Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 27, 2021, No. 2, 20–40 DOI: 10.7546/nntdm.2021.27.2.20-40

Bi-unitary multiperfect numbers, V

Pentti Haukkanen¹ and Varanasi Sitaramaiah^{2,*}

¹ Faculty of Information Technology and Communication Sciences, FI-33014 Tampere University, Finland e-mail: pentti.haukkanen@tuni.fi

² 1/194e, Poola Subbaiah Street, Taluk Office Road, Markapur, Prakasam District, Andhra Pradesh, 523316 India

Dedicated to the memory of Prof. D. Suryanarayana

Received: 17 July 2020 Revised: 3 November 2020 Accepted: 6 November 2020

Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1; and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is unity. The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let $\sigma^{**}(n)$ denote the sum of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present paper is part V in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and III we determined all bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 6$ and u is odd. In parts IV(a-b) we solved partly the case a = 7. In this paper we fix the case a = 8. In fact, we show that $n = 57657600 = 2^8.3^2.5^2.7.11.13$ is the only bi-unitary triperfect number of the present type.

Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues. **2010 Mathematics Subject Classification:** 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The letters u, v and w are reserved for odd numbers.

^{*}Prof. Varanasi Sitaramaiah passed away on 2 October 2020.

A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. If d is a unitary divisor of n, we write d||n. A divisor d of n is called a *bi-unitary* divisor if $(d, n/d)^{**} = 1$, where the symbol $(a, b)^{**}$ denotes the greatest common unitary divisor of a and b. The concept of a bi-unitary divisor is due to D. Suryanarayana (cf. [8]). Let $\sigma^{**}(n)$ denote the sum of bi-unitary divisors of n. The function $\sigma^{**}(n)$ is multiplicative, that is, $\sigma^{**}(1) = 1$ and $\sigma^{**}(mn) = \sigma^{**}(m)\sigma^{**}(n)$ whenever (m, n) = 1. If p^{α} is a prime power and α is odd, then every divisor of p^{α} is a bi-unitary divisor; if α is even, each divisor of p^{α} is a bi-unitary divisor except for $p^{\alpha/2}$. Hence

$$\sigma^{**}(p^{\alpha}) = \begin{cases} \sigma(p^{\alpha}) = \frac{p^{\alpha+1}-1}{p-1} & \text{if } \alpha \text{ is odd,} \\ \sigma(p^{\alpha}) - p^{\alpha/2} & \text{if } \alpha \text{ is even.} \end{cases}$$
(1.1)

If α is even, say $\alpha = 2k$, then $\sigma^{**}(p^{\alpha})$ can be simplified to

$$\sigma^{**}(p^{\alpha}) = \left(\frac{p^k - 1}{p - 1}\right) . (p^{k+1} + 1).$$

From (1.1), it is not difficult to observe that $\sigma^{**}(n)$ is odd only when n = 1 or $n = 2^{\alpha}$.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [9]; a positive integer n is called a bi-unitary perfect number if $\sigma^{**}(n) = 2n$. C. R. Wall [9] proved that there are only three bi-unitary perfect numbers, namely 6, 60 and 90. A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present paper is part V in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and III (see [2–4]) we considered bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 6$ and u is odd. In parts IV(a-b) (see [5,6]) we solved partly the case a = 7. In this paper we fix the case a = 8. In fact, we show that $n = 57657600 = 2^8.3^2.5^2.7.11.13$ is the only bi-unitary triperfect number of the present type.

For a general account on various perfect-type numbers, we refer to [7].

2 Preliminaries

We assume that the reader has parts I, II, III, IV(a-b) (see [2–6]) available. We, however, recall Lemma 2.1 from these parts because it is so important also here.

Lemma 2.1. (I) If α is odd, then

$$\frac{\sigma^{**}(p^\alpha)}{p^\alpha} > \frac{\sigma^{**}(p^{\alpha+1})}{p^{\alpha+1}}$$

for any prime p.

(II) For any $\alpha \geq 2\ell - 1$ and any prime p,

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} \ge \left(\frac{1}{p-1}\right) \left(p - \frac{1}{p^{2\ell}}\right) - \frac{1}{p^{\ell}} = \frac{1}{p^{2\ell}} \left(\frac{p^{2\ell+1} - 1}{p-1} - p^{\ell}\right).$$

(III) If p is any prime and α is a positive integer, then

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} < \frac{p}{p-1}.$$

Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [9]; (II) of Lemma 2.1 has been used by him [9] without explicitly stating it.

3 Bi-unitary triperfect numbers of the form $n = 2^8 u$

Let n be a bi-unitary triperfect number divisible unitarily by 2^8 so that $\sigma^{**}(n) = 3n$ and $n = 2^8 \cdot u$, where u is odd. Since $\sigma^{**}(2^8) = (2^4 - 1)(2^5 + 1) = 15.33 = 3^2 \cdot 5.11 = 495$, using $n = 2^8 u$ in $\sigma^{**}(n) = 3n$, we get

$$2^8 \cdot u = 3.5 \cdot 11 \cdot \sigma^{**}(u). \tag{3.1}$$

This implies that u is divisible by 3, 5 and 11. Let $u = 3^{b} \cdot 5^{c} \cdot 11^{d} \cdot v$, where (v, 2.3.5.11) = 1. Hence we have

$$n = 2^8 \cdot 3^b \cdot 5^c \cdot 11^d \cdot v, (3.1a)$$

and from (3.1),

$$2^{8} \cdot 3^{b-1} \cdot 5^{c-1} \cdot 11^{d-1} \cdot v = \sigma^{**}(3^{b}) \cdot \sigma^{**}(5^{c}) \cdot \sigma^{**}(11^{d}) \cdot \sigma^{**}(v),$$
(3.1b)

where

v has at most five odd prime factors and (v, 2.3.5.11) = 1. (3.1c)

We prove the following:

Theorem 3.1. The number $n = 57657600 = 2^8 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$ is the only bi-unitary triperfect number of the form $n = 2^8 \cdot u$, where u is odd.

Proof. For the proof of Theorem 3.1, we need the following lemmas:

Lemma 3.1. Let $n = 2^{8} \cdot 3^{b} \cdot 5^{c} \cdot 11^{d} \cdot v$, where $(v, 2 \cdot 3 \cdot 5 \cdot 11) = 1$, be as in (3.1a). If $b \ge 3$, then n cannot be a bi-unitary triperfect number.

Proof. We assume that $b \ge 3$ and n is a bi-unitary triperfect number so that (3.1*b*) holds. We derive a contradiction. From Lemma 2.1, $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{112}{81}$ for $b \ge 3$, and $\frac{\sigma^{**}(5^c)}{5^c} \ge \frac{756}{625}$ for $c \ge 3$. Also, $\frac{\sigma^{**}(2^8)}{2^8} = \frac{495}{256}$. Hence from (3.1*a*), for $c \ge 3$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{112}{81} \cdot \frac{756}{625} = 3.234 > 3,$$

a contradiction. Hence c = 1 or c = 2.

Let c = 1. From (3.1*a*) (c = 1), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{112}{81} \cdot \frac{6}{5} = 3.208333333 > 3,$$

a contradiction.

Let c = 2. Since $\sigma^{**}(5^2) = 26 = 2.13$, from (3.1b) (c = 2), we get after simplification,

$$2^{7} \cdot 3^{b-1} \cdot 5 \cdot 11^{d-1} \cdot v = 13 \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(11^{d}) \cdot \sigma^{**}(v).$$
(3.1d)

From (3.1*d*), 13|v. Let $v = 13^{e} w$, where (w, 2.3.5.11.13) = 1. Hence from (3.1*a*),

$$n = 2^8 \cdot 3^b \cdot 5^2 \cdot 11^d \cdot 13^e \cdot w, (3.2a)$$

and from (3.1d),

$$2^{7} \cdot 3^{b-1} \cdot 5 \cdot 11^{d-1} \cdot 13^{e-1} \cdot w = \sigma^{**}(3^{b}) \cdot \sigma^{**}(11^{d}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(w), \qquad (3.2b)$$

where

w has at most four odd prime factors and (w, 2.3.5.11.13) = 1. (3.2c)

By Lemma 2.1, for $d \ge 3$, $\frac{\sigma^{**}(11^d)}{11^d} \ge \frac{15984}{14641}$. Hence for $d \ge 3$, from (3.2*a*),

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{112}{81} \cdot \frac{26}{25} \cdot \frac{15984}{14641} = 3.03333 > 3,$$

a contradiction.

Let d = 2 (already c = 2). We have $\sigma^{**}(11^2) = 122 = 2.61$. Taking d = 2 in (3.2b), we get after simplification,

$$2^{6} \cdot 3^{b-1} \cdot 5 \cdot 11 \cdot 13^{e-1} \cdot w = 61 \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(w).$$
(3.3)

From (3.3), 61|w. Let $w = 61^{f} \cdot w'$. Hence from (3.2*a*) (d = 2), we get

$$n = 2^8 \cdot 3^b \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot w', (3.3a)$$

and from (3.3),

$$2^{6} \cdot 3^{b-1} \cdot 5 \cdot 11 \cdot 13^{e-1} \cdot 61^{f-1} \cdot w' = \sigma^{**}(3^{b}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(61^{f}) \cdot \sigma^{**}(w'),$$
(3.3b)

where

w' has at most three odd prime factors and (w', 2.3.5.11.13.61) = 1. (3.3c)

When $b \ge 7$, we have $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{9760}{6561}$; using this, from (3.3*a*), for $b \ge 7$, we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{9760}{6561} \cdot \frac{26}{25} \cdot \frac{122}{121} = 3.016149146 > 3.016146 > 3.016146$$

a contradiction. Thus $b \ge 7$ cannot hold. Hence $3 \le b \le 6$. We prove that none of these choices for b is admissible.

Let b = 3. We have $\sigma^{**}(3^3) = \frac{3^4-1}{2} = 40 = 2^3.5$. Hence by taking b = 3 in (3.3*a*) and (3.3*b*), we get

$$n = 2^8 \cdot 3^3 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot w', (3.3d)$$

and

$$2^{3}.3^{2}.11.13^{e-1}.61^{f-1}.w' = \sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(w'), \qquad (3.3e)$$

where

$$w'$$
 cannot have not more than one odd prime factor. (3.3f)

From (3.3d), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{40}{27} \cdot \frac{26}{25} \cdot \frac{122}{121} = 3.003787879 > 3,$$

a contradiction. So, b = 3 is not admissible.

Let b = 4. We have $\sigma^{**}(3^4) = \left(\frac{3^2-1}{2}\right) \cdot (3^3+1) = 4.28 = 2^4.7$. Taking b = 4 in (3.3*b*), we get after simplification

$$2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 13^{e-1} \cdot 61^{f-1} \cdot w' = 7 \cdot \sigma^{**} (13^{e}) \cdot \sigma^{**} (61^{f}) \cdot \sigma^{**} (w').$$

$$(3.3g)$$

Comparing powers of 2 on both sides of (3.3g), we find that w' = 1 and so 7 cannot divide the left hand side of (3.3g). This contradiction proves that b = 4 is not admissible.

Let b = 5. We have $\sigma^{**}(3^5) = \frac{3^6-1}{2} = 13.28 = 2^2.7.13$. Taking b = 5 in (3.3b), we get after simplification

$$2^{4}.3^{4}.5.11.13^{e-2}.61^{f-1}.w' = 7.\sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(w').$$
(3.3*h*)

From (3.3*h*), we see that 7|w'. Let $w' = 7^g \cdot w''$; using this in (3.3*a*), we have

$$n = 2^8 \cdot 3^5 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot 7^g \cdot w'',$$

so that

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{364}{243} \cdot \frac{26}{25} \cdot \frac{122}{121} = 3.0371633 > 3,$$

a contradiction. Thus b = 5 is not admissible.

Let b = 6. We have $\sigma^{**}(3^6) = \left(\frac{3^3-1}{2}\right) \cdot (3^4+1) = 13.82 = 2.13.41$. Taking b = 6 in (3.3*b*), we obtain after simplification,

$$2^{5}.3^{5}.5.11.13^{e-2}.61^{f-1}.w' = 41.\sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(w').$$
(3.3*i*)

From (3.3*i*), it follows that 41|w'. Let $w' = 41^{g} . w''$. Hence from (3.3*a*) (b = 6),

$$n = 2^8 \cdot 3^6 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot 41^g \cdot w'', (3.3j)$$

and from (3.3i),

$$2^{5}.3^{5}.5.11.13^{e-2}.61^{f-1}.41^{g-1}.w'' = \sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(41^{g}).\sigma^{**}(w''), \qquad (3.3k)$$

where

$$w''$$
 has at most two odd prime factors and $(w'', 2.3.5.11.13.61.41) = 1.$ (3.3 ℓ)

By Lemma 2.1, we have $\frac{\sigma^{**}(13^e)}{13^e} \ge \frac{30772}{28561}$ for $e \ge 3$. Hence from (3.3*j*), for $e \ge 3$, we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{1066}{729} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{30772}{28561} = 3.194368571 > 3,$$

a contradiction.

Thus $e \le 2$. From (3.3k), $e \ge 2$. Hence e = 2. We have $\sigma^{**}(13^2) = 170 = 2.5.17$. Taking e = 2 in (3.3k), we get

$$2^{4}.3^{5}.11.61^{f-1}.41^{g-1}.w'' = 17.\sigma^{**}(61^{f}).\sigma^{**}(41^{g}).\sigma^{**}(w'').$$
(3.3m)

From (3.3*m*), 17|w''. Let $w'' = 17^h \cdot w'''$. It follows from (3.3*j*),

$$n = 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 13^{e} \cdot 61^{f} \cdot 41^{g} \cdot 17^{h} \cdot w^{\prime\prime\prime}, \qquad (3.4a)$$

and from (3.3m) (e = 2),

$$2^{4}.3^{5}.11.61^{f-1}.41^{g-1}.17^{h-1}.w''' = \sigma^{**}(61^{f}).\sigma^{**}(41^{g}).\sigma^{**}(17^{h}).\sigma^{**}(w'''), \qquad (3.4b)$$

where w''' has no more than one odd prime factor and is prime to 2.3.5.11.13.61.41.17.

By Lemma 2.1, for $h \ge 3$, $\frac{\sigma^{**(17^h)}}{17^h} \ge \frac{88452}{83521}$. Hence for $h \ge 3$, from (3.4*a*), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{1066}{729} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{170}{169} \cdot \frac{88452}{83521} = 3.158471032 > 3,$$

a contradiction. Hence h = 1 or h = 2.

Let h = 1. From (3.4*a*), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{1066}{729} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{170}{169} \cdot \frac{18}{17} = 3.157828283 > 3$$

a contradiction.

Let h = 2. Since $\sigma^{**}(17^2) = 290 = 2.5.29$, taking h = 2 in (3.4b), we see that 5 divides its right hand side but 5 does not divide its left hand side. Thus b = 6 cannot occur.

This completes the proof of Lemma 3.1.

Lemma 3.2. Let $n = 2^8 \cdot 3 \cdot 5^c \cdot 11^d \cdot v$, where $(v, 2 \cdot 3 \cdot 5 \cdot 11) = 1$. Then n cannot be a bi-unitary triperfect number.

Proof. We assume that $n = 2^{8} \cdot 3 \cdot 5^{c} \cdot 11^{d} \cdot v$ is a bi-unitary triperfect number. Hence n satisfies (3.1b) and (3.1c). From Lemma 2.1, for $c \ge 3$, $\frac{\sigma^{**}(5^{c})}{5^{c}} \ge \frac{756}{625}$. Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{756}{625} = 3.1185 > 3,$$

a contradiction. Hence c = 1 or c = 2.

Let c = 1. Then $n = 2^8 \cdot 3 \cdot 5 \cdot 11^d \cdot v$, so that

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{6}{5} = 3.09375 > 3.$$

a contradiction.

Let c = 2. Taking c = 2 (and b = 1) in (3.2*a*) and (3.2*b*), we obtain

$$n = 2^8 . 3.5^2 . 11^d . 13^e . w, (3.5a)$$

and

$$2^{5} \cdot 5 \cdot 11^{d-1} \cdot 13^{e-1} \cdot w = \sigma^{**}(11^{d}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(w), \qquad (3.5b)$$

where

w has not more than three odd prime factors.
$$(3.5c)$$

By Lemma 2.1, for $d \ge 5$, $\frac{\sigma^{**}(11^d)}{11^d} \ge \frac{1947386}{1771561}$; and for $e \ge 3$, $\frac{\sigma^{**}(13^e)}{13^e} \ge \frac{30772}{28561}$. Hence when $d \ge 5$ and $e \ge 3$, from (3.5*a*),

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{1947386}{1771561} \cdot \frac{30772}{28561} = 3.175525149 > 3,$$

a contradiction.

Let $d \ge 5$. Then e = 1 or e = 2.

If $d \ge 5$ and e = 1, from (3.5*a*) we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{1947386}{1771561} \cdot \frac{14}{13} = 3.174080416 > 3$$

a contradiction.

Let $d \ge 5$ and e = 2. We have $\sigma^{**}(13^2) = 170 = 2.5.17$. Taking e = 2 in (3.5b), we obtain

$$2^{4} \cdot 11^{d-1} \cdot 13.w = 17.\sigma^{**}(11^{d}) \cdot \sigma^{**}(w).$$
(3.5d)

From (3.5*d*), 17|w. Let $w = 17^{f} . w'$. Hence from (3.5*a*) and (3.5*d*), we obtain

$$n = 2^8 \cdot 3 \cdot 5^2 \cdot 11^d \cdot 13^2 \cdot 17^f \cdot w' \quad (d \ge 5), \tag{3.6a}$$

and

$$2^{4} \cdot 11^{d-1} \cdot 13 \cdot 17^{f-1} \cdot w' = \sigma^{**}(11^{d}) \cdot \sigma^{**}(17^{f}) \cdot \sigma^{**}(w'), \qquad (3.6b)$$

where

w' has not more than two odd prime factors. (3.6c)

By Lemma 2.1, for
$$f \ge 3$$
, $\frac{\sigma^{**(17^f)}}{17^f} \ge \frac{88452}{83521}$. Hence from (3.6*a*), for $f \ge 3$ and $d \ge 5$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{1947386}{1771561} \cdot \frac{170}{169} \cdot \frac{88452}{83521} = 3.139839369 > 3,$$

a contradiction. Hence f = 1 or f = 2 (under $c = 2, e = 2, d \ge 5$).

Let f = 1. From (3.6*a*) (f = 1), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{1947386}{1771561} \cdot \frac{170}{169} \cdot \frac{18}{17} = 3.139200411 > 3,$$

a contradiction.

Let f = 2 (along with c = 2, e = 2, $d \ge 5$). We have $\sigma^{**}(17^2) = 290 = 2.5.29$. Taking f = 2 in (3.6b), we see that 5 divides its right hand side but 5 is not a factor of its left hand side. Hence f = 2 is not admissible.

Thus when c = 2, we must have $1 \le d \le 4$. We now show that none of these choices of d are admissible.

When d = 1, 3, 4, we have $3|\sigma^{**}(11^d)$. It now follows from (3.5b) that 3 is a factor of its right hand side but it is not so with respect to its left hand side.

It remains to examine the case d = 2. Let d = 2. We have $\sigma^{**}(11^2) = 122 = 2.61$. Taking d = 2 in (3.5b), we get after simplification

$$2^{4}.5.11.13^{e-1}.w = 61.\sigma^{**}(13^{e}).\sigma^{**}(w).$$
(3.6d)

From (3.6*d*), 61|w. Let $w = 61^{f} \cdot w'$. From (3.5*a*) and (3.6*d*), we obtain

$$n = 2^8 . 3.5^2 . 11^2 . 13^e . 61^f . w', (3.7a)$$

and

$$2^{4}.5.11.13^{e-1}.61^{f-1}.w' = \sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(w'), \qquad (3.7b)$$

where

w' has at most two odd prime factors and (w', 2.3.5.11.13.61) = 1. (3.7c)

We show that if n is as in (3.7*a*), then $7 \nmid n$. On the contrary we assume that 7|n and obtain a contradiction. Suppose that 7|n. Let $w' = 7^g \cdot w''$, where w'' is prime to 2.3.5.7.11.13.61. From (3.7*a*) and (3.7*b*), we obtain

$$n = 2^8 \cdot 3 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot 7^g \cdot w'', (3.8a)$$

and

$$2^{4}.5.11.13^{e-1}.61^{f-1}.7^{g}.w'' = \sigma^{**}(13^{e}).\sigma^{**}(61^{f}).\sigma^{**}(7^{g}).\sigma^{**}(w'), \qquad (3.8b)$$

where

w'' has at most one odd prime factor and (w'', 2.3.5.7.11.13.61) = 1. (3.8c)

Let q = 1. We have $\sigma^{**}(7) = 8 = 2^3$. Taking q = 1 in (3.8b), we see that 2^5 divides its right hand side whereas 2^4 unitarily divides its left hand side. Hence q > 2.

Let q = 2. We have $\sigma^{**}(7^2) = 50 = 2.5^2$. Taking q = 2 in (3.8b), it follows that 5^2 divides its right hand side but 5 is a unitary divisor of its left hand side. Hence we may assume that q > 3. From Lemma 2.1, for $g \ge 3$, $\frac{\sigma^{**}(7^g)}{7^g} \ge \frac{2752}{2401}$. From (3.8*a*), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{2752}{2401} = 3.098618 > 3,$$

a contradiction. Thus $7 \nmid n$ in (3.7*a*) and (3.7*b*).

We will obtain a contradiction when d = 2 by examining the factors of $\sigma^{**}(13^e)$ in (3.7b).

If e is odd or 4|e, then $7|\sigma^{**}(13^e)$. From (3.7b), it follows that 7|w' and consequently 7|n. But we proved that $7 \nmid n$. Hence we may assume that e = 2k, where k is odd.

First we show that k = 1 is not admissible (so that $k \ge 3$).

Assume that k = 1. Then e = 2, and we have $\sigma^{**}(13^2) = 170 = 2.5.17$. Taking e = 2 in (3.7b), we obtain

$$2^{3} \cdot 11 \cdot 13 \cdot 61^{f-1} \cdot w' = 17 \cdot \sigma^{**}(61^{f}) \cdot \sigma^{**}(w').$$
(3.8*d*)

Hence 17|w' so that we may assume that $w' = 17^g \cdot w''$, where w'' is prime to 2.3.5.11.13.17.61. From (3.7a) (e = 2) and (3.8d), we get

$$n = 2^8 \cdot 3 \cdot 5^2 \cdot 11^2 \cdot 13^2 \cdot 61^f \cdot 17^g \cdot w'', (3.9a)$$

and

$$2^{3}.11.13.61^{f-1}.17^{g-1}.w'' = \sigma^{**}(61^{f}).\sigma^{**}(17^{g}).\sigma^{**}(w''); \qquad (3.9b)$$

also,

w'' = 1 or an odd prime power relatively prime to 3.5.11.13.61.17. (3.9c)

By examining the factors of $\sigma^{**}(17^g)$ we will obtain a contradiction to (3.9b). This will force us to assume that k > 1.

If g is odd or 4|g, we have $3|\sigma^{**}(17^g)$. From (3.9b) it follows that 3 is a factor of its right hand side whereas 3 is not a factor of its left hand side. We may assume that $g = 2\ell$, where ℓ is odd. If $\ell = 1$, then q = 2. Note that $\sigma^{**}(17^2) = 290$. Thus, in (3.9b) we see that 5 divides its right hand side but 5 cannot be a factor of its left hand side. Thus $\ell > 3$. We have

$$\sigma^{**}(17^g) = \left(\frac{17^\ell - 1}{16}\right) . (17^{\ell+1} + 1) \quad (\ell \text{ odd and } \ell \ge 3).$$

We note the following:

(1) $16|17^{\ell} - 1$ but $32 \nmid 17^{\ell} - 1$, since ℓ is odd. Hence $\frac{17^{\ell} - 1}{16}$ is odd and > 1, since $\ell \ge 3$.

(2) $11|17^{\ell} - 1 \iff 10|\ell; 13|17^{\ell} - 1 \iff 6|\ell$ and $61|17^{\ell} - 1 \iff 60|\ell$. So, in order that $17^{\ell} - 1$ is divisible by 11 or 13 or 61, ℓ must be even. Since ℓ is odd, $17^{\ell} - 1$ is not divisible by 11 or 13 or 61; trivially not divisible by 17.

Thus $\frac{17^{\ell}-1}{16}$ is odd > 1 and not divisible by 11 or 13 or 17 or 61. From (3.9*b*) it follows that each prime factor of $\frac{17^{\ell}-1}{16}|\sigma^{**}(17^g)$ is a prime factor of w''. Let $p|\frac{17^{\ell}-1}{16}$. Then p|w''.

Consider $17^{\ell+1} + 1$, where ℓ is odd. We have

(3) $11|17^{\ell+1}+1 \iff \ell+1 = 5u$. Since 5u is odd and $\ell+1$ is even, $11 \nmid 17^{\ell+1}+1$. Similarly, $13|17^{\ell+1}+1 \iff \ell+1 = 3u$. Hence $13 \nmid 17^{\ell+1}+1$.

(4) $61|17^{\ell+1} + 1 \iff \ell + 1 = 30u$. Thus $61|17^{\ell+1} + 1$ implies that $17^{30} + 1|17^{\ell+1} + 1$. Since $5^2|17^{30} + 1|17^{\ell+1} + 1$, it follows from (3.9*b*) that 5 divides its left hand side. But this is not possible. Hence $61 \nmid 17^{\ell+1} + 1$.

Thus $\frac{17^{\ell+1}+1}{2}$ is odd, > 1 and not divisible by 11 or 13 or 17 or 61. From (3.9*b*), each prime factor of $\frac{17^{\ell+1}+1}{2}$ should divide w''. Let $q|\frac{17^{\ell+1}+1}{2}$. Then q|w''. From (3.9*b*), neither $17^{\ell} - 1$ nor $17^{\ell+1} + 1$ is divisible by 3. Hence $\frac{17^{\ell}-1}{16}$ and $\frac{17^{\ell+1}+1}{2}$ are relatively prime so that $p \neq q$. It follows that w'' is divisible by two distinct odd primes and this violates (3.9c).

Hence k = 1 is not possible. So we may assume that $k \ge 3$ and e = 2k, where k is odd and \geq 3. We have

$$\sigma^{**}(13^e) = \left(\frac{13^k - 1}{12}\right).(13^{k+1} + 1).$$

We now prove that

(I) $\frac{13^{k}-1}{12}$ is divisible by an odd prime p|w' and p > 293; (II) $\frac{13^{k+1}+1}{2}$ is divisible by an odd prime q|w' and q > 293,

where w' is given in (3.7*a*) and (3.7*b*).

Proof of (I). Let

 $S_{13} = \{p | 13^k - 1 : p \in [3, 293] - \{3, 61\} \text{ and } ord_p 13 \text{ is odd}\}.$

If S_{13} is non-empty, the statement in (I) follows from Lemma 2.5 (a) of Part IV(a), see [5]. We may assume that S_{13} is empty. Since $p \nmid 13^k - 1$ if $ord_p 13$ is even, it follows that $p \nmid 13^k - 1$ if $p \in [3, 293] - \{3, 61\}$. The same is true with respect to $\frac{13^k - 1}{12}$. We shall now discuss the divisibility of $13^k - 1$ by $p \in \{3, 61\}$.

We have $3|13^k - 1$. Further, $9|13^k - 1$ implies that $3|\frac{13^k-1}{12}|\sigma^{**}(13^e)$ so that 3 is a factor of the left hand side of (3.7b). This cannot happen. Thus $3||13^k - 1$. Hence $\frac{13^k-1}{12}$ is not divisible by 3. Also, since k is odd, $4||13^k - 1$ so that $\frac{13^k - 1}{12}$ is odd, > 1 and not divisible by 3.

We have $61|13^k - 1$ if and only if 3|k; this implies that $13^3 - 1|13^k - 1$. But $13^3 - 1 = 2^2 \cdot 3^2 \cdot 61$. Hence $3^2|13^k - 1$ and so $3|\frac{13^k - 1}{12}|\sigma^{**}(13^e)$. From (3.7*b*) it follows that 3 is a factor of its left hand side but this is false. Hence $61 \nmid 13^k - 1$.

Thus $\frac{13^k-1}{12} > 1$, is odd and not divisible by any prime in [3, 293]. Let $p|\frac{13^k-1}{12}$. Then p > 293. From (3.7*b*), it is clear that p|w'.

This completes the proof of (I).

Proof of (II). Let

$$T_{13} = \{q | 13^{k+1} + 1 : q \in [3, 293] - \{5, 17\} \text{ and } s = \frac{1}{2} ord_q 13 \text{ is even} \}.$$

If T_{13} is non-empty, (II) follows immediately from Lemma 2.5 (b) of Part IV(a), see [5]. We may assume that T_{13} is empty. Since $q \nmid 13^{k+1} + 1$ when $s = \frac{1}{2} ord_q 13$ is odd, it follows that $13^{k+1} + 1$ is not divisible by any prime in $[3, 293] - \{5, 17\}$.

We may note that $5|13^{k+1} + 1 \iff k+1 = 2u \iff 17|13^{k+1} + 1$. Hence if $5 \nmid 13^{k+1} + 1$, then $17 \nmid 13^{k+1} + 1$. In this case, $13^{k+1} + 1$ is not divisible by any prime in [3, 293]. Hence if $q|13^{k+1}+1$, then q > 293. Also, from (3.7*b*), it is clear that q|w'. Thus (II) holds.

We may assume that $5|13^{k+1} + 1$. Then also $17|13^{k+1} + 1$. We wish to prove that $13^{k+1} + 1$ is not divisible by 5 and 17 alone. On the contrary, assume that this is not the case so that

$$\frac{13^{k+1}+1}{2} = 5^{\alpha}.17^{\beta}.$$

If $\alpha \ge 2$, then $5^2|13^{k+1} + 1|\sigma^{**}(13^e)$. From (3.7*b*), it follows that 5^2 is a factor of its left hand side. But this cannot happen. Therefore $\alpha = 1$.

Similarly, if $\beta \ge 2$, then $17^2|13^{k+1} + 1$; but this is equivalent to k + 1 = 34u. Consequently, $13^{34} + 1|13^{k+1} + 1$ but

$$1021\left|\frac{13^{34}+1}{2}\right|\frac{13^{k+1}+1}{2} = 5.17^{\beta},$$

which is impossible. Hence $\beta = 1$. Thus $\frac{13^{k+1}+1}{2} = 5.17$ so that k = 1. But $k \ge 3$, a contradiction.

It follows that $\frac{13^{k+1}+1}{2}$ is divisible by an odd prime $q' \notin \{5, 17\}$ and so $q \notin [3, 293]$. Thus q > 293 and $q | \frac{13^{k+1}+1}{2}$. From (3.7*b*), it is clear that q | w'. Thus (II) holds.

Now, p and q are distinct factors of w' and p, q > 293. By (3.7c), $w' = p^g \cdot q^h$. From (3.7a), we have $n = 2^8 \cdot 3 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 61^f \cdot p^g \cdot q^h$. Also, we may assume that $p \ge 307$ and $q \ge 311$. Hence

$$3 = \frac{\sigma^{**}(n)}{n} \le \frac{495}{256} \cdot \frac{4}{3} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{307}{306} \cdot \frac{311}{310} = 2.99687138 < 3,$$

a contradiction.

The proof of Lemma 3.2 is complete.

Note 3.1. Let $n = 2^{8} \cdot 3^{2} \cdot 5^{c} \cdot 11^{d} \cdot v$, where $(v, 2 \cdot 3 \cdot 5 \cdot 11) = 1$, be a bi-unitary triperfect number. Taking b = 2 in (3.1*b*), we obtain after simplification

$$2^{7}.3.5^{c-2}.11^{d-1}.v = \sigma^{**}(5^{c}).\sigma^{**}(11^{d}).\sigma^{**}(v).$$
(3.10)

It is clear from (3.10) that $c \ge 2$.

Note 3.2. Since $\sigma^{**}(5^2) = 26 = 2.13$, taking c = 2 in (3.10), we obtain

$$2^{6} \cdot 3 \cdot 11^{d-1} \cdot v = 13 \cdot \sigma^{**}(11^{d}) \cdot \sigma^{**}(v).$$
(3.10)

From (3.10'), 13|v. Let $v = 13^{e} \cdot w$, where (w, 2.3.5.11.13) = 1. Hence we have

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^d \cdot 13^e \cdot w, (3.10a)$$

and from (3.10'), we obtain

$$2^{6}.3.11^{d-1}.13^{e-1}.w = \sigma^{**}(11^{d}).\sigma^{**}(13^{e}).\sigma^{**}(w), \qquad (3.10b)$$

where

w has at most four odd prime factors and is prime to 2.3.5.11.13. (3.10c)

Lemma 3.3. Let $n = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13^{e} \cdot w$, where $(w, 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13) = 1$, be a bi-unitary triperfect number. Then e = 1 and w = 7 so that $n = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \cdot 7 = 57657600$.

Proof. Taking d = 1 in (3.10*a*) and (3.10*b*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13^e \cdot w \tag{3.10d}$$

and

$$2^{4} \cdot 13^{e-1} \cdot w = \sigma^{**}(13^{e}) \cdot \sigma^{**}(w); \qquad (3.10e)$$

 \boldsymbol{w} has not more than three odd prime factors.

We distinguish the following cases:

Case 1. Let e = 1. Taking e = 1 in (3.10e), we get

$$2^3 w = 7.\sigma^{**}(w). \tag{3.10f}$$

From (3.10*f*), 7|w. Let $w = 7^{f} \cdot w'$, where (w', 2.3.5.11.13.7) = 1. Then from (3.10*d*) and (3.10*f*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13 \cdot 7^f \cdot w' \tag{3.10g}$$

and

$$2^{3} \cdot 7^{f-1} \cdot w' = \sigma^{**}(7^{f}) \cdot \sigma^{**}(w').$$
(3.10*h*)

Let f = 1. From (3.10*h*), we get $w' = \sigma^{**}(w')$ after simplification and so w' = 1. Hence $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13 \cdot 7 = 57657600$ is a bi-unitary triperfect number.

Let $f \ge 2$. If f = 2, since $\sigma^{**}(7^2) = 50 = 2.5^2$, from (3.10*h*) (f = 2), we see that 5 divides its right hand side but 5 is not a factor of its left hand side. Hence f = 2 is not admissible.

We may assume that $f \ge 3$. Then by Lemma 2.1, $\frac{\sigma^{**}(7^f)}{7^f} \ge \frac{2752}{2401}$. From (3.10g), we obtain

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{12}{11} \cdot \frac{14}{13} \cdot \frac{2752}{2401} = 3.008746356 > 3.00874656 > 3.00874656 > 3.00874656 > 3.00874656 > 3.00874656 > 3.00874656 > 3.00874656 > 3.00876656 > 3.0087656 > 3.0087656$$

a contradiction.

Case 2. Let e = 2. Since $\sigma^{**}(13^2) = 170 = 2.5.17$, taking e = 2 in (3.10*e*), we see that 5 is a factor of its right band side but it is not so with respect to its left band side. Hence e = 2 is not admissible.

Case 3. Let $e \ge 3$. We now prove that $7 \nmid n$. On the contrary, let 7|n so that 7|w. Let $w = 7^{f} \cdot w'$, where w' is relatively prime to 2.3.5.11.13.7. From (3.10*d*) and (3.10*e*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13^e \cdot 7^f \cdot w' \tag{3.11a}$$

and

$$2^{4} \cdot 13^{e-1} \cdot 7^{f} \cdot w' = \sigma^{**}(13^{e}) \cdot \sigma^{**}(7^{f}) \sigma^{**}(w'), \qquad (3.11b)$$

where

$$w'$$
 has at most two odd prime factors and is prime to 2.3.5.11.13.7. (3.11c)

Since $e \ge 3$, we have $\frac{\sigma^{**}(13^e)}{13^e} \ge \frac{30772}{28561}$. If $f \ge 3$, from (3.11*a*), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{12}{11} \cdot \frac{30772}{28561} \cdot \frac{2752}{2401} = 3.010115825 > 3,$$

a contradiction. Hence f = 1 or f = 2.

If f = 1, again from (3.11*a*) (f = 1), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{12}{11} \cdot \frac{30772}{28561} \cdot \frac{8}{7} = 3.001365498 > 3,$$

a contradiction.

Let f = 2. Since $\sigma^{**}(7^2) = 50 = 2.5^2$, taking f = 2 in (3.11b), we see that 5 divides its right hand side whereas its left hand side is not divisible by 5, a contradiction.

Hence $7 \nmid n$. We now prove that $s \nmid n$, where $s \in \{17, 19, 23, 29\}$. On the contrary, we assume that s|n so that s|w. Let $w = s^{f}.w'$. From (3.10*d*) and (3.10*e*), we obtain

$$n = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13^{e} \cdot s^{f} \cdot w', \quad (e \ge 3)$$
(3.12a)

and

$$2^{4} \cdot 13^{e-1} \cdot s^{f} \cdot w' = \sigma^{**}(13^{e}) \cdot \sigma^{**}(s^{f}) \cdot \sigma^{**}(w'), \qquad (3.12b)$$

where

w' has at most two odd prime factors and is prime to 2.3.5.11.13.s.7. (3.12c)

We will obtain a contradiction by examining the factors of $\sigma^{**}(13^e)$.

If e is odd or 4|e, we have $7|\sigma^{**}(13^e)$. In these cases, from (3.12b), it follows that 7|n. But we proved that $7 \nmid n$. Hence we may assume that e = 2k and k is odd; also, since $e \ge 3$, clearly, $k \ge 3$. We have

$$\sigma^{**}(13^e) = \left(\frac{13^k - 1}{12}\right)(13^{k+1} + 1) \quad (k \ge 3, k \text{ odd }).$$

We now prove that

(I) $\frac{13^k-1}{12}$ is divisible by an odd prime p > 29 and p|w',

(II) $\frac{12}{13^{k+1}+1}$ is divisible by an odd prime q > 29 and q|w',

(III) p and q are distinct primes.

By replacing the interval [3, 293] by the interval [3, 29] in Lemma 2.5 of Part IV(a), see [5], we arrive at the following:

Result 3.1. Given that k is odd and ≥ 3 . Let $p \neq 13$. Then we have:

(a) If $p \in [3, 29] - \{3\}$, $r = ord_p 13$ is odd and $p|13^k - 1$, then we can find an odd prime p' > 29.

(b) If $q \in [3, 29] - \{5, 17\}$, $s = \frac{1}{2}ord_q 13$ is even and $q|13^{k+1} + 1$, then we can find an odd prime $q'|\frac{13^{k+1}+1}{2}$ and q' > 29.

Proof of (I). Let

$$S_{13} = \{p|13^k - 1 : p \in [3, 29] - \{3\} \text{ and } ord_p13 \text{ is odd}\}.$$

If S_{13} is non-empty, the statement in (I) follows from Result 3.1(a) stated above. We may assume that S_{13} is empty. Since $p \nmid 13^k - 1$ if $ord_p 13$ is odd, it follows that $13^k - 1$ is not divisible by any prime $p \in [3, 29]$, except for possibly 3. This is true with respect to $\frac{13^k-1}{12}$. Also, $3|13^k - 1$ but $9 \nmid 13^k - 1$, since 3 is not a factor of the left hand side of (3.12b). Hence $\frac{13^k-1}{12}$ is odd, > 1 and not divisible by any prime in [3, 29]. If $p|\frac{13^k-1}{12}$, p > 29. Also, from (3.12b), p|w'. This proves (I).

Proof of (II). Let

$$T_{13} = \{q | 13^{k+1} + 1 : q \in [3, 29] - \{5, 17\} \text{ and } s = \frac{1}{2} ord_q 13 \text{ is even} \}$$

If T_{13} is non-empty, (II) follows immediately from Result 3.1(b). We may assume that T_{13} is empty. Since $q \nmid 13^{k+1} + 1$ when $s = \frac{1}{2}ord_q 13$ is odd, it follows that $13^{k+1} + 1$ is not divisible by any prime in $[3, 29] - \{5, 17\}$. We may note that $5|13^{k+1} + 1 \iff k+1 = 2u \iff 17|13^{k+1} + 1$. We may note that 5 is not a factor of the left hand side of (3.12b). Hence $5 \nmid 13^{k+1} + 1$ and so $17 \nmid 13^{k+1} + 1$. It follows that $\frac{13^{k+1}+1}{2}$ is odd, > 1 and not divisible by any prime in [3, 29]. If $q|\frac{13^{k+1}+1}{2}$, then q > 29 and q|w' from (3.12b). This proves (II).

Proof of (III). It is easy to see that $\frac{13^{k}-1}{12}$ and $\frac{13^{k+1}+1}{2}$ are relatively prime. Hence p and q in (I) and (II) are distinct odd primes. This proves (II).

From (3.12*a*), (3.12*c*), (I) and (II), we have $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13^e \cdot s^f \cdot p^g \cdot q^h$, where we can assume that $p \ge 31$ and $q \ge 37$. Also, $s \ge 17$. Hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{12}{11} \cdot \frac{17}{16} \cdot \frac{31}{30} \cdot \frac{37}{36} = 2.979719148 < 3,$$

a contradiction.

This proves that n is not divisible by 17 or 19 or 23 or 29.

Consider now the factor $\sigma^{**}(13^e)$ in the equation (3.10*e*). Since $7 \nmid n$, *e* can neither be odd nor 4|e. We can assume that e = 2k, where *k* is odd and $k \ge 3$. Using Result 3.1, it is not difficult to show that $\frac{13^k-1}{12}$ and $\frac{13^{k+1}+1}{2}$ are respectively divisible by two distinct odd primes *p* and *q* respectively and p, q > 29 and both these primes are factors of *w* in (3.10*e*). We may assume that $p \ge 31$ and $q \ge 37$. In (3.10*e*), *w* has not more than three odd prime factors. Assuming that *w* has three odd prime factors, since *n* is not divisible by 17 or 19 or 23 or 29, we may assume that the possible third prime factor of *w*, say $r \ge 41$. From (3.10*d*), we have $n = 2^{8} \cdot 3^2 \cdot 5^2 \cdot 11 \cdot 13^e \cdot p^f \cdot q^g \cdot r^h$, so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{12}{11} \cdot \frac{13}{26} \cdot \frac{31}{30} \cdot \frac{37}{36} \cdot \frac{41}{40} = 2.87455259 < 3,$$

a contradiction.

The proof of Lemma 3.3 is complete.

Lemma 3.4. Let $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^d \cdot 13^e \cdot w$, where $(w, 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13) = 1$, be as in (3.10a), satisfying (3.10b) and (3.10c) with $d \ge 2$. Then n cannot be a bi-unitary triperfect number.

Proof. We first show that $7 \nmid n$. On the contrary suppose that 7|n. Hence 7|w and let $w = 7^{f} \cdot w'$. From (3.10*a*), (3.10*b*) and (3.10*c*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^d \cdot 13^e \cdot 7^f \cdot w' \quad (d \ge 2)$$
(3.13a)

and

$$2^{6}.3.11^{d-1}.13^{e-1}.7^{f}.w' = \sigma^{**}(11^{d}).\sigma^{**}(13^{e}).\sigma^{**}(7^{f}).\sigma^{**}(w'), \qquad (3.13b)$$

where

w' has at most three odd prime factors and (w', 2.3.5.11.13.7) = 1. (3.13c)

As 5 cannot be a factor of the left hand side of (3.13b), we can assume that $e \neq 2$ and $f \neq 2$.

By Lemma 2.1, for $d \ge 3$, $\frac{\sigma^{**}(11^d)}{11^d} \ge \frac{15984}{14641}$; for $e \ge 3$, $\frac{\sigma^{**}(13^e)}{13^e} \ge \frac{30772}{28561}$; and for $f \ge 3$, $\frac{\sigma^{**}(7^f)}{7^f} \ge \frac{2752}{2401}$. From (3.13*a*), if $d \ge 3$, $e \ge 3$, and $f \ge 3$, we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{15984}{14641} \cdot \frac{30772}{28561} \cdot \frac{2752}{2401} = 3.01237738 > 3,$$

a contradiction. Thus $d \ge 3$, $e \ge 3$, and $f \ge 3$ cannot hold simultaneously. Recalling that $d \ge 2$, $e \ne 2$ and $f \ne 2$, the following cases arise:

- (i) d = 2; $e \ge 3$; $f \ge 3$ (ii) $d \ge 3$; e = 1; $f \ge 3$ (iii) $d \ge 3$; $e \ge 3$; f = 1
- (iv) d = 2; e = 1; $f \ge 3$ (v) d = 2; $e \ge 3$; f = 1 (vi) $d \ge 3$; e = 1; f = 1

(vii)
$$d = 2; e = 1; f = 1.$$

In each of the above seven cases we obtain a contradiction. First we dispose off the cases (ii), (iii), (v), (vi) and (vii).

(ii) Let $d \ge 3$, e = 1 and $f \ge 3$. From (3.13*a*) (e = 1), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{15984}{14641} \cdot \frac{14}{13} \cdot \frac{2752}{2401} = 3.011006871 > 3,$$

a contradiction.

(iii) Let $d \ge 3$, $e \ge 3$ and f = 1. From (3.13*a*) (f = 1), we have

a contradiction.

(v), (vii) We can bring (v) and (vii) under the case d = 2, f = 1. Taking d = 2 and f = 1 in (3.13*a*), we get $n = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13^{e} \cdot 7 \cdot w'$. Since $\sigma^{**}(7) = 8$, taking f = 1 in (3.13*b*), we see that w' = 1 or $w' = p^{\alpha}$, where *p* is an odd prime ≥ 17 . Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{8}{7} \cdot \frac{17}{16} = 2.963558577 < 3$$

a contradiction.

(vi) Let
$$d \ge 3$$
, $e = 1$ and $f = 1$. Hence from (3.13*a*) ($e = 1, f = 1$), we obtain $3 = \frac{\sigma^{**}(n)}{n} \ge \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{15984}{14641} \cdot \frac{14}{13} \cdot \frac{8}{7} = 3.002253944 > 3$,

a contradiction.

(i), (iv) We cover the cases (i) and (iv) under the case d = 2 and $f \ge 3$. Let d = 2 and $f \ge 3$. Since $\sigma^{**}(11^2) = 122 = 2.61$, taking d = 2 in (3.13b), we obtain

$$2^{5}.3.11.13^{e-1}.7^{f}.w' = 61.\sigma^{**}(13^{e}).\sigma^{**}(7^{f}).\sigma^{**}(w').$$
(3.13d)

Hence 61|w' and let $w' = 61^g . w''$. Hence from (3.13*a*) and (3.13*d*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 7^f \cdot 61^g \cdot w'' \quad (f \ge 3)$$
(3.14a)

and

$$2^{5}.3.11.13^{e-1}.7^{f}.61^{g-1}.w'' = \sigma^{**}(13^{e}).\sigma^{**}(7^{f}).\sigma^{**}(61^{g}).\sigma^{**}(w''), \qquad (3.14b)$$

where

w'' has at most two odd prime factors and (w'', 2.3.5.11.13.7.61) = 1. (3.14c)

By examining the factors of $\sigma^{**}(7^f)$ we will obtain a contradiction.

If f is odd or 4|f, then $8|\sigma^{**}(7^f)$. From (3.14b), it follows that w'' = 1. Hence $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 7^f \cdot 61^g$, and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{7}{6} \cdot \frac{61}{60} = 2.89479627 < 3,$$

a contradiction.

We may assume that f = 2k and k is odd. Since $f \ge 3$, we have $k \ge 3$. We claim that (when k is odd and ≥ 3)

(I) $\frac{7^k-1}{6}$ is divisible by a prime p' > 71 and p'|w'',

(II) $7^{k+1} + 1$ is divisible by a prime q' > 71 and q'|w'',

(III) the primes p' and q' are distinct.

By replacing the intervals [3, 2520] and [3, 1193] in Lemma 2.4 (a) and (b) of Part IV(a) (see [5]) by the interval [3, 71], we arrive at the following.

Result 3.2. Given that k is odd and ≥ 3 . Let $p \neq 7$. Then we have:

(a) If $p \in [3, 71] - \{3, 19, 37\}$, ord_p7 is odd and $p|7^k - 1$, then we can find an odd prime $p'|7^k - 1$ and p' > 71.

(b) If $q \in [3, 71] - \{5, 13\}$, $\frac{1}{2}ord_p7$ is even and $q|7^{k+1} + 1$, then we can find an odd prime $q'|7^{k+1} + 1$ and q' > 71.

Proof of (I). Let

 $S_7 = \{p | 7^k - 1 : p \in [3, 71] - \{3, 19, 37\} \text{ and } ord_p 7 \text{ is odd}\}.$

If S_7 is non-empty, by Result 3.2(a), the statement in (I) follows immediately. We may assume that S_7 is empty. Since $p \nmid 7^k - 1$ when ord_p7 is even, it follows that $p \nmid 7^k - 1$ for any $p \in [3, 71] - \{3, 19, 37\}$. We shall examine the divisibility of $7^k - 1$ by $p \in \{3, 19, 37\}$.

First we dispose of the case when p = 37. We have $37|7^k - 1 \iff 9|k$. Hence $37|7^k - 1$ implies that $7^9 - 1|7^k - 1$. Also, $7^9 - 1 = 2.3^3.19.37.1063$. Hence $\frac{7^k - 1}{6}|\sigma^{**}(7^f)$ is divisible by 19, 37 and 1063. From (3.14b), it follows that w'' is divisible by these three prime factors. This contradicts (3.14c). Thus $37 \nmid 7^k - 1$.

Clearly, $3|7^k - 1$. We show that $27 \nmid 7^k - 1$. If $27|7^k - 1$, then $9|\frac{7^k - 1}{6}|\sigma^{**}(7^f)$. From (3.14*b*), it follows that 3|w''. But this is not the case. Hence $27 \nmid 7^k - 1$. Further $9|7^k - 1 \iff 3|k \iff 19|7^k - 1$. Thus if $9 \nmid 7^k - 1$, then $19 \nmid 7^k - 1$ and $3||7^k - 1$.

Thus if $9 \nmid 7^k - 1$, then it follows that $\frac{7^k - 1}{6}$ is divisible by none of the primes in [3, 71]. If $p'|\frac{7^k - 1}{6}$, then p' > 71 and from (3.14b), p'|w''. This proves (I) in this case.

We may assume that $9|7^k - 1$ and so $9||7^k - 1$. Then $19|7^k - 1$. Consider $\frac{7^k-1}{18}$. This is not divisible by any prime in [3, 71] except for 19. We show that $\frac{7^k-1}{18}$ is not divisible by 19 alone. On the other hand, let $\frac{7^k-1}{18} = 19^{\alpha}$ for some positive integer α . If $\alpha \ge 2$, then $19^2|7^k - 1$; but this is equivalent to 57|k and this implies that $7^{57} - 1|7^k - 1$. But $419|\frac{7^{57}-1}{18}\frac{7^k-1}{18} = 19^{\alpha}$. This is impossible. Hence $\alpha = 1$ and so $\frac{7^k-1}{18} = 19$ or k = 3. Hence f = 2k = 6. We show that f = 6 is not admissible.

Let f = 6. We have $\sigma^{**}(7^6) = 2.3.19.1201$. Taking f = 6 in (3.14b), we get

$$2^{4} \cdot 11 \cdot 13^{e-1} \cdot 7^{6} \cdot 61^{g-1} \cdot w'' = 19 \cdot 1201 \cdot \sigma^{**} (13^{e}) \cdot \sigma^{**} (61^{g}) \cdot \sigma^{**} (w'').$$

$$(3.14d)$$

From (3.14*b*), w'' is divisible by 19 and 1201. By (3.14*c*), we have $w'' = 19^{h} \cdot (1201)^{i}$. Hence from (3.14*a*) (f = 6) and (3.14*d*), we get

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 7^6 \cdot 61^g \cdot 19^h \cdot (1201)^i$$
(3.15a)

and

$$2^{4} \cdot 11 \cdot 13^{e-1} \cdot 7^{6} \cdot 61^{g-1} \cdot 19^{h-1} \cdot (1201)^{i-1} = \sigma^{**} (13^{e}) \cdot \sigma^{**} (61^{g}) \cdot \sigma^{**} (19^{h}) \cdot \sigma^{**} ((1201)^{i}) \cdot (3.15b)$$

We obtain a contradiction by examining the factors of $\sigma^{**}(19^h)$.

If h is odd or 4|h, then $5|\sigma^{**}(19^h)$. From (3.15b), it follows that 5 should divide its left hand side and this is not possible. We may assume that $h = 2\ell$, where ℓ is odd. We have

$$\sigma^{**}(19^h) = \left(\frac{19^\ell - 1}{18}\right) . (19^{\ell+1} + 1).$$

If $\ell = 1$, then h = 2 and $\sigma^{**}(19^2) = 362 = 2.181$. Taking h = 2 in (3.15b), we see that 181 is a factor of its left hand side. But this is not so. Hence $\ell \ge 3$.

We prove that $\frac{19^{\ell}-1}{18}|\sigma^{**}(19^h)$ is not divisible by any of the primes 7, 11, 13, 61 and 1201. This leads to a contradiction in view of (3.15*b*).

We note that

(a) $11|19^t - 1 \iff 10|t$; (b) $13|19^t - 1 \iff 12|t$; (c) $7|19^t - 1 \iff 6|t$;

(d) $61|19^t - 1 \iff 30|t$; and (e) $1201|19^t - 1 \iff 200|t$.

Thus in order that $19^t - 1$ is divisible by any one of the primes 7, 11, 13, 61 and 1201, t must be even. Since ℓ is odd, $19^{\ell} - 1$ is divisible by none of the primes 7, 11, 13, 61 and 1201; trivially $19^{\ell} - 1$ is not divisible by 19. Also, $2||19^{\ell} - 1$, since ℓ is odd; $27|19^{\ell} - 1 \iff 3|\ell$; this implies that $19^3 - 1|19^{\ell} - 1$. But $19^3 - 1 = 2.3^3.127$. Hence $3|\frac{19^3-1}{8}|\frac{19^{\ell}-1}{18}|\sigma^{**}(19^h)$. From (3.15b), it follows that 3 is a factor of its left hand side. But this is not the case. Hence $27 \nmid 19^{\ell} - 1$. As $9|19^{\ell} - 1$, it follows that $9||19^{\ell} - 1$.

Thus $\frac{19^{\ell}-1}{18} > 1$, odd and not divisible by 7, 11, 13, 19, 61 and 1201. Since $\frac{19^{\ell}-1}{18}$ is a factor of $\sigma^{**}(19^h)$, from (3.15b), this should not happen.

Hence f = 6 is not admissible. Thus $\frac{7^k-1}{18}$ is divisible by an odd prime, say $p' \neq 19$ and $p' \notin [3,71]$. Clearly from (3.14b), p'|w''. Thus $p'|\frac{7^k-1}{18}|\frac{7^k-1}{6}$, p'|w'' and p' > 71. This proves (I). *Proof of (II)*. Let

$$T_7 = \{q|7^{k+1} + 1: q \in [3, 71] - \{5, 13\} \text{ and } s = \frac{1}{2}ord_q7 \text{ is even}\}.$$

By the statement in Result 3.2(b), if T_7 is non-empty then (II) holds. We may assume that T_7 is empty. Since $q \nmid 7^{k+1} + 1$ if $s = \frac{1}{2}ord_q 7$ is even, it follows that $7^{k+1} + 1$ is not divisible by any prime in $[3, 71] - \{5, 13\}$.

We now examine the divisibility of $7^{k+1} + 1$ by 5 and 13.

Since $7^{k+1} + 1|\sigma^{**}(7^f)$ and 5 is not a factor of the left hand side of (3.14*b*), it follows that $5 \nmid 7^{k+1} + 1$. Also, $13|7^{k+1} + 1 \iff k + 1 = 6u$. Hence if $13|7^{k+1} + 1$, then $5|7^6 + 1|7^{k+1} + 1$. We just proved that $5 \nmid 7^{k+1} + 1$. Hence $13 \nmid 7^{k+1} + 1$.

Thus $7^{k+1} + 1$ is not divisible by any prime in [3,71]. Since $\frac{7^{k+1}+1}{2}$ is odd, > 1 and not divisible by any prime in [3,71], we have if $q'|\frac{7^{k+1}+1}{2}$, then q' > 71 and q'|w''. This proves (II).

Proof of (III). Since $\frac{7^k-1}{6}$ and $7^{k+1}+1$ are relatively prime, p' and q' are distinct. Thus (III) holds.

We can assume that $p' \ge 73$ and $q' \ge 79$ in (I) and (II). From (3.14*c*), $w'' = (p')^{h} (q')^{i}$. Hence from (3.14*a*),

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^e \cdot 7^f \cdot 61^g \cdot (p')^h \cdot (q')^i.$$

Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{7}{6} \cdot \frac{61}{60} \cdot \frac{73}{72} \cdot \frac{79}{78} = 2.972630002 < 3,$$

a contradiction.

Thus the case $f \ge 3$ and d = 2 is not possible.

The proof that $7 \nmid n$ is complete.

To complete the proof of Lemma 3.4, we require the following modification of Lemma 2.5 of Part IV(a) [5], which can be proved easily proceeding in the same way as in [5] :

Result 3.3. Let k be odd and $k \ge 3$. Let $p \ne 13$.

(a) If $p \in [3, 443] - \{3, 61\}$, $r = ord_p 13$ is odd and $p|13^k - 1$, then we can find a prime p' (depending on p) such that $p'|\frac{13^k-1}{12}$ and p' > 443.

(b) If $q \in [3, 443] - \{5, 17\}$, $s = \frac{1}{2} or d_q 13$ is even and $q | 13^{k+1} + 1$, then we can find a prime q' (depending on q) such that $q' | \frac{13^{k+1}+1}{2}$ and q' > 443.

We continue proving Lemma 3.4. We claim that if w is given as in (3.10a),

(A) $\frac{13^k-1}{12}$ is divisible by an odd prime p' > 443 and p'|w,

(B) $\frac{12}{2}$ is divisible by an odd prime q' > 443 and q'|w,

and p' and q' are distinct.

Proof of (A). Let

$$S'_{13} = \{p | 13^k - 1 : p \in [3, 443] - \{3, 61\} \text{ and } r = ord_p 13 \text{ is odd} \}.$$

If S'_{13} is non-empty, then (A) holds by (a) of Result 3.3. We may assume that S'_{13} is empty. Since $p \nmid 13^k - 1$ if $ord_p 13$ is even, it follows that $p \nmid 13^k - 1$ if $p \in [3, 443]$, except for possibly $p \in \{3, 61\}$.

Clearly, $3|13^k - 1$. We note that $9|13^k - 1 \iff 3|k \iff 61|13^k - 1$. Suppose that $9 \nmid 13^k - 1$ so that $61 \nmid 13^k - 1$. Also, in this case $3||13^k - 1$. Hence $\frac{13^k - 1}{12}$ is not divisible by any prime in [3, 443]. Also, $\frac{13^k - 1}{12}$ is odd and > 1. Let $p'|\frac{13^k - 1}{12}$. Then p' > 443 and from (3.10b), p'|w. This proves (A) in this case.

Suppose that $9|13^k - 1$ and so $61|13^k - 1$. Also, $27 \nmid 13^k - 1$; if this is not so, then $9|\frac{13^k-1}{12}|\sigma^{**}(13^e)$. Hence 3|w from (3.10*b*). This is not possible. Thus $3||\frac{13^k-1}{12}$ and as a consequence $\frac{13^k-1}{36}$ is odd, > 1 and not divisible by 3 but divisible by 61.

We wish to show that $\frac{13^k-1}{36}$ must be divisible by an odd prime $p' \neq 61$. On the contrary, let $\frac{13^k-1}{36} = 61^{\alpha}$, for some positive integer α . If $\alpha \geq 2$, then $61^2|13^k - 1$; this holds if and only if 183|k. Hence 61|183|k and so $13^{61} - 1|13^k - 1$. But $4027|\frac{13^{61}-1}{36}|\frac{13^k-1}{36} = 61^{\alpha}$, which is impossible. Hence $\alpha = 1$ and $\frac{13^k-1}{36} = 16$ or k = 3. So e = 6.

We now prove that e = 6 is not admissible in (3.10*b*).

Let e = 6. We have $\sigma^{**}(13^6) = 2.3.61.14281$. Taking e = 6 in (3.10b), we get

$$2^{5} \cdot 11^{d-1} \cdot 13^{5} \cdot w = 61 \cdot 14281 \cdot \sigma^{**}(11^{d}) \cdot \sigma^{**}(w).$$

$$(3.15c)$$

From (3.15c), w is divisible by 61 and 14281. Let $w = 61^{f} \cdot (14281)^{g} \cdot w'$. From (3.10a) and (3.15c), we obtain (when e = 6),

$$n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^d \cdot 13^6 \cdot 61^f \cdot (14281)^g \cdot w'$$
(3.16a)

and

$$2^{5} \cdot 11^{d-1} \cdot 13^{5} \cdot 61^{f-1} \cdot (14281)^{g-1} \cdot w' = \sigma^{**} (11^{d}) \cdot \sigma^{**} (61^{f}) \cdot \sigma^{**} ((14281)^{g}) \cdot \sigma^{**} (w').$$
(3.16b)

where

w' has at most two odd prime factors and (w', 2.3.5.7.11.13.61.14281) = 1; (3.16c)

note that w' is prime to 7 since we proved that $7 \nmid n$ when n is given by (3.10a).

We examine $\sigma^{**}(11^d)$ in (3.16b) to obtain a contradiction to e = 6.

If d is odd or 4|d, then $\sigma^{**}(11^d)$ is divisible by 3. It follows from (3.16b) that this is not possible as $3 \nmid w'$.

We may assume that $d = 2\ell$, where ℓ is odd.

Let $\ell = 1$ so that d = 2. From (3.16*a*) (d = 2), we have $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^6 \cdot 61^f \cdot (14281)^g \cdot w'$ and w' cannot have more than two odd prime factors. We may assume that $w' = p_1^h \cdot p_2^i$, where $p_1 \ge 17$ and $p_2 \ge 19$. Hence $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 13^6 \cdot 61^f \cdot (14281)^g \cdot p_1^h \cdot p_2^i$ and so we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{122}{121} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{14281}{14280} \cdot \frac{17}{16} \cdot \frac{19}{18} = 2.782990097 < 3,$$

a contradiction.

Hence $\ell \geq 3$, since ℓ is odd. We have

$$\sigma^{**}(11^d) = \left(\frac{11^\ell - 1}{10}\right) . (11^{\ell+1} + 1) \quad (\ell \ge 3 \text{ and odd}).$$

We prove that

(C) $\frac{11^{\ell}-1}{10}$ is divisible by a prime p' > 23 and p'|w',

(D) $11^{\ell+1} + 1$ is divisible by a prime q' > 23 and q'|w',

and $p' \neq q'$.

Proof of (C). We have

(1) $2||11^{\ell} - 1$ and $3 \nmid 11^{\ell} - 1$, since ℓ is odd.

(2) Since 5 is not a factor of the left hand side of (3.16*b*), it follows that $5 \nmid \frac{11^{\ell}-1}{10} | \sigma^{**}(11^d)$.

(3) From (1) and (2), $\frac{11^{\ell}-1}{10}$ is odd, > 1 (since $\ell \ge 3$) and not divisible by 3 and 5. The left hand side of (3.16*b*) is not divisible by 7. Hence $7 \nmid \frac{11^{\ell}-1}{10}$. Also, $7|11^{\ell}-1 \iff 3|\ell \iff 19|11^{\ell}-1$. So, $19 \nmid \frac{11^{\ell}-1}{10}$.

(4) For any positive integer t, we have (i) $13|11^t - 1 \iff 12|t$; (ii) $17|11^t - 1 \iff 16|t$ and (iii) $23|11^t - 1 \iff 22|t$. In order that $11^t - 1$ is divisible by 13 or 17 or 23, the number t must be even. Since ℓ is odd, we conclude that $11^{\ell} - 1$ is not divisible by 13 or 17 or 23. Trivially, $11 \nmid 11^{\ell} - 1$.

From (3) and (4), it follows that $\frac{11^{\ell}-1}{10} > 1$, is odd and not divisible by any prime in [3, 23]. Hence every prime factor of $\frac{11^{\ell}-1}{10}$ is greater than 23. Also, $61|11^{\ell}-1 \iff 4|\ell$. But ℓ is odd; hence $61 \nmid 11^{\ell} - 1$.

Further, $14281|11^{\ell} - 1 \iff 1785|\ell$. Since 105|1785, we can conclude that if $14281|11^{\ell} - 1$, then $11^{105} - 1|11^{\ell} - 1$. But $7^2|11^{105} - 1$. It follows that 7|w' which is not possible. Hence $14281 \nmid 11^{\ell} - 1$.

From (3.16*b*), it now follows that if $p'|\frac{11^{\ell}-1}{10}$, then p' > 23 and p'|w'. This proves (C).

Proof of (D). We note that

(5) $\frac{11^{\ell+1}+1}{2}$ is odd, > 1 and not divisible by 3, 5 and 7, since these are not factors of the left hand side of (3.16*b*).

(6) For any positive integer t, $11^t + 1$ is not divisible by 19. The same is true with respect to $11^{\ell+1} + 1$.

(7) $13|11^{\ell+1} + 1 \iff \ell + 1 = 6u$; hence $13|11^{\ell+1} + 1$ implies that $11^6 + 1|11^{\ell+1} + 1$. But $11^6 + 1 = 2.13.61.1117$. From (3.16*b*), it follows that 1117|w'. Since w' is divisible by not more than two odd primes, we can assume that $w' = (1117)^h . s^i$, where *s* is prime ≥ 17 . From (3.16*a*), we have $n = 2^8.3^2.5^2.11^d.13^6.61^f.(14281)^g.(1117)^h.s^i$ and hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{11}{10} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{14281}{14280} \cdot \frac{1117}{1116} \cdot \frac{17}{16} = 2.87897417 < 3,$$

a contradiction. Hence $13 \nmid 11^{\ell+1} + 1$.

(8) $17|11^{\ell+1} + 1 \iff \ell + 1 = 8u$. Hence $17|11^{\ell+1} + 1$ implies that $11^8 + 1|11^{\ell+1} + 1$. Also, $11^8 + 1 = 2.17.6304673$. Hence from (3.16*b*), 17 and 6304673 are factors of *w'*. From (3.16*c*), $w' = 17^h.(6304673)^i$. From(3.16*a*), $n = 2^8.3^2.5^2.11^d.13^6.61^f.(14281)^g.17^h.(6304673)^i$ and so we have (using 6304673 > 1117),

$$\frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{11}{10} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{14281}{14280} \cdot \frac{17}{16} \cdot \frac{1117}{1116} = 2.87897417 < 3,$$

a contradiction. Hence $17 \nmid 11^{\ell+1} + 1$.

(9) $23|11^{\ell+1} + 1 \iff \ell + 1 = 11u$. Since $\ell + 1$ is even, it follows that $23 \nmid 11^{\ell+1} + 1$.

(10) $14281 \nmid 11^t + 1$ for any positive integer t. In particular, $14281 \nmid 11^{\ell+1} + 1$.

(11) If $61 \nmid \frac{11^{\ell+1}+1}{2}$, then $\frac{11^{\ell+1}+1}{2}$ is not divisible by any prime in $[3, 23] \cup \{61, 14281\}$. Hence every prime $q' \mid \frac{11^{\ell+1}+1}{2}$ divides w' and q' > 23. Thus (D) is true in this case.

(12) Suppose that $61|11^{\ell+1} + 1$. We claim that $\frac{11^{\ell+1}+1}{2}$ must be divisible by an odd prime $q' \neq 61$. On the contrary, let $\frac{11^{\ell+1}+1}{2} = 61^{\alpha}$ for some positive integer α . If $\alpha \geq 2$, then $61^2|11^{\ell+1} + 1$. But this is equivalent to $\ell + 1 = 122u$; hence $733|\frac{11^{122}+1}{2}|\frac{11^{\ell+1}+1}{2} = 61^{\alpha}$, which is impossible. Hence $\alpha = 1$ and $\frac{11^{\ell+1}+1}{2} = 61$ or $\ell = 1$. But $\ell \geq 3$. This contradiction proves that $\frac{11^{\ell+1}+1}{2}$ is divisible by an odd prime $q' \neq 61$. It follows that $q' \notin [3, 23] \cup \{61, 14281\}$ and therefore q' > 23 and q'|w'. This proves (D) completely.

Also, $p' \neq q'$, since $\frac{11^{\ell}-1}{10}$ and $11^{\ell+1} + 1$ are relatively prime. Without loss of generality we can assume that $p' \geq 29$ and $q' \geq 31$.

We continue the case e = 6 to end up with a contradiction. From (3.16*c*), since p' and q' are odd prime factors of w', we must have $w' = (p')^h . (q')^i$. Hence from (3.16*a*), $n = 2^8 . 3^2 . 5^2 . 11^d . 13^6 . 61^f . (14281)^g . (p')^h . (q')^i$, and we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{11}{10} \cdot \frac{13}{12} \cdot \frac{61}{60} \cdot \frac{14281}{14280} \cdot \frac{29}{28} \cdot \frac{31}{30} = 2.897345302 < 3,$$

a contradiction. Hence e = 6 is not possible.

We continue the proof of (A) after Result 3.3. It now follows that $\frac{13^k-1}{36}$ is divisible by an odd prime $p' \neq 61$. Hence $p' \notin [3, 443]$ and so p' > 443. Also, from (3.10*b*), p'|w. This proves (A) completely.

Proof of (B). Let

$$T'_{13} = \{q | 13^{k+1} + 1 : q \in [3, 443] - \{5, 17\} \text{ and } s = \frac{1}{2} ord_q 13 \text{ is even} \}.$$

If T'_{13} is non-empty, then (B) holds by Result 3.3(b). We may assume that T'_{13} is empty. Since $q \nmid 13^{k+1} + 1$ if $s = \frac{1}{2}ord_q 13$ is odd, it follows that $13^{k+1} + 1$ is not divisible by any prime $q \in [3, 443]$, except for possibly $q \in \{5, 17\}$.

We note that $5|13^{k+1} + 1 \iff k + 1 = 2u \iff 17|13^{k+1} + 1$. Since 5 is not a factor of the left hand side of (3.10b), it follows that $5 \nmid 13^{k+1} + 1$. Hence $17 \nmid 13^{k+1} + 1$.

Thus $13^{k+1}+1$ is not divisible by any prime in [3, 443]. The same is true with respect to $\frac{13^{k+1}+1}{2}$ which is odd and > 1. If $q'|\frac{13^{k+1}+1}{2}$, then q' > 443 and q'|w from (3.10*b*). This proves (B).

Also, since $\frac{13^k-1}{12}$ is relatively prime to $13^{k+1} + 1$, we have $p' \neq q'$.

Completion of proof of Lemma 3.4. We may assume that $p' \ge 449$ and $q' \ge 457$. From (3.10c), w has not more than four odd prime factors. Possibly w may have two more odd prime factors apart from p' and q'. If p_1 and p_2 denote these two possible odd prime factors (of w), since w is prime to 2.3.5.11.13 and we already proved that $7 \nmid n$, we can assume that $p_1 \ge 17$ and $p_2 \ge 19$. Thus $n = 2^8 \cdot 3^2 \cdot 5^2 \cdot 11^d \cdot 13^e \cdot (p')^f \cdot (q')^g \cdot p_1^h \cdot p_2^i$, and hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{495}{256} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{11}{10} \cdot \frac{13}{12} \cdot \frac{449}{448} \cdot \frac{457}{456} \cdot \frac{17}{16} \cdot \frac{19}{18} = 2.999442728 < 3,$$

a contradiction.

The proof of Lemma 3.4 is complete.

Completion of proof of Theorem 3.1. Follows from Lemmas 3.1 to 3.4.

References

- [1] Hagis, P., Jr. (1987). Bi-unitary amicable and multiperfect numbers. *The Fibonacci Quarterly*, 25(2), 144–150.
- [2] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, I. *Notes on Number Theory and Discrete Mathematics*, 26(1), 93–171.
- [3] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, II. *Notes on Number Theory and Discrete Mathematics*, 26(2), 1–26.

- [4] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, III. *Notes on Number Theory and Discrete Mathematics*, 26(3), 33–67.
- [5] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, IV(a). *Notes on Number Theory and Discrete Mathematics*, 26(4), 2–32.
- [6] Haukkanen, P., & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, IV(b). *Notes on Number Theory and Discrete Mathematics*, 27(1), 45–69.
- [7] Sándor, J., & Crstici, P. (2004). Handbook of Number Theory, Vol. II, Kluwer Academic.
- [8] Suryanarayana, D. (1972). The number of bi-unitary divisors of an integer. *The Theory* of Arithmetic Functions, Lecture Notes in Mathematics 251: 273–282, New York, Springer–Verlag.
- [9] Wall, C. R. (1972). Bi-unitary perfect numbers. *Proceedings of the American Mathematical Society*, 33(1), 39–42.