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Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1; and
d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is unity.
The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let σ∗∗(n) denote the sum
of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect number if
σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present
paper is part V in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and III
we determined all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 6 and u is
odd. In parts IV(a-b) we solved partly the case a = 7. In this paper we fix the case a = 8. In
fact, we show that n = 57657600 = 28.32.52.7.11.13 is the only bi-unitary triperfect number of
the present type.
Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues.
2010 Mathematics Subject Classification: 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The
letters u, v and w are reserved for odd numbers.

∗Prof. Varanasi Sitaramaiah passed away on 2 October 2020.
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A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. If d is a unitary divisor of n,
we write d‖n. A divisor d of n is called a bi-unitary divisor if (d, n/d)∗∗ = 1, where the symbol
(a, b)∗∗ denotes the greatest common unitary divisor of a and b. The concept of a bi-unitary
divisor is due to D. Suryanarayana (cf. [8]). Let σ∗∗(n) denote the sum of bi-unitary divisors
of n. The function σ∗∗(n) is multiplicative, that is, σ∗∗(1) = 1 and σ∗∗(mn) = σ∗∗(m)σ∗∗(n)

whenever (m,n) = 1. If pα is a prime power and α is odd, then every divisor of pα is a bi-unitary
divisor; if α is even, each divisor of pα is a bi-unitary divisor except for pα/2. Hence

σ∗∗(pα) =

σ(pα) = pα+1−1
p−1 if α is odd,

σ(pα)− pα/2 if α is even.
(1.1)

If α is even, say α = 2k, then σ∗∗(pα) can be simplified to

σ∗∗(pα) =

(
pk − 1

p− 1

)
.(pk+1 + 1).

From (1.1), it is not difficult to observe that σ∗∗(n) is odd only when n = 1 or n = 2α.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [9]; a positive integer
n is called a bi-unitary perfect number if σ∗∗(n) = 2n. C. R. Wall [9] proved that there are only
three bi-unitary perfect numbers, namely 6, 60 and 90. A positive integer n is called a bi-unitary
multiperfect number if σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect
numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present
paper is part V in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and III
(see [2–4]) we considered bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 6

and u is odd. In parts IV(a-b) (see [5, 6]) we solved partly the case a = 7. In this paper we fix
the case a = 8. In fact, we show that n = 57657600 = 28.32.52.7.11.13 is the only bi-unitary
triperfect number of the present type.

For a general account on various perfect-type numbers, we refer to [7].

2 Preliminaries

We assume that the reader has parts I, II, III, IV(a-b) (see [2–6]) available. We, however, recall
Lemma 2.1 from these parts because it is so important also here.

Lemma 2.1. (I) If α is odd, then

σ∗∗(pα)

pα
>
σ∗∗(pα+1)

pα+1

for any prime p.
(II) For any α ≥ 2`− 1 and any prime p,

σ∗∗(pα)

pα
≥
(

1

p− 1

)(
p− 1

p2`

)
− 1

p`
=

1

p2`

(
p2`+1 − 1

p− 1
− p`

)
.

(III) If p is any prime and α is a positive integer, then
σ∗∗(pα)

pα
<

p

p− 1
.
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Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [9]; (II) of Lemma 2.1 has
been used by him [9] without explicitly stating it.

3 Bi-unitary triperfect numbers of the form n = 28u

Let n be a bi-unitary triperfect number divisible unitarily by 28 so that σ∗∗(n) = 3n and n = 28.u,
where u is odd. Since σ∗∗(28) = (24 − 1)(25 + 1) = 15.33 = 32.5.11 = 495, using n = 28u in
σ∗∗(n) = 3n, we get

28.u = 3.5.11.σ∗∗(u). (3.1)

This implies that u is divisible by 3, 5 and 11. Let u = 3b.5c.11d.v, where (v, 2.3.5.11) = 1.
Hence we have

n = 28.3b.5c.11d.v, (3.1a)

and from (3.1),

28.3b−1.5c−1.11d−1.v = σ∗∗(3b).σ∗∗(5c).σ∗∗(11d).σ∗∗(v), (3.1b)

where
v has at most five odd prime factors and (v, 2.3.5.11) = 1. (3.1c)

We prove the following:

Theorem 3.1. The number n = 57657600 = 28.32.52.7.11.13 is the only bi-unitary triperfect
number of the form n = 28.u, where u is odd.

Proof. For the proof of Theorem 3.1, we need the following lemmas:

Lemma 3.1. Let n = 28.3b.5c.11d.v, where (v, 2.3.5.11) = 1, be as in (3.1a). If b ≥ 3, then n
cannot be a bi-unitary triperfect number.

Proof. We assume that b ≥ 3 and n is a bi-unitary triperfect number so that (3.1b) holds. We
derive a contradiction. From Lemma 2.1, σ∗∗(3b)

3b
≥ 112

81
for b ≥ 3, and σ∗∗(5c)

5c
≥ 756

625
for c ≥ 3.

Also, σ
∗∗(28)
28

= 495
256

. Hence from (3.1a), for c ≥ 3,

3 =
σ∗∗(n)

n
≥ 495

256
.
112

81
.
756

625
= 3.234 > 3,

a contradiction. Hence c = 1 or c = 2.
Let c = 1. From (3.1a) (c = 1), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
112

81
.
6

5
= 3.208333333 > 3,

a contradiction.
Let c = 2. Since σ∗∗(52) = 26 = 2.13, from (3.1b) (c = 2), we get after simplification,

27.3b−1.5.11d−1.v = 13.σ∗∗(3b).σ∗∗(11d).σ∗∗(v). (3.1d)
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From (3.1d), 13|v. Let v = 13e.w, where (w, 2.3.5.11.13) = 1. Hence from (3.1a),

n = 28.3b.52.11d.13e.w, (3.2a)

and from (3.1d),

27.3b−1.5.11d−1.13e−1.w = σ∗∗(3b).σ∗∗(11d).σ∗∗(13e).σ∗∗(w), (3.2b)

where
w has at most four odd prime factors and (w, 2.3.5.11.13) = 1. (3.2c)

By Lemma 2.1, for d ≥ 3, σ
∗∗(11d)
11d

≥ 15984
14641

. Hence for d ≥ 3, from (3.2a),

3 =
σ∗∗(n)

n
≥ 495

256
.
112

81
.
26

25
.
15984

14641
= 3.03333 > 3,

a contradiction.
Let d = 2 (already c = 2). We have σ∗∗(112) = 122 = 2.61. Taking d = 2 in (3.2b), we get

after simplification,

26.3b−1.5.11.13e−1.w = 61.σ∗∗(3b).σ∗∗(13e).σ∗∗(w). (3.3)

From (3.3), 61|w. Let w = 61f .w′. Hence from (3.2a) (d = 2), we get

n = 28.3b.52.112.13e.61f .w′, (3.3a)

and from (3.3),

26.3b−1.5.11.13e−1.61f−1.w′ = σ∗∗(3b).σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′), (3.3b)

where
w′ has at most three odd prime factors and (w′, 2.3.5.11.13.61) = 1. (3.3c)

When b ≥ 7, we have σ∗∗(3b)
3b
≥ 9760

6561
; using this, from (3.3a), for b ≥ 7, we have

3 =
σ∗∗(n)

n
≥ 495

256
.
9760

6561
.
26

25
.
122

121
= 3.016149146 > 3,

a contradiction. Thus b ≥ 7 cannot hold. Hence 3 ≤ b ≤ 6. We prove that none of these choices
for b is admissible.

Let b = 3. We have σ∗∗(33) = 34−1
2

= 40 = 23.5. Hence by taking b = 3 in (3.3a) and (3.3b),
we get

n = 28.33.52.112.13e.61f .w′, (3.3d)

and
23.32.11.13e−1.61f−1.w′ = σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′), (3.3e)

where
w′ cannot have not more than one odd prime factor. (3.3f)

From (3.3d), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
40

27
.
26

25
.
122

121
= 3.003787879 > 3,

a contradiction. So, b = 3 is not admissible.
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Let b = 4. We have σ∗∗(34) =
(

32−1
2

)
.(33 + 1) = 4.28 = 24.7. Taking b = 4 in (3.3b), we

get after simplification

22.33.5.11.13e−1.61f−1.w′ = 7.σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′). (3.3g)

Comparing powers of 2 on both sides of (3.3g), we find that w′ = 1 and so 7 cannot divide the
left hand side of (3.3g). This contradiction proves that b = 4 is not admissible.

Let b = 5. We have σ∗∗(35) = 36−1
2

= 13.28 = 22.7.13. Taking b = 5 in (3.3b), we get after
simplification

24.34.5.11.13e−2.61f−1.w′ = 7.σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′). (3.3h)

From (3.3h), we see that 7|w′. Let w′ = 7g.w′′; using this in (3.3a), we have

n = 28.35.52.112.13e.61f .7g.w′′,

so that

3 =
σ∗∗(n)

n
≥ 495

256
.
364

243
.
26

25
.
122

121
= 3.0371633 > 3,

a contradiction. Thus b = 5 is not admissible.
Let b = 6. We have σ∗∗(36) =

(
33−1
2

)
.(34 + 1) = 13.82 = 2.13.41. Taking b = 6 in (3.3b),

we obtain after simplification,

25.35.5.11.13e−2.61f−1.w′ = 41.σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′). (3.3i)

From (3.3i), it follows that 41|w′. Let w′ = 41g.w′′. Hence from (3.3a) (b = 6),

n = 28.36.52.112.13e.61f .41g.w′′, (3.3j)

and from (3.3i),

25.35.5.11.13e−2.61f−1.41g−1.w′′ = σ∗∗(13e).σ∗∗(61f ).σ∗∗(41g).σ∗∗(w′′), (3.3k)

where
w′′ has at most two odd prime factors and (w′′, 2.3.5.11.13.61.41) = 1. (3.3`)

By Lemma 2.1, we have σ∗∗(13e)
13e

≥ 30772
28561

for e ≥ 3. Hence from (3.3j), for e ≥ 3, we have

3 =
σ∗∗(n)

n
≥ 495

256
.
1066

729
.
26

25
.
122

121
.
30772

28561
= 3.194368571 > 3,

a contradiction.
Thus e ≤ 2. From (3.3k), e ≥ 2. Hence e = 2. We have σ∗∗(132) = 170 = 2.5.17. Taking

e = 2 in (3.3k), we get

24.35.11.61f−1.41g−1.w′′ = 17.σ∗∗(61f ).σ∗∗(41g).σ∗∗(w′′). (3.3m)

From (3.3m), 17|w′′. Let w′′ = 17h.w′′′. It follows from (3.3j),

n = 28.36.52.112.13e.61f .41g.17h.w′′′, (3.4a)

and from (3.3m) (e = 2),

24.35.11.61f−1.41g−1.17h−1.w′′′ = σ∗∗(61f ).σ∗∗(41g).σ∗∗(17h).σ∗∗(w′′′), (3.4b)

where w′′′ has no more than one odd prime factor and is prime to 2.3.5.11.13.61.41.17.
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By Lemma 2.1, for h ≥ 3, σ
∗∗(17h)
17h

≥ 88452
83521

. Hence for h ≥ 3, from (3.4a), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
1066

729
.
26

25
.
122

121
.
170

169
.
88452

83521
= 3.158471032 > 3,

a contradiction. Hence h = 1 or h = 2.
Let h = 1. From (3.4a), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
1066

729
.
26

25
.
122

121
.
170

169
.
18

17
= 3.157828283 > 3,

a contradiction.
Let h = 2. Since σ∗∗(172) = 290 = 2.5.29, taking h = 2 in (3.4b), we see that 5 divides its

right hand side but 5 does not divide its left hand side. Thus b = 6 cannot occur.
This completes the proof of Lemma 3.1.

Lemma 3.2. Let n = 28.3.5c.11d.v, where (v, 2.3.5.11) = 1. Then n cannot be a bi-unitary
triperfect number.

Proof. We assume that n = 28.3.5c.11d.v is a bi-unitary triperfect number. Hence n satisfies
(3.1b) and (3.1c). From Lemma 2.1, for c ≥ 3, σ

∗∗(5c)
5c
≥ 756

625
. Hence we have

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
756

625
= 3.1185 > 3,

a contradiction. Hence c = 1 or c = 2.
Let c = 1. Then n = 28.3.5.11d.v, so that

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
6

5
= 3.09375 > 3,

a contradiction.
Let c = 2. Taking c = 2 (and b = 1) in (3.2a) and (3.2b), we obtain

n = 28.3.52.11d.13e.w, (3.5a)

and
25.5.11d−1.13e−1.w = σ∗∗(11d).σ∗∗(13e).σ∗∗(w), (3.5b)

where
w has not more than three odd prime factors. (3.5c)

By Lemma 2.1, for d ≥ 5, σ
∗∗(11d)
11d

≥ 1947386
1771561

; and for e ≥ 3, σ
∗∗(13e)
13e

≥ 30772
28561

. Hence when d ≥ 5

and e ≥ 3, from (3.5a),

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
26

25
.
1947386

1771561
.
30772

28561
= 3.175525149 > 3,

a contradiction.
Let d ≥ 5. Then e = 1 or e = 2.
If d ≥ 5 and e = 1, from (3.5a) we have

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
26

25
.
1947386

1771561
.
14

13
= 3.174080416 > 3,

a contradiction.
Let d ≥ 5 and e = 2. We have σ∗∗(132) = 170 = 2.5.17. Taking e = 2 in (3.5b), we obtain

24.11d−1.13.w = 17.σ∗∗(11d).σ∗∗(w). (3.5d)
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From (3.5d), 17|w. Let w = 17f .w′. Hence from (3.5a) and (3.5d), we obtain

n = 28.3.52.11d.132.17f .w′ (d ≥ 5), (3.6a)

and
24.11d−1.13.17f−1.w′ = σ∗∗(11d).σ∗∗(17f ).σ∗∗(w′), (3.6b)

where
w′ has not more than two odd prime factors. (3.6c)

By Lemma 2.1, for f ≥ 3, σ
∗∗(17f )
17f

≥ 88452
83521

. Hence from (3.6a), for f ≥ 3 and d ≥ 5,

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
26

25
.
1947386

1771561
.
170

169
.
88452

83521
= 3.139839369 > 3,

a contradiction. Hence f = 1 or f = 2 (under c = 2, e = 2, d ≥ 5).
Let f = 1. From (3.6a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
26

25
.
1947386

1771561
.
170

169
.
18

17
= 3.139200411 > 3,

a contradiction.
Let f = 2 (along with c = 2, e = 2, d ≥ 5). We have σ∗∗(172) = 290 = 2.5.29. Taking

f = 2 in (3.6b), we see that 5 divides its right hand side but 5 is not a factor of its left hand side.
Hence f = 2 is not admissible.

Thus when c = 2, we must have 1 ≤ d ≤ 4. We now show that none of these choices of d are
admissible.

When d = 1, 3, 4, we have 3|σ∗∗(11d). It now follows from (3.5b) that 3 is a factor of its right
hand side but it is not so with respect to its left hand side.

It remains to examine the case d = 2. Let d = 2. We have σ∗∗(112) = 122 = 2.61. Taking
d = 2 in (3.5b), we get after simplification

24.5.11.13e−1.w = 61.σ∗∗(13e).σ∗∗(w). (3.6d)

From (3.6d), 61|w. Let w = 61f .w′. From (3.5a) and (3.6d), we obtain

n = 28.3.52.112.13e.61f .w′, (3.7a)

and
24.5.11.13e−1.61f−1.w′ = σ∗∗(13e).σ∗∗(61f ).σ∗∗(w′), (3.7b)

where
w′ has at most two odd prime factors and (w′, 2.3.5.11.13.61) = 1. (3.7c)

We show that if n is as in (3.7a), then 7 - n. On the contrary we assume that 7|n and obtain
a contradiction. Suppose that 7|n. Let w′ = 7g.w′′, where w′′ is prime to 2.3.5.7.11.13.61. From
(3.7a) and (3.7b), we obtain

n = 28.3.52.112.13e.61f .7g.w′′, (3.8a)

and
24.5.11.13e−1.61f−1.7g.w′′ = σ∗∗(13e).σ∗∗(61f ).σ∗∗(7g).σ∗∗(w′), (3.8b)

where
w′′ has at most one odd prime factor and (w′′, 2.3.5.7.11.13.61) = 1. (3.8c)

26



Let g = 1. We have σ∗∗(7) = 8 = 23. Taking g = 1 in (3.8b), we see that 25 divides its right
hand side whereas 24 unitarily divides its left hand side. Hence g ≥ 2.

Let g = 2. We have σ∗∗(72) = 50 = 2.52. Taking g = 2 in (3.8b), it follows that 52 divides its
right hand side but 5 is a unitary divisor of its left hand side. Hence we may assume that g ≥ 3.

From Lemma 2.1, for g ≥ 3, σ
∗∗(7g)
7g
≥ 2752

2401
. From (3.8a), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
4

3
.
26

25
.
122

121
.
2752

2401
= 3.098618 > 3,

a contradiction. Thus 7 - n in (3.7a) and (3.7b).
We will obtain a contradiction when d = 2 by examining the factors of σ∗∗(13e) in (3.7b).
If e is odd or 4|e, then 7|σ∗∗(13e). From (3.7b), it follows that 7|w′ and consequently 7|n. But

we proved that 7 - n. Hence we may assume that e = 2k, where k is odd.
First we show that k = 1 is not admissible (so that k ≥ 3).
Assume that k = 1. Then e = 2, and we have σ∗∗(132) = 170 = 2.5.17. Taking e = 2 in

(3.7b), we obtain
23.11.13.61f−1.w′ = 17.σ∗∗(61f ).σ∗∗(w′). (3.8d)

Hence 17|w′ so that we may assume that w′ = 17g.w′′, where w′′ is prime to 2.3.5.11.13.17.61.
From (3.7a) (e = 2) and (3.8d), we get

n = 28.3.52.112.132.61f .17g.w′′, (3.9a)

and
23.11.13.61f−1.17g−1.w′′ = σ∗∗(61f ).σ∗∗(17g).σ∗∗(w′′); (3.9b)

also,
w′′ = 1 or an odd prime power relatively prime to 3.5.11.13.61.17. (3.9c)

By examining the factors of σ∗∗(17g) we will obtain a contradiction to (3.9b). This will force us
to assume that k > 1.

If g is odd or 4|g, we have 3|σ∗∗(17g). From (3.9b) it follows that 3 is a factor of its right hand
side whereas 3 is not a factor of its left hand side. We may assume that g = 2`, where ` is odd. If
` = 1, then g = 2. Note that σ∗∗(172) = 290. Thus, in (3.9b) we see that 5 divides its right hand
side but 5 cannot be a factor of its left hand side. Thus ` ≥ 3. We have

σ∗∗(17g) =

(
17` − 1

16

)
.(17`+1 + 1) (` odd and ` ≥ 3).

We note the following:
(1) 16|17` − 1 but 32 - 17` − 1, since ` is odd. Hence 17`−1

16
is odd and > 1, since ` ≥ 3.

(2) 11|17` − 1 ⇐⇒ 10|`; 13|17` − 1 ⇐⇒ 6|` and 61|17` − 1 ⇐⇒ 60|`. So, in order that
17` − 1 is divisible by 11 or 13 or 61, ` must be even. Since ` is odd, 17` − 1 is not divisible by
11 or 13 or 61; trivially not divisible by 17.

Thus 17`−1
16

is odd > 1 and not divisible by 11 or 13 or 17 or 61. From (3.9b) it follows that
each prime factor of 17`−1

16
|σ∗∗(17g) is a prime factor of w′′. Let p|17`−1

16
. Then p|w′′.

Consider 17`+1 + 1, where ` is odd. We have
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(3) 11|17`+1+1⇐⇒ `+1 = 5u. Since 5u is odd and `+1 is even, 11 - 17`+1+1. Similarly,
13|17`+1 + 1⇐⇒ `+ 1 = 3u. Hence 13 - 17`+1 + 1.

(4) 61|17`+1 + 1 ⇐⇒ ` + 1 = 30u. Thus 61|17`+1 + 1 implies that 1730 + 1|17`+1 + 1.
Since 52|1730 +1|17`+1 +1, it follows from (3.9b) that 5 divides its left hand side. But this is not
possible. Hence 61 - 17`+1 + 1.

Thus 17`+1+1
2

is odd, > 1 and not divisible by 11 or 13 or 17 or 61. From (3.9b), each prime
factor of 17`+1+1

2
should divide w′′. Let q|17`+1+1

2
. Then q|w′′. From (3.9b), neither 17` − 1 nor

17`+1 + 1 is divisible by 3. Hence 17`−1
16

and 17`+1+1
2

are relatively prime so that p 6= q. It follows
that w′′ is divisible by two distinct odd primes and this violates (3.9c).

Hence k = 1 is not possible. So we may assume that k ≥ 3 and e = 2k, where k is odd and
≥ 3. We have

σ∗∗(13e) =

(
13k − 1

12

)
.(13k+1 + 1).

We now prove that
(I) 13k−1

12
is divisible by an odd prime p|w′ and p > 293;

(II) 13k+1+1
2

is divisible by an odd prime q|w′ and q > 293,
where w′ is given in (3.7a) and (3.7b).

Proof of (I). Let

S13 = {p|13k − 1 : p ∈ [3, 293]− {3, 61} and ordp13 is odd}.

If S13 is non-empty, the statement in (I) follows from Lemma 2.5 (a) of Part IV(a), see [5]. We
may assume that S13 is empty. Since p - 13k − 1 if ordp13 is even, it follows that p - 13k − 1

if p ∈ [3, 293] − {3, 61}. The same is true with respect to 13k−1
12

. We shall now discuss the
divisibility of 13k − 1 by p ∈ {3, 61}.

We have 3|13k− 1. Further, 9|13k− 1 implies that 3|13k−1
12
|σ∗∗(13e) so that 3 is a factor of the

left hand side of (3.7b). This cannot happen. Thus 3‖13k − 1. Hence 13k−1
12

is not divisible by 3.
Also, since k is odd, 4‖13k − 1 so that 13k−1

12
is odd, > 1 and not divisible by 3.

We have 61|13k−1 if and only if 3|k; this implies that 133−1|13k−1. But 133−1 = 22.32.61.
Hence 32|13k− 1 and so 3|13k−1

12
|σ∗∗(13e). From (3.7b) it follows that 3 is a factor of its left hand

side but this is false. Hence 61 - 13k − 1.
Thus 13k−1

12
> 1, is odd and not divisible by any prime in [3, 293]. Let p|13k−1

12
. Then p > 293.

From (3.7b), it is clear that p|w′.
This completes the proof of (I).

Proof of (II). Let

T13 = {q|13k+1 + 1 : q ∈ [3, 293]− {5, 17} and s =
1

2
ordq13 is even}.

If T13 is non-empty, (II) follows immediately from Lemma 2.5 (b) of Part IV(a), see [5]. We may
assume that T13 is empty. Since q - 13k+1 +1 when s = 1

2
ordq13 is odd, it follows that 13k+1 +1

is not divisible by any prime in [3, 293]− {5, 17}.
We may note that 5|13k+1 + 1 ⇐⇒ k + 1 = 2u ⇐⇒ 17|13k+1 + 1. Hence if 5 - 13k+1 + 1,

then 17 - 13k+1 + 1. In this case, 13k+1 + 1 is not divisible by any prime in [3, 293]. Hence if
q|13k+1 + 1, then q > 293. Also, from (3.7b), it is clear that q|w′. Thus (II) holds.
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We may assume that 5|13k+1 + 1. Then also 17|13k+1 + 1. We wish to prove that 13k+1 + 1

is not divisible by 5 and 17 alone. On the contrary, assume that this is not the case so that

13k+1 + 1

2
= 5α.17β.

If α ≥ 2, then 52|13k+1 + 1|σ∗∗(13e). From (3.7b), it follows that 52 is a factor of its left hand
side. But this cannot happen. Therefore α = 1.

Similarly, if β ≥ 2, then 172|13k+1 + 1; but this is equivalent to k + 1 = 34u. Consequently,
1334 + 1|13k+1 + 1 but

1021|13
34 + 1

2
|13

k+1 + 1

2
= 5.17β,

which is impossible. Hence β = 1. Thus 13k+1+1
2

= 5.17 so that k = 1. But k ≥ 3, a
contradiction.

It follows that 13k+1+1
2

is divisible by an odd prime q′ /∈ {5, 17} and so q /∈ [3, 293]. Thus
q > 293 and q|13k+1+1

2
. From (3.7b), it is clear that q|w′. Thus (II) holds.

Now, p and q are distinct factors of w′ and p, q > 293. By (3.7c), w′ = pg.qh. From (3.7a),
we have n = 28.3.52.112.13e.61f .pg.qh. Also, we may assume that p ≥ 307 and q ≥ 311. Hence

3 =
σ∗∗(n)

n
≤ 495

256
.
4

3
.
26

25
.
122

121
.
13

12
.
61

60
.
307

306
.
311

310
= 2.99687138 < 3,

a contradiction.
The proof of Lemma 3.2 is complete.

Note 3.1. Let n = 28.32.5c.11d.v, where (v, 2.3.5.11) = 1, be a bi-unitary triperfect number.
Taking b = 2 in (3.1b), we obtain after simplification

27.3.5c−2.11d−1.v = σ∗∗(5c).σ∗∗(11d).σ∗∗(v). (3.10)

It is clear from (3.10) that c ≥ 2.

Note 3.2. Since σ∗∗(52) = 26 = 2.13, taking c = 2 in (3.10), we obtain

26.3.11d−1.v = 13.σ∗∗(11d).σ∗∗(v). (3.10′)

From (3.10’), 13|v. Let v = 13e.w, where (w, 2.3.5.11.13) = 1. Hence we have

n = 28.32.52.11d.13e.w, (3.10a)

and from (3.10’), we obtain

26.3.11d−1.13e−1.w = σ∗∗(11d).σ∗∗(13e).σ∗∗(w), (3.10b)

where
w has at most four odd prime factors and is prime to 2.3.5.11.13. (3.10c)

Lemma 3.3. Let n = 28.32.52.11.13e.w, where (w, 2.3.5.11.13) = 1, be a bi-unitary triperfect
number. Then e = 1 and w = 7 so that n = 28.32.52.11.13.7 = 57657600.
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Proof. Taking d = 1 in (3.10a) and (3.10b), we get

n = 28.32.52.11.13e.w (3.10d)

and
24.13e−1.w = σ∗∗(13e).σ∗∗(w); (3.10e)

w has not more than three odd prime factors.
We distinguish the following cases:
Case 1. Let e = 1. Taking e = 1 in (3.10e), we get

23.w = 7.σ∗∗(w). (3.10f)

From (3.10f ), 7|w. Letw = 7f .w′,where (w′, 2.3.5.11.13.7) = 1. Then from (3.10d) and (3.10f ),
we get

n = 28.32.52.11.13.7f .w′ (3.10g)

and
23.7f−1.w′ = σ∗∗(7f ).σ∗∗(w′). (3.10h)

Let f = 1. From (3.10h), we get w′ = σ∗∗(w′) after simplification and so w′ = 1. Hence
n = 28.32.52.11.13.7 = 57657600 is a bi-unitary triperfect number.

Let f ≥ 2. If f = 2, since σ∗∗(72) = 50 = 2.52, from (3.10h) (f = 2), we see that 5 divides
its right hand side but 5 is not a factor of its left hand side. Hence f = 2 is not admissible.

We may assume that f ≥ 3. Then by Lemma 2.1, σ
∗∗(7f )
7f
≥ 2752

2401
. From (3.10g), we obtain

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
12

11
.
14

13
.
2752

2401
= 3.008746356 > 3,

a contradiction.
Case 2. Let e = 2. Since σ∗∗(132) = 170 = 2.5.17, taking e = 2 in (3.10e), we see that 5 is

a factor of its right hand side but it is not so with respect to its left hand side. Hence e = 2 is not
admissible.

Case 3. Let e ≥ 3. We now prove that 7 - n. On the contrary, let 7|n so that 7|w. Let
w = 7f .w′, where w′ is relatively prime to 2.3.5.11.13.7. From (3.10d) and (3.10e), we get

n = 28.32.52.11.13e.7f .w′ (3.11a)

and
24.13e−1.7f .w′ = σ∗∗(13e).σ∗∗(7f )σ∗∗(w′), (3.11b)

where

w′ has at most two odd prime factors and is prime to 2.3.5.11.13.7. (3.11c)

Since e ≥ 3, we have σ∗∗(13e)
13e

≥ 30772
28561

. If f ≥ 3, from (3.11a), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
12

11
.
30772

28561
.
2752

2401
= 3.010115825 > 3,

a contradiction. Hence f = 1 or f = 2.
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If f = 1, again from (3.11a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
12

11
.
30772

28561
.
8

7
= 3.001365498 > 3,

a contradiction.
Let f = 2. Since σ∗∗(72) = 50 = 2.52, taking f = 2 in (3.11b), we see that 5 divides its right

hand side whereas its left hand side is not divisible by 5, a contradiction.
Hence 7 - n. We now prove that s - n, where s ∈ {17, 19, 23, 29}. On the contrary, we

assume that s|n so that s|w. Let w = sf .w′. From (3.10d) and (3.10e), we obtain

n = 28.32.52.11.13e.sf .w′, (e ≥ 3) (3.12a)

and
24.13e−1.sf .w′ = σ∗∗(13e).σ∗∗(sf ).σ∗∗(w′), (3.12b)

where

w′ has at most two odd prime factors and is prime to 2.3.5.11.13.s.7. (3.12c)

We will obtain a contradiction by examining the factors of σ∗∗(13e).
If e is odd or 4|e, we have 7|σ∗∗(13e). In these cases, from (3.12b), it follows that 7|n. But

we proved that 7 - n. Hence we may assume that e = 2k and k is odd; also, since e ≥ 3, clearly,
k ≥ 3. We have

σ∗∗(13e) =

(
13k − 1

12

)
(13k+1 + 1) (k ≥ 3, k odd ).

We now prove that
(I) 13k−1

12
is divisible by an odd prime p > 29 and p|w′,

(II) 13k+1+1
2

is divisible by an odd prime q > 29 and q|w′,
(III) p and q are distinct primes.
By replacing the interval [3, 293] by the interval [3, 29] in Lemma 2.5 of Part IV(a), see [5],

we arrive at the following:

Result 3.1. Given that k is odd and ≥ 3. Let p 6= 13. Then we have:
(a) If p ∈ [3, 29] − {3}, r = ordp13 is odd and p|13k − 1, then we can find an odd prime

p′ > 29.
(b) If q ∈ [3, 29] − {5, 17}, s = 1

2
ordq13 is even and q|13k+1 + 1, then we can find an odd

prime q′|13k+1+1
2

and q′ > 29.

Proof of (I). Let

S13 = {p|13k − 1 : p ∈ [3, 29]− {3} and ordp13 is odd}.

If S13 is non-empty, the statement in (I) follows from Result 3.1(a) stated above. We may assume
that S13 is empty. Since p - 13k− 1 if ordp13 is odd, it follows that 13k− 1 is not divisible by any
prime p ∈ [3, 29], except for possibly 3. This is true with respect to 13k−1

12
. Also, 3|13k − 1 but

9 - 13k − 1, since 3 is not a factor of the left hand side of (3.12b). Hence 13k−1
12

is odd, > 1 and
not divisible by any prime in [3, 29]. If p|13k−1

12
, p > 29. Also, from (3.12b), p|w′. This proves (I).
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Proof of (II). Let

T13 = {q|13k+1 + 1 : q ∈ [3, 29]− {5, 17} and s =
1

2
ordq13 is even}.

If T13 is non-empty, (II) follows immediately from Result 3.1(b). We may assume that T13 is
empty. Since q - 13k+1 + 1 when s = 1

2
ordq13 is odd, it follows that 13k+1 + 1 is not divisible by

any prime in [3, 29]−{5, 17}. We may note that 5|13k+1+1⇐⇒ k+1 = 2u⇐⇒ 17|13k+1+1.
We may note that 5 is not a factor of the left hand side of (3.12b). Hence 5 - 13k+1 + 1 and so
17 - 13k+1 + 1. It follows that 13k+1+1

2
is odd, > 1 and not divisible by any prime in [3, 29]. If

q|13k+1+1
2

, then q > 29 and q|w′ from (3.12b). This proves (II).

Proof of (III). It is easy to see that 13k−1
12

and 13k+1+1
2

are relatively prime. Hence p and q in (I)
and (II) are distinct odd primes. This proves (II).

From (3.12a), (3.12c), (I) and (II), we have n = 28.32.52.11.13e.sf .pg.qh, where we can
assume that p ≥ 31 and q ≥ 37. Also, s ≥ 17. Hence

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
12

11
.
17

16
.
31

30
.
37

36
= 2.979719148 < 3,

a contradiction.
This proves that n is not divisible by 17 or 19 or 23 or 29.
Consider now the factor σ∗∗(13e) in the equation (3.10e). Since 7 - n, e can neither be odd

nor 4|e. We can assume that e = 2k, where k is odd and k ≥ 3. Using Result 3.1, it is not
difficult to show that 13k−1

12
and 13k+1+1

2
are respectively divisible by two distinct odd primes p

and q respectively and p, q > 29 and both these primes are factors of w in (3.10e). We may
assume that p ≥ 31 and q ≥ 37. In (3.10e), w has not more than three odd prime factors.
Assuming that w has three odd prime factors, since n is not divisible by 17 or 19 or 23 or 29,
we may assume that the possible third prime factor of w, say r ≥ 41. From (3.10d), we have
n = 28.32.52.11.13e.pf .qg.rh, so that

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
12

11
.
13

26
.
31

30
.
37

36
.
41

40
= 2.87455259 < 3,

a contradiction.
The proof of Lemma 3.3 is complete.

Lemma 3.4. Let n = 28.32.52.11d.13e.w, where (w, 2.3.5.11.13) = 1, be as in (3.10a), satisfying
(3.10b) and (3.10c) with d ≥ 2. Then n cannot be a bi-unitary triperfect number.

Proof. We first show that 7 - n. On the contrary suppose that 7|n. Hence 7|w and let w = 7f .w′.
From (3.10a), (3.10b) and (3.10c), we get

n = 28.32.52.11d.13e.7f .w′ (d ≥ 2) (3.13a)

and
26.3.11d−1.13e−1.7f .w′ = σ∗∗(11d).σ∗∗(13e).σ∗∗(7f ).σ∗∗(w′), (3.13b)

where

w′ has at most three odd prime factors and (w′, 2.3.5.11.13.7) = 1. (3.13c)

As 5 cannot be a factor of the left hand side of (3.13b), we can assume that e 6= 2 and f 6= 2.
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By Lemma 2.1, for d ≥ 3, σ
∗∗(11d)
11d

≥ 15984
14641

; for e ≥ 3, σ∗∗(13e)
13e

≥ 30772
28561

; and for f ≥ 3,
σ∗∗(7f )

7f
≥ 2752

2401
. From (3.13a), if d ≥ 3, e ≥ 3, and f ≥ 3, we have

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
15984

14641
.
30772

28561
.
2752

2401
= 3.01237738 > 3,

a contradiction. Thus d ≥ 3, e ≥ 3, and f ≥ 3 cannot hold simultaneously. Recalling that d ≥ 2,

e 6= 2 and f 6= 2, the following cases arise:
(i) d = 2; e ≥ 3; f ≥ 3 (ii) d ≥ 3; e = 1; f ≥ 3 (iii) d ≥ 3; e ≥ 3; f = 1

(iv) d = 2; e = 1; f ≥ 3 (v) d = 2; e ≥ 3; f = 1 (vi) d ≥ 3; e = 1; f = 1

(vii) d = 2; e = 1; f = 1.
In each of the above seven cases we obtain a contradiction. First we dispose off the cases (ii),
(iii), (v), (vi) and (vii).

(ii) Let d ≥ 3, e = 1 and f ≥ 3. From (3.13a) (e = 1), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
15984

14641
.
14

13
.
2752

2401
= 3.011006871 > 3,

a contradiction.
(iii) Let d ≥ 3, e ≥ 3 and f = 1. From (3.13a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
15984

14641
.
30772

28561
.
8

7
= 3.003620469 > 3,

a contradiction.
(v), (vii) We can bring (v) and (vii) under the case d = 2, f = 1. Taking d = 2 and f = 1

in (3.13a), we get n = 28.32.52.112.13e.7.w′. Since σ∗∗(7) = 8, taking f = 1 in (3.13b), we see
that w′ = 1 or w′ = pα, where p is an odd prime ≥ 17. Hence we have

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
122

121
.
13

12
.
8

7
.
17

16
= 2.963558577 < 3,

a contradiction.
(vi) Let d ≥ 3, e = 1 and f = 1. Hence from (3.13a) (e = 1, f = 1), we obtain

3 =
σ∗∗(n)

n
≥ 495

256
.
10

9
.
26

25
.
15984

14641
.
14

13
.
8

7
= 3.002253944 > 3,

a contradiction.
(i), (iv) We cover the cases (i) and (iv) under the case d = 2 and f ≥ 3. Let d = 2 and f ≥ 3.

Since σ∗∗(112) = 122 = 2.61, taking d = 2 in (3.13b), we obtain

25.3.11.13e−1.7f .w′ = 61.σ∗∗(13e).σ∗∗(7f ).σ∗∗(w′). (3.13d)

Hence 61|w′ and let w′ = 61g.w′′. Hence from (3.13a) and (3.13d), we get

n = 28.32.52.112.13e.7f .61g.w′′ (f ≥ 3) (3.14a)

and
25.3.11.13e−1.7f .61g−1.w′′ = σ∗∗(13e).σ∗∗(7f ).σ∗∗(61g).σ∗∗(w′′), (3.14b)

where

w′′ has at most two odd prime factors and (w′′, 2.3.5.11.13.7.61) = 1. (3.14c)

By examining the factors of σ∗∗(7f ) we will obtain a contradiction.
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If f is odd or 4|f, then 8|σ∗∗(7f ). From (3.14b), it follows that w′′ = 1. Hence n =

28.32.52.112.13e.7f .61g, and so

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
122

121
.
13

12
.
7

6
.
61

60
= 2.89479627 < 3,

a contradiction.
We may assume that f = 2k and k is odd. Since f ≥ 3, we have k ≥ 3. We claim that (when

k is odd and ≥ 3)
(I) 7k−1

6
is divisible by a prime p′ > 71 and p′|w′′,

(II) 7k+1 + 1 is divisible by a prime q′ > 71 and q′|w′′,
(III) the primes p′ and q′ are distinct.
By replacing the intervals [3, 2520] and [3, 1193] in Lemma 2.4 (a) and (b) of Part IV(a)

(see [5]) by the interval [3, 71], we arrive at the following.

Result 3.2. Given that k is odd and ≥ 3. Let p 6= 7. Then we have:
(a) If p ∈ [3, 71] − {3, 19, 37}, ordp7 is odd and p|7k − 1, then we can find an odd prime

p′|7k − 1 and p′ > 71.
(b) If q ∈ [3, 71] − {5, 13}, 1

2
ordp7 is even and q|7k+1 + 1, then we can find an odd prime

q′|7k+1 + 1 and q′ > 71.

Proof of (I). Let

S7 = {p|7k − 1 : p ∈ [3, 71]− {3, 19, 37} and ordp7 is odd}.

If S7 is non-empty, by Result 3.2(a), the statement in (I) follows immediately. We may assume
that S7 is empty. Since p - 7k − 1 when ordp7 is even, it follows that p - 7k − 1 for any
p ∈ [3, 71]− {3, 19, 37}. We shall examine the divisibility of 7k − 1 by p ∈ {3, 19, 37}.

First we dispose of the case when p = 37. We have 37|7k − 1 ⇐⇒ 9|k. Hence 37|7k − 1

implies that 79 − 1|7k − 1. Also, 79 − 1 = 2.33.19.37.1063. Hence 7k−1
6
|σ∗∗(7f ) is divisible by

19, 37 and 1063. From (3.14b), it follows that w′′ is divisible by these three prime factors. This
contradicts (3.14c). Thus 37 - 7k − 1.

Clearly, 3|7k − 1. We show that 27 - 7k − 1. If 27|7k − 1, then 9|7k−1
6
|σ∗∗(7f ). From (3.14b),

it follows that 3|w′′. But this is not the case. Hence 27 - 7k − 1. Further 9|7k − 1 ⇐⇒ 3|k ⇐⇒
19|7k − 1. Thus if 9 - 7k − 1, then 19 - 7k − 1 and 3‖7k − 1.

Thus if 9 - 7k − 1, then it follows that 7k−1
6

is divisible by none of the primes in [3, 71]. If
p′|7k−1

6
, then p′ > 71 and from (3.14b), p′|w′′. This proves (I) in this case.

We may assume that 9|7k − 1 and so 9‖7k − 1. Then 19|7k − 1. Consider 7k−1
18

. This is not
divisible by any prime in [3, 71] except for 19. We show that 7k−1

18
is not divisible by 19 alone.

On the other hand, let 7k−1
18

= 19α for some positive integer α. If α ≥ 2, then 192|7k − 1; but
this is equivalent to 57|k and this implies that 757 − 1|7k − 1. But 419|757−1

18
7k−1
18

= 19α. This is
impossible. Hence α = 1 and so 7k−1

18
= 19 or k = 3. Hence f = 2k = 6. We show that f = 6 is

not admissible.
Let f = 6. We have σ∗∗(76) = 2.3.19.1201. Taking f = 6 in (3.14b), we get

24.11.13e−1.76.61g−1.w′′ = 19.1201.σ∗∗(13e).σ∗∗(61g).σ∗∗(w′′). (3.14d)
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From (3.14b), w′′ is divisible by 19 and 1201. By (3.14c), we have w′′ = 19h.(1201)i. Hence
from (3.14a) (f = 6) and (3.14d), we get

n = 28.32.52.112.13e.76.61g.19h.(1201)i (3.15a)

and

24.11.13e−1.76.61g−1.19h−1.(1201)i−1 = σ∗∗(13e).σ∗∗(61g).σ∗∗(19h).σ∗∗((1201)i). (3.15b)

We obtain a contradiction by examining the factors of σ∗∗(19h).
If h is odd or 4|h, then 5|σ∗∗(19h). From (3.15b), it follows that 5 should divide its left hand

side and this is not possible. We may assume that h = 2`, where ` is odd. We have

σ∗∗(19h) =

(
19` − 1

18

)
.(19`+1 + 1).

If ` = 1, then h = 2 and σ∗∗(192) = 362 = 2.181. Taking h = 2 in (3.15b), we see that 181 is a
factor of its left hand side. But this is not so. Hence ` ≥ 3.

We prove that 19`−1
18
|σ∗∗(19h) is not divisible by any of the primes 7, 11, 13, 61 and 1201. This

leads to a contradiction in view of (3.15b).
We note that
(a) 11|19t − 1⇐⇒ 10|t; (b) 13|19t − 1⇐⇒ 12|t; (c) 7|19t − 1⇐⇒ 6|t;
(d) 61|19t − 1⇐⇒ 30|t; and (e) 1201|19t − 1⇐⇒ 200|t.

Thus in order that 19t − 1 is divisible by any one of the primes 7, 11, 13, 61 and 1201, t must be
even. Since ` is odd, 19` − 1 is divisible by none of the primes 7, 11, 13, 61 and 1201; trivially
19` − 1 is not divisible by 19. Also, 2‖19` − 1, since ` is odd; 27|19` − 1 ⇐⇒ 3|`; this implies
that 193 − 1|19` − 1. But 193 − 1 = 2.33.127. Hence 3|193−1

8
|19`−1

18
|σ∗∗(19h). From (3.15b), it

follows that 3 is a factor of its left hand side. But this is not the case. Hence 27 - 19` − 1. As
9|19` − 1, it follows that 9‖19` − 1.

Thus 19`−1
18

> 1, odd and not divisible by 7, 11, 13, 19, 61 and 1201. Since 19`−1
18

is a factor of
σ∗∗(19h), from (3.15b), this should not happen.

Hence f = 6 is not admissible. Thus 7k−1
18

is divisible by an odd prime, say p′ 6= 19 and
p′ /∈ [3, 71]. Clearly from (3.14b), p′|w′′. Thus p′|7k−1

18
|7k−1

6
, p′|w′′ and p′ > 71. This proves (I).

Proof of (II). Let

T7 = {q|7k+1 + 1 : q ∈ [3, 71]− {5, 13} and s =
1

2
ordq7 is even}.

By the statement in Result 3.2(b), if T7 is non-empty then (II) holds. We may assume that T7 is
empty. Since q - 7k+1 + 1 if s = 1

2
ordq7 is even, it follows that 7k+1 + 1 is not divisible by any

prime in [3, 71]− {5, 13}.
We now examine the divisibility of 7k+1 + 1 by 5 and 13.
Since 7k+1 + 1|σ∗∗(7f ) and 5 is not a factor of the left hand side of (3.14b), it follows that

5 - 7k+1 + 1. Also, 13|7k+1 + 1⇐⇒ k + 1 = 6u. Hence if 13|7k+1 + 1, then 5|76 + 1|7k+1 + 1.
We just proved that 5 - 7k+1 + 1. Hence 13 - 7k+1 + 1.

Thus 7k+1 + 1 is not divisible by any prime in [3, 71]. Since 7k+1+1
2

is odd, > 1 and not
divisible by any prime in [3, 71], we have if q′|7k+1+1

2
, then q′ > 71 and q′|w′′. This proves (II).
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Proof of (III). Since 7k−1
6

and 7k+1+1 are relatively prime, p′ and q′ are distinct. Thus (III) holds.

We can assume that p′ ≥ 73 and q′ ≥ 79 in (I) and (II). From (3.14c), w′′ = (p′)h.(q′)i. Hence
from (3.14a),

n = 28.32.52.112.13e.7f .61g.(p′)h.(q′)i.

Hence we have

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
122

121
.
13

12
.
7

6
.
61

60
.
73

72
.
79

78
= 2.972630002 < 3,

a contradiction.
Thus the case f ≥ 3 and d = 2 is not possible.
The proof that 7 - n is complete.
To complete the proof of Lemma 3.4, we require the following modification of Lemma 2.5 of

Part IV(a) [5], which can be proved easily proceeding in the same way as in [5] :

Result 3.3. Let k be odd and k ≥ 3. Let p 6= 13.
(a) If p ∈ [3, 443] − {3, 61}, r = ordp13 is odd and p|13k − 1, then we can find a prime p′

(depending on p) such that p′|13k−1
12

and p′ > 443.
(b) If q ∈ [3, 443]− {5, 17}, s = 1

2
ordq13 is even and q|13k+1 + 1, then we can find a prime

q′ (depending on q) such that q′|13k+1+1
2

and q′ > 443.

We continue proving Lemma 3.4. We claim that if w is given as in (3.10a),
(A) 13k−1

12
is divisible by an odd prime p′ > 443 and p′|w,

(B) 13k+1+1
2

is divisible by an odd prime q′ > 443 and q′|w,
and p′ and q′ are distinct.

Proof of (A). Let

S ′13 = {p|13k − 1 : p ∈ [3, 443]− {3, 61} and r = ordp13 is odd}.

If S ′13 is non-empty, then (A) holds by (a) of Result 3.3. We may assume that S ′13 is empty. Since
p - 13k − 1 if ordp13 is even, it follows that p - 13k − 1 if p ∈ [3, 443], except for possibly
p ∈ {3, 61}.

Clearly, 3|13k− 1. We note that 9|13k− 1⇐⇒ 3|k ⇐⇒ 61|13k− 1. Suppose that 9 - 13k− 1

so that 61 - 13k − 1. Also, in this case 3‖13k − 1. Hence 13k−1
12

is not divisible by any prime in
[3, 443]. Also, 13k−1

12
is odd and > 1. Let p′|13k−1

12
. Then p′ > 443 and from (3.10b), p′|w. This

proves (A) in this case.
Suppose that 9|13k − 1 and so 61|13k − 1. Also, 27 - 13k − 1; if this is not so, then

9|13k−1
12
|σ∗∗(13e). Hence 3|w from (3.10b). This is not possible. Thus 3‖13k−1

12
and as a consequence

13k−1
36

is odd, > 1 and not divisible by 3 but divisible by 61.
We wish to show that 13k−1

36
must be divisible by an odd prime p′ 6= 61. On the contrary,

let 13k−1
36

= 61α, for some positive integer α. If α ≥ 2, then 612|13k − 1; this holds if and
only if 183|k. Hence 61|183|k and so 1361 − 1|13k − 1. But 4027|1361−1

36
|13k−1

36
= 61α, which is

impossible. Hence α = 1 and 13k−1
36

= 16 or k = 3. So e = 6.
We now prove that e = 6 is not admissible in (3.10b).
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Let e = 6. We have σ∗∗(136) = 2.3.61.14281. Taking e = 6 in (3.10b), we get

25.11d−1.135.w = 61.14281.σ∗∗(11d).σ∗∗(w). (3.15c)

From (3.15c), w is divisible by 61 and 14281. Let w = 61f .(14281)g.w′. From (3.10a) and
(3.15c), we obtain (when e = 6),

n = 28.32.52.11d.136.61f .(14281)g.w′ (3.16a)

and
25.11d−1.135.61f−1.(14281)g−1.w′ = σ∗∗(11d).σ∗∗(61f ).σ∗∗((14281)g).σ∗∗(w′). (3.16b)

where

w′ has at most two odd prime factors and (w′, 2.3.5.7.11.13.61.14281) = 1; (3.16c)

note that w′ is prime to 7 since we proved that 7 - n when n is given by (3.10a).
We examine σ∗∗(11d) in (3.16b) to obtain a contradiction to e = 6.
If d is odd or 4|d, then σ∗∗(11d) is divisible by 3. It follows from (3.16b) that this is not

possible as 3 - w′.
We may assume that d = 2`, where ` is odd.
Let ` = 1 so that d = 2. From (3.16a) (d = 2), we have n = 28.32.52.112.136.61f .(14281)g.w′

and w′ cannot have more than two odd prime factors. We may assume that w′ = ph1 .p
i
2, where

p1 ≥ 17 and p2 ≥ 19. Hence n = 28.32.52.112.136.61f .(14281)g.ph1 .p
i
2 and so we have

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
122

121
.
13

12
.
61

60
.
14281

14280
.
17

16
.
19

18
= 2.782990097 < 3,

a contradiction.
Hence ` ≥ 3, since ` is odd. We have

σ∗∗(11d) =

(
11` − 1

10

)
.(11`+1 + 1) (` ≥ 3 and odd).

We prove that
(C) 11`−1

10
is divisible by a prime p′ > 23 and p′|w′,

(D) 11`+1 + 1 is divisible by a prime q′ > 23 and q′|w′,
and p′ 6= q′.

Proof of (C). We have
(1) 2‖11` − 1 and 3 - 11` − 1, since ` is odd.
(2) Since 5 is not a factor of the left hand side of (3.16b), it follows that 5 - 11`−1

10
|σ∗∗(11d).

(3) From (1) and (2), 11`−1
10

is odd,> 1 (since ` ≥ 3) and not divisible by 3 and 5. The left hand
side of (3.16b) is not divisible by 7. Hence 7 - 11`−1

10
. Also, 7|11` − 1 ⇐⇒ 3|` ⇐⇒ 19|11` − 1.

So, 19 - 11`−1
10

.
(4) For any positive integer t, we have (i) 13|11t − 1 ⇐⇒ 12|t; (ii) 17|11t − 1 ⇐⇒ 16|t and

(iii) 23|11t − 1 ⇐⇒ 22|t. In order that 11t − 1 is divisible by 13 or 17 or 23, the number t must
be even. Since ` is odd, we conclude that 11` − 1 is not divisible by 13 or 17 or 23. Trivially,
11 - 11` − 1.
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From (3) and (4), it follows that 11`−1
10

> 1, is odd and not divisible by any prime in [3, 23].
Hence every prime factor of 11`−1

10
is greater than 23. Also, 61|11` − 1 ⇐⇒ 4|`. But ` is odd;

hence 61 - 11` − 1.
Further, 14281|11` − 1⇐⇒ 1785|`. Since 105|1785, we can conclude that if 14281|11` − 1,

then 11105 − 1|11` − 1. But 72|11105 − 1. It follows that 7|w′ which is not possible. Hence
14281 - 11` − 1.

From (3.16b), it now follows that if p′|11`−1
10

, then p′ > 23 and p′|w′. This proves (C).

Proof of (D). We note that
(5) 11`+1+1

2
is odd, > 1 and not divisible by 3, 5 and 7, since these are not factors of the left

hand side of (3.16b).
(6) For any positive integer t, 11t + 1 is not divisible by 19. The same is true with respect to

11`+1 + 1.
(7) 13|11`+1 + 1 ⇐⇒ ` + 1 = 6u; hence 13|11`+1 + 1 implies that 116 + 1|11`+1 + 1. But

116 + 1 = 2.13.61.1117. From (3.16b), it follows that 1117|w′. Since w′ is divisible by not more
than two odd primes, we can assume that w′ = (1117)h.si, where s is prime ≥ 17. From (3.16a),
we have n = 28.32.52.11d.136.61f .(14281)g.(1117)h.si and hence

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
11

10
.
13

12
.
61

60
.
14281

14280
.
1117

1116
.
17

16
= 2.87897417 < 3,

a contradiction. Hence 13 - 11`+1 + 1.
(8) 17|11`+1 + 1⇐⇒ `+ 1 = 8u. Hence 17|11`+1 + 1 implies that 118 + 1|11`+1 + 1. Also,

118 + 1 = 2.17.6304673. Hence from (3.16b), 17 and 6304673 are factors of w′. From (3.16c),
w′ = 17h.(6304673)i. From(3.16a), n = 28.32.52.11d.136.61f .(14281)g.17h.(6304673)i and so
we have (using 6304673 > 1117),

σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
11

10
.
13

12
.
61

60
.
14281

14280
.
17

16
.
1117

1116
= 2.87897417 < 3,

a contradiction. Hence 17 - 11`+1 + 1.
(9) 23|11`+1 + 1⇐⇒ `+ 1 = 11u. Since `+ 1 is even, it follows that 23 - 11`+1 + 1.
(10) 14281 - 11t + 1 for any positive integer t. In particular, 14281 - 11`+1 + 1.
(11) If 61 - 11`+1+1

2
, then 11`+1+1

2
is not divisible by any prime in [3, 23]∪ {61, 14281}. Hence

every prime q′|11`+1+1
2

divides w′ and q′ > 23. Thus (D) is true in this case.
(12) Suppose that 61|11`+1 + 1. We claim that 11`+1+1

2
must be divisible by an odd prime

q′ 6= 61. On the contrary, let 11`+1+1
2

= 61α for some positive integer α. If α ≥ 2, then
612|11`+1 + 1. But this is equivalent to ` + 1 = 122u; hence 733|11122+1

2
|11`+1+1

2
= 61α, which

is impossible. Hence α = 1 and 11`+1+1
2

= 61 or ` = 1. But ` ≥ 3. This contradiction proves
that 11`+1+1

2
is divisible by an odd prime q′ 6= 61. It follows that q′ /∈ [3, 23] ∪ {61, 14281} and

therefore q′ > 23 and q′|w′. This proves (D) completely.

Also, p′ 6= q′, since 11`−1
10

and 11`+1 + 1 are relatively prime. Without loss of generality we
can assume that p′ ≥ 29 and q′ ≥ 31.

We continue the case e = 6 to end up with a contradiction. From (3.16c), since p′ and
q′ are odd prime factors of w′, we must have w′ = (p′)h.(q′)i. Hence from (3.16a), n =

28.32.52.11d.136.61f .(14281)g.(p′)h.(q′)i, and we have
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3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
11

10
.
13

12
.
61

60
.
14281

14280
.
29

28
.
31

30
= 2.897345302 < 3,

a contradiction. Hence e = 6 is not possible.

We continue the proof of (A) after Result 3.3. It now follows that 13k−1
36

is divisible by an odd
prime p′ 6= 61. Hence p′ /∈ [3, 443] and so p′ > 443. Also, from (3.10b), p′|w. This proves (A)
completely.

Proof of (B). Let

T ′13 = {q|13k+1 + 1 : q ∈ [3, 443]− {5, 17} and s =
1

2
ordq13 is even}.

If T ′13 is non-empty, then (B) holds by Result 3.3(b). We may assume that T ′13 is empty. Since
q - 13k+1 + 1 if s = 1

2
ordq13 is odd, it follows that 13k+1 + 1 is not divisible by any prime

q ∈ [3, 443], except for possibly q ∈ {5, 17}.
We note that 5|13k+1 + 1 ⇐⇒ k + 1 = 2u ⇐⇒ 17|13k+1 + 1. Since 5 is not a factor of the

left hand side of (3.10b), it follows that 5 - 13k+1 + 1. Hence 17 - 13k+1 + 1.
Thus 13k+1+1 is not divisible by any prime in [3, 443]. The same is true with respect to 13k+1+1

2

which is odd and > 1. If q′|13k+1+1
2

, then q′ > 443 and q′|w from (3.10b). This proves (B).
Also, since 13k−1

12
is relatively prime to 13k+1 + 1, we have p′ 6= q′.

Completion of proof of Lemma 3.4. We may assume that p′ ≥ 449 and q′ ≥ 457. From (3.10c), w
has not more than four odd prime factors. Possibly w may have two more odd prime factors apart
from p′ and q′. If p1 and p2 denote these two possible odd prime factors (of w), since w is prime
to 2.3.5.11.13 and we already proved that 7 - n, we can assume that p1 ≥ 17 and p2 ≥ 19. Thus
n = 28.32.52.11d.13e.(p′)f .(q′)g.ph1 .p

i
2, and hence we have

3 =
σ∗∗(n)

n
<

495

256
.
10

9
.
26

25
.
11

10
.
13

12
.
449

448
.
457

456
.
17

16
.
19

18
= 2.999442728 < 3,

a contradiction.
The proof of Lemma 3.4 is complete.

Completion of proof of Theorem 3.1. Follows from Lemmas 3.1 to 3.4.
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