sequence of general term

tk =
σk(n)

σk−1(n)
(k ≥ 1)

is strictly increasing for any fixed n > 1.

– Indeed, the second inequality of (12) follows by xy ≤
(
x+y
2

)2
, where x = σa(n), y = σb(n).

For a = k − 1, b = k + 1 we set from (12) that (σk(n))2 < σk−1(n) · σk+1(n); i.e. tk < tk+1.

Corollary 2.

na/2 ≤ σa(n)

d(n)
≤ σ2a(n)√

d(n)
(13)

for any a ∈ R.
Indeed, let b = −a in (12). By relation (2) we get the left-hand side of (13).
Let now a→ a+ b, b→ a− b in the left-hand side of (12). We get the inequality

(σa(n))2 ≤ σa+b(n) · σa−b(n). (14)

By letting b = a in (14), we get the right-hand side of (13).

Remark 2. All the above inequalities (12)–(14) hold true also for σ∗a(n) in plane of σa(n), etc.

Theorem 2. The functions F,G : (0,∞)→ R defined by

F (a) = σa(n)/a/2n ; G(a) = σ∗a(n)/a/2n (15)

are strictly increasing functions. The functions F1, G1 : (−∞, 0) → R with the same definitions
as above, are strictly decreasing.
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Proof. Let p be a prime number. As F (pα) = σa(p
α)/paα/2 = s(a), we will prove first that s(a)

is strictly increasing. Then, as

F (a) =
r∏
i=1

σa(p
αi
i )

p
aαi/2
i

,

F (a) will be strictly increasing as the product of strictly increasing positive functions.
By (4) one has

log s(a) = log
(
pa(α+1) − 1

)
− log(pa − 1)− aα

2
log p = S(a).

One has for the derivative of S(a) that

S ′(a) =
(α + 1)pa(α+1) log p

pa(α+1) − 1
− pa log p

pa − 1
− α

2
log p.

By letting pa = x, after some elementary computations, we get

S ′(a) · 2(x− 1) · (xα+1 − 1)

log p
= xα+2 · (α)− xα+1 · (α + 2) + x · (α + 2)− α = M(x).

Now, remark that M(1) = 0,

M ′(x) = (α + 2) ·
[
α · xα+1 − (α + 1) · xα + 1

]
= (α + 2) ·N(x).

Here N(1) = 0 and N ′(x) = (α + 1) · xα−1 · (x − 1) > 0, as x = pa > 1, α ≥ 1. Therefore,
N(x) is strictly increasing, implying N(x) > N(1) = 0, so M ′(x) > 0. Thus, finally, we get
M(x) > M(1) = 0, so S ′(a) > 0, and thus S(a) is strictly increasing. This means that s(a) is
strictly increasing, and the first part of Theorem 2 is proved.

For the second part, remark that σ∗a(p
α) = paα + 1, and it will be sufficient to consider the

monotonicity of
log(pa

α

+ 1)− aα

2
log p = h(a).

As
h′(a)

α log p
=

paα

paα + 1
− 1

2
=

xα − 1

2(xα + 1)
,

where x = pa > 1 for a > 0. Clearly xα − 1 > 0, so h′(a) > 0, and the proof of second part of
the theorem follows. For a < 0 we get 0 < x < 1, and all can be replaced for F1 and G1, will be
strictly decreasing.

Corollary 3.
σa(n)

d(n)
> na/2 for n > 1, a 6= 0. (16)

As

lim
a→0

σa(p
α)

paα/2
= lim

a→0

pa(α+1) − 1

pa − 1
= α + 1

(by L’Hospital’s rule) and as

F (a) > lim
a→0

f(a) = (α1 + 1) · · · (αr + 1) = d(n),

relation (16) follows from the first part of Theorem 2. From F1(a) > lima→0 F1(a) for a < 0, we
get the same inequalities.
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Corollary 4.
σ∗a(n)

d(n)
> na/2 for n > 1, a 6= 0. (17)

This follows in a similar manner, from the second part of Theorem 2, first for G(a), then for
G1(a).

Theorem 3. The function H : (0,∞)→ R, defined by

H(a) = σa(n)/σ∗a(n) (n > 1 fixed)

is strictly decreasing. The functionH1 : (−∞, 0)→R with the same definition is strictly increasing.

Proof. For n = pα1
1 · · · pαrr one has

H(n) = σa(p
α1
1 ) · · ·σa(pαrr )/σ∗a(σ

p1
a ) · · ·σ∗a(pα1

r ) = f1(a) · · · fr(a);

where fi(a) = σa(p
αi
i )/σ∗a(p

αi
i ), so it will be sufficient to prove that

k(a) = σa(p
α)/σ∗a(p

α) = [pa(α+1) − 1]/(pa − 1)(paα + 1)

will be strictly decreasing for fixed prime p > 1. One has

log k(a) = log(pa(α+1 − 1)− log(pa − 1)− log(paα+1 + 1) = K(a).

One has
K ′(a)

pa log p
=

(a+ 1) · paα

pa(α+1) − 1
− 1

pa − 1
− αpa(α+1)

paα + 1
,

and after some elementary computations we can write

K ′(a) ·
[
pa(α+1) − 1

]
(pa − 1)(paα + 1)

pa log p

= (α + 1)xα · (x− 1) · (xα + 1)− (xα + 1) · (xα+1 − 1)− α · xα−1 · (x− 1) · (xα+1 − 1)

= R(x),

where x = pa > 1. Now, R(x) can be written as R(x) = α · xα+1 − x2α − α · xα−1 + 1. We will
prove that −R(x) = x2α − α · xα+1 + α · xα−1 − 1 ≥ 0. One has

−R′(x) = α · xα−2 ·
[
2xα+1 − (α + 1)x2 + α− 1

]
.

Let U(x) = 2xα+1−(α+1)x2+α−1.Here U(1) = 0 and U ′(x) = 2(α+1)·x·(xα−1−1) ≥ 0 as
x > 1 and α− 1 ≥ 0. Thus U(x) > U(1) = 0, so we get R′(x) < 0 implying R(x) < R(1) = 0.

Thus we have proved that K ′(a) < 0. As k′(a)

k(a)
= K ′(a), this implies finally that k′(a) < 0, i.e.,

k(a) is strictly decreasing. For a < 0 one has 0 < x < 1, and we get that H1(x) is strictly
increasing.
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Corollary 5. For any a 6= 0 one has

σa(n)

σ∗a(n)
<

d(n)

d∗(n)
(18)

Indeed, as

H(a) < lim
a→0+

H(a) =
α + 1

2
,

by Theorem 3 we can write

σa(n)

σ∗a(n)
<
α1 + 1

2
· · · αr + 1

2
=

d(n)

d∗(n)
.

From H1(a) < lim
a→0−

H1(a) we get the same inequality.

Remark 3. Inequality (18) extends (8) from positive integers k to all real numbers a 6= 0 . Finally,
in this context, we will prove:

Theorem 4. The function T (a) : (0,∞)→∞, defined by

T (a) =
σa(n)

σ∗a(γ(n))
, (19)

(where γ(n) is the “core” of n) is strictly increasing. The function T1(a) : (−∞, 0) → R with
the same definition is strictly decreasing.

Proof. If n = pα1
1 · · · pαr1 , then γ(n) = p1 · · · pr; so σ∗a(γ(n)) = (pa1 +1) · · · (par +1). Thus, it will

be sufficient to prove that the function z(a) = σa(p
α)/pa + 1 will be strictly increasing. As

log z(a) = log(pa(α+1) − 1)− log(pa − 1)− log(pa + 1) = Z(a),

one has

Z ′(a) =
(α + 1) · pa(α+1) log p

pa(α+1) − 1
− pa log p

pa − 1
− pa log p

pa + 1
,

and after some elementary computations (which we omit here) we can find that

(pa(α+1 − 1)(pa − 1)(pa + 1)Z ′(a)

log p
= x2 · [(α− 1) · xα+1 − (α + 1) · xα−1 + 2],

where x = pα > 1. Let q(x) = (α − 1) · xα+1 − (α + 1)xα−1 + 2. We have q(1) = 0 and
q′(x) = (α2− 1) · xα−2 · (x2− 1) ≥ 0 as x > 1 and α ≥ 1. Thus q(x) > q(1) = 0 and this yields
Z ′(a) > 0, so z(a) will be strictly increasing. For a < 0 we have 0 < x < 1, and we get that
T1(a) is strictly decreasing.

Corollary 6. For any a 6= 0 and n > 1 one has

d(n)

d∗(n)
<

σa(n)

σ∗a(γ(n))
. (20)

This follows by

lim
a→0

T (a) =
d(n)

d∗(a)

and Theorem 4.

Remark 4. Inequality (20) offers a counterpart to (18).
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3 Applications of other inequalities for sums

The classical Chebyshev inequality (see [1]) states that if (xi) and (yi) (i = 1, 2, . . . , r) are two
sequences with the same (reversed) type of monotonicity, then

x1y1 + · · ·+ xryr
r

≥
(≤)

x1 + · · ·+ xr
r

· · · y1 + · · ·+ yr
r

. (21)

Letting xi = dai , yi = dbi , where 1 = d1 < d2 < · · · < dr = n are all divisors of n, we get the
following:

d(n) · σa+b(n) ≥ σa(n)σb(n) for a · b ≥ 0, (22)

d(n) · σa+b(n) ≤ σa(n)σb(n) for a · b ≤ 0. (23)

Indeed, for a · b ≥ 0, the sequences (dai ) and (dbi) will have the same type of monotonicity, and
for a · b ≤ 0, the reversed one.

From the left-hand side of (12), combined with (23), we get:[
σ(a+b)/2(n)

]2 ≤ σa(n)σb(n) ≤ d(n) · σa+b for a · b ≥ 0. (24)

Particularly, by letting a+ b

2
= c, the weakest part of (24) offers (σc(n))2 ≤ d(n)σ2c(n), which

is the right-hand side of (13). Thus, (24) offers an improvement of right-hand side of (13) for
a · b ≥ 0.

The Milne’s inequality (see [1, 4]) states that if (xi) and (yi) are positive r-tuples, then
r∑
i=1

(xi + yi) ·
r∑
i=1

xiyi
xi + yi

≤
r∑
i=1

xi ·
r∑
i=1

yi (25)

with equality if and only if (xi) and (yi) are proportional.
Apply now the Cauchy–Bunyakovsky inequality (11) for xi =

√
a2i + b2i , yi =

aibi√
a2i + b2i

. We

get (
r∑
i=1

aibi

)2

≤
r∑
i=1

(a2i + b2i ) ·
r∑
i=1

a2i b
2
i

a2i + b2i
. (26)

Now, Milne’s inequality (25) applied for xi = a2i , yi = b2i and combined with (26) gives(
r∑
i=1

aibi

)2

≤
r∑
i=1

(a2i + b2i ) ·
r∑
i=1

a2i b
2
i

a2i + b2i
≤

(
r∑
i=1

a2i

)(
r∑
i=1

b2i

)
(27)

where ai, bi are real numbers and a2i +b
2
i 6= 0. This is in fact a refinement of Cauchy–Bunyakovsky

inequality. Let now ai = d
a/2
i , bi = d

b/2
i , where 1 = d1 < d2 < · · · < dr = n are the distinct

divisors of n. We get the following refinement of the left-hand side of (12):(
σ(a+b)/2(n)

)2

≤ A(a, b, n) ≤ σa(n) · σb(n), (28)

where

A(a, b, n) = (σ(a) + σ(b)) ·
∑
d|n

da+b

da + db
.

The Pólya–Szegő inequality (see [1]) states that if 0 < a ≤ xi ≤ A and 0 < b ≤ yi ≤ B

(i = 1, 2, . . . , r).
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Then (
r∑
i=1

x2i

)1/2( r∑
i=1

y2i

)1/2

≤ 1

2

(√
AB

ab
+

√
ab

AB

)
r∑
i=1

xiyi. (29)

Let xi = d
a/2
i , yi = d

b/2
i (di the divisors of n). After some elementary computations, we get:

σa(n)σb(n) ≤ 1

4
·

(
n
a+b
2 + 1

)2
n(a+b)/2

·
(
σ(a+b)/2(n)

)2
if a · b > 0, (30)

σa(n)σb(n) ≤ 1

4
·

(
na/2 + nb/2

)2
n(a+b)/2

·
(
σ(a+b)/2(n)

)2
if a · b < 0. (31)

These can complemenet the right-hand side of inequality (28).
Finally, the discrete version of Zagier’s inequality (see [1]) states that(

r∑
i=1

x2i

)(
r∑
i=1

y2i

)

max

{
r∑
i=1

xi,

r∑
i=1

yi

} ≤∑
i=1

xiyi, (32)

where 0 < xi, yi ≤ 1, where both of (xi) and (yi) are decreasing sequences.
For xi = d

a/2
i , yi = d

b/2
i (di = divisors of n), we get from (32):
σa(n) · σb(n)

max
{
σa/2(n), σb/2(n)

} ≤ σ(a+b)/2(n) for a, b < 0. (33)

Letting a = −A, b = −B and using (2) and (33), we get:
σA(n) · σB(n)

σB/2(n)
≤ n

A
2 · σA+B

A
(n) for A ≥ B > 0. (34)
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