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Abstract: In this paper, the author establishes a set of three new theta-function identities involving
Rα, Rβ and Rm functions which are based upon a number of q-product identities and Jacobi’s
celebrated triple-product identity. These theta-function identities depict the inter-relationships
that exist among theta-function identities and combinatorial partition-theoretic identities. Here,
in this paper we answer to an open question of Srivastava et al [33], and estabish relations in
terms of Rα, Rβ and Rm (for m = 1, 2, 3); and q-products identities. Finally, we choose to
further emphasize upon some close connections with combinatorial partition-theoretic identities.
Keywords: Theta-function identities, Multivariable R-functions, Jacobi’s triple-product identity,
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1 Introduction

Recently, Srivastava et al [33] coined an open problem, which state as find an inter-relationships
between Rα, Rα and Rm(m ∈ N), q-product identities and continued-fraction identities. The
purpose of this article is to establish relationships between Rα, Rα and Rm(m ∈ N) and the
q-product identities. Throughout this article, we denote by N, Z, and C the set of positive integers,
the set of integers and the set of complex numbers, respectively. We also let
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N0 := N ∪ {0} = {0, 1, 2, . . .}

and recall the following q-notations (see, for example, [35, Chapter 6] and [36, pp. 346 et seq.]).
The q-shifted factorial (a; q)n is defined (for |q| < 1) by

(a; q)n :=


1 (n = 0)

n−1∏
k=0

(1− aqk) (n ∈ N),
(1)

where a, q ∈ C and it is assumed tacitly that a 6= q−m (m ∈ N0). We also write

(a; q)∞ :=
∞∏
k=0

(1− aqk) =
∞∏
k=1

(1− aqk−1) (a, q ∈ C; |q| < 1). (2)

It should be noted that, when a 6= 0 and |q| = 1, the infinite product in the equation (2)
diverges. So, whenever (a; q)∞ is involved in a given formula, the constraint |q| < 1 will be
tacitly assumed to be satisfied.

The following notations are also frequently used in our investigation:

(a1, a2, . . . , am; q)n := (a1; q)n (a2; q)n · · · (am; q)n (3)

and
(a1, a2, . . . , am; q)∞ := (a1; q)∞ (a2; q)∞ · · · (am; q)∞. (4)

Ramanujan (see [27,28]) defined the general theta function f(a, b) as follows (see, for details,
[5, p. 31, Eq. (18.1)] and [30]):

f(a, b) = 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn)

=
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 = f(b, a) (|ab| < 1). (5)

We find from this last equation (5) that

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f
(
a(ab)n, b(ab)−n

)
= f(b, a) (n ∈ Z). (6)

In fact, Ramanujan (see [27,28]) also rediscovered Jacobi’s famous triple-product identity which,
in Ramanujan’s notation, is given by (see [5, p. 35, Entry 19]):

f(a, b) = (−a; ab)∞ (−b; ab)∞ (ab; ab)∞ (7)

or, equivalently, by (see [25])
∞∑

n=−∞

qn
2

zn =
∞∏
n=1

(
1− q2n

) (
1 + zq2n−1

)(
1 +

1

z
q2n−1

)
=
(
q2; q2

)
∞

(
−zq; q2

)
∞

(
−q
z
; q2
)
∞

(|q| < 1; z 6= 0).

Several q-series identities, which emerge naturally from Jacobi’s triple-product identity (7), are
worth noting here (see, for details, [5, pp. 36–37, Entry 22]):
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ϕ(q) :=
∞∑

n=−∞

qn
2

= 1 + 2
∞∑
n=1

qn
2

=
{
(−q; q2)∞

}2
(q2; q2)∞ =

(−q; q2)∞ (q2; q2)∞
(q; q2)∞ (−q2; q2)∞

; (8)

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

; (9)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)n q
n(3n−1)

2

=
∞∑
n=0

(−1)n q
n(3n−1)

2 +
∞∑
n=1

(−1)n q
n(3n+1)

2 = (q; q)∞. (10)

Equation (10) is known as Euler’s Pentagonal Number Theorem. Remarkably, the following
q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1

χ(−q)
(11)

provides the analytic equivalent form of Euler’s famous theorem (see, for details, [2] and [4]).

Note: Equation (6) holds true as stated only if n is any integer. Moreover, in case n is not an
integer, this result (6) is only approximately true (see, for details, [27, Vol. 2, Chapter XVI,
p. 193, Entry 18 (iv)]). Historically speaking, the q-series identity (7) or its above-mentioned
equivalent form was first proved by Carl Friedrich Gauss (1777–1855).

Theorem 1.1 (Euler’s Pentagonal Number Theorem). The number of partitions of a given positive
integer n into distinct parts is equal to the number of partitions of n into odd parts.

We also recall the Rogers–Ramanujan continued fraction R(q) given by

R(q) := q
1
5
H(q)

G(q)
= q

1
5
f(−q,−q4)
f(−q2,−q3)

= q
1
5
(q; q5)∞ (q4; q5)∞
(q2; q5)∞ (q3; q5)∞

=
q

1
5

1+

q

1+

q2

1+

q3

1+
(|q| < 1). (12)

Here G(q) and H(q), which are associated with the widely-investigated Roger–Ramanujan
identities, are defined as follows:

G(q) :=
∞∑
n=0

qn
2

(q; q)n
=

f(−q5)
f(−q,−q4)

=
1

(q; q5)∞ (q4; q5)∞
=

(q2; q5)∞ (q3; q5)∞ (q5; q5)∞
(q; q)∞

(13)

and

H(q) :=
∞∑
n=0

qn(n+1)

(q; q)n
=

f(−q5)
f(−q2,−q3)

=
1

(q2; q5)∞ (q3; q5)∞

=
(q; q5)∞ (q4; q5)∞ (q5; q5)∞

(q; q)∞
, (14)

and the functions f(a, b) and f(−q) are given by the equations (5) and (10), respectively.
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For a detailed historical account of (and for various related developments stemming from) the
Rogers–Ramanujan continued fraction (12), as well as the Rogers–Ramanujan identities (13) and
(14), the interested reader may refer to the monumental work [5, p. 77 et seq.] (see also [30]
and [35]).

The following continued-fraction results may be recalled now (see, for example, [8, p. 5,
Eq. (2.8)]).

Theorem 1.2. Suppose that |q| < 1. Then

(q2; q2)∞(−q; q)∞ =
(q2; q2)∞
(q; q2)∞

=
1

1−
q

1+

q(1− q)
1−

q3

1+

q2(1− q2)
1−

q5

1+

q3(1− q3)
1−

· · ·

=
1

1− q

1 +
q(1− q)

1− q3

1 +
q2(1− q2)

1− q5

1 +
q3(1− q3)

1− ...

, (15)

(q; q5)∞(q
4; q5)∞

(q2; q5)∞(q3; q5)∞
=

1

1+

q

1+

q2

1+

q3

1+

q4

1+

q5

1+

q6

1+
· · ·

=
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 +
...

, (16)

and

C(q) =
(q2; q5)∞(q

3; q5)∞
(q; q5)∞(q4; q5)∞

= 1 +
q

1+

q2

1+

q3

1+

q4

1+

q5

1+

q6

1+
· · ·

= 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
q6

1 +
...

(17)

By introducing the general family R(s, t, l, u, v, w), Andrews et al. [3] investigated a number
of interesting double-summation hypergeometric q-series representations for several families of
partitions and further explored the role of double series in combinatorial-partition identities:

4



R(s, t, l, u, v, w) :=
∞∑
n=0

qs(
n
2)+tn r(l, u, v, w;n), (18)

where

r(l, u, v, w : n) :=

[n
u
]∑

j=0

(−1)j quv(
j
2)+(w−ul)j

(q; q)n−uj (quv; quv)j
. (19)

We also recall the following interesting special cases of (18) (see, for details, [3, p. 106, Theorem
3]; see also [30]):

R(2, 1, 1, 1, 2, 2) = (−q; q2)∞, (20)

R(2, 2, 1, 1, 2, 2) = (−q2; q2)∞ (21)

and

R(m,m, 1, 1, 1, 2) =
(q2m; q2m)∞
(qm; q2m)∞

. (22)

Recently, Srivastava et al. (see [33]) has introduced three notations:

Rα=R(2, 1, 1, 1, 2, 2);Rβ=R(2, 2, 1, 1, 2, 2);Rm=R(m,m, 1, 1, 1, 2);m=1, 2, 3, . . . . (23)

for multivarite R-functions, which we shall use for computation of our main results in Section 2.
Ever since the year 2015, several new advancements and generalizations of the existing

results were made in regard to combinatorial partition-theoretic identities (see, for example,
[9–23] and [30–32]). In particular, Chaudhary et al. generalized several known results on
character formulas (see [20]), Roger-Ramanujan type identities (see [17]), Eisenstein series,
the Ramanujan–Göllnitz–Gordon continued fraction (see [18]), the 3-dissection property (see
[14]), Ramanujan’s modular equations of degrees 3, 7 and 9 (see [11, 13]), and so on, by using
combinatorial partition-theoretic identities. An interesting recent investigation on the subject of
combinatorial partition-theoretic identities by Hahn et al. [24] is also worth mentioning in this
connection.

Here, in this paper, our main objective is to establish a set of three new theta-function identities
which depict the inter-relationships in terms of Rα, Rβ and Rm functions along with q-product
identities.

Each of the following preliminary results will be needed for the demonstration of our main
results in this paper (see [1, Theorem 5.1; 7, Entry 51, p. 204; 27, Theorem 3.1]):
[A]. If

U =
φ4(−q)
φ4(−q3)

and V =
ψ4(q)

ψ4(q3)
,

then
U − UV + V − 9 = 0. (24)

[B]. If

M =
f 2(−q)

q
1
6f 2(−q3)

and N =
f 2(−q2)
q

1
3f 2(−q6)

,

then

MN +
9

MN
−
(
N

M

)3

−
(
M

N

)3

= 0. (25)
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[C]. If

U =
φ4(q)

φ4(q3)
,

then
f 4(q)f 4(−q2)
qf 4(q3)f 4(−q6)

− U(U − 9)

(1− U)
= 0, U 6= 1. (26)

2 A set of main results

In this section, we state and prove a set of three identities which depict inter-relationships among
q-product identities; Rα, Rβ , and Rm.

2.1 Main results

Theorem 3. Each of the following relationships holds true:

1

q

{
R1

R3

}4

+

(
1−1

q

{
R1

R3

}4)
·

·(q, q, q, q, q
2, q2, q2, q2; q2)∞(−q3,−q3,−q3,−q3,−q6,−q6,−q6,−q6; q6)∞

{RαRβ}4(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞
= 9, (27)

Equation (27) give inter-relationships between R1, R3, Rα and Rβ .

(q, q, q2, q2, q2, q2; q2)∞

q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞

+
9q

1
2 (q3, q3, q6, q6, q6, q6; q6)∞
(q, q, q2, q2, q2, q2; q2)∞

−

− 1

q
1
2

{
R1R12(q

3; q6)∞(q
6; q12)∞(q

12; q24)∞
(q2; q2)∞(q6; q12)∞(q24; q24)∞

}6

− q
1
2

{
R2R3(q; q

2)∞(q
2; q4)∞

(q4; q4)∞(q6; q6)∞

}6

= 0, (28)

Equation (28) give inter-relationships between R1, R2, R3 and R12.

(−q,−q,−q,−q;−q)∞(q2, q2, q2, q2; q2)∞
q.(−q3,−q3,−q3,−q3;−q3)∞(q6, q6, q6, q6; q6)∞

− {RαR1(q
3,−q6; q6)∞}4

{(−q3, q6; q6)∞}4
·

·{R1Rα(q
3,−q6; q6)∞}4 − 9{R2(−q3, q6; q6)}4

{Rβ(−q3, q6; q6)∞}4
·

· {(−q3, q6; q6)∞}4

{{R2(−q3, q6; q6)∞}4 − {R1Rα(q3, q6; q6)}4
= 0. (29)

Equation (29) gives inter-relationships between R1, R2, Rα and Rβ .
It is assumed that each member of the assertions (27) to (29) exists.

2.2 Proofs of the main results

First of all, in order to prove the assertion (27), apply the identities (8), (9) and (23) into (24), we
obtain;

U =
φ4(−q)
φ4(−q3)

=
(q, q, q, q, q2, q2, q2, q2; q2)∞

{RαRβ}4
·

·(−q
3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞

(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞
, (30)
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V =
ψ4(q)

qψ4(q3)
=

1

q

{
R1

R3

}4

, (31)

UV =
(q, q, q, q, q2, q2, q2, q2; q2)∞{R1}4

{RαRβ}4
·

·(−q
3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞
q.(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞{R3}4

, (32)

Hence, with the help of identities (30) and (32), we obtain

U − UV =

(
1− 1

q

{
R1

R3

}4)
· (q, q, q, q, q

2, q2, q2, q2; q2)∞
{RαRβ}4

·

·(−q
3,−q3,−q3,−q3,−q6,−q6,−q6,−q6;−q6)∞

(q3, q3, q3, q3, q6, q6, q6, q6; q6)∞
, (33)

and with the help of identity (31), we have

V − 9 =

(
1

q

{
R1

R3

}4

− 9

)
. (34)

combining the identities (33) and (34), as precondition given in (24), we are led to the first
assertion (27).

Next, we prove the second q-series identity (28). Applying the identities (10) and (23) into
(25), we obtain:

MN +
9

MN
=

(q, q, q2, q2, q2, q2; q2)∞

q
1
2 (q3, q3, q6, q6, q6, q6; q6)∞

+
9q

1
2 (q3, q3, q6, q6, q6, q6; q6)∞

q
1
2 (q, q, q2, q2, q2, q2; q2)∞

, (35)

and (
N

M

)3

+

(
M

N

)3

=
1

q
1
2

{
R1R12(q

3; q6)∞(q
6; q12)∞(q

12; q24)∞
(q2; q2)∞(q6; q12)∞(q24; q24)∞

}6

+q
1
2

{
RαR3(q; q

2)∞(q
2; q4)∞

(q4; q4)∞(q6; q6)∞

}6

. (36)

combining the identities (35) and (36), as precondition given in (25), we complete our demonstration
of assertion (28).

Finally, we attempt to prove the third q-series identity (29). Applying the identities (8), (10)
and (23) into (25), we get;

U2 − 9U

(1− U)
=
U(U − 9)

(1− U)
=
{RαR1(q

3,−q6; q6)∞}4

{(−q3, q6; q6)∞}4
·

·{R1Rα(q
3,−q6; q6)∞}4 − 9{R2(−q3, q6; q6)}4

{Rβ(−q3, q6; q6)∞}4
·

· {(−q3, q6; q6)∞}4

{R2(−q3, q6; q6)∞}4 − {R1Rα(q3,−q6; q6)}4
, (37)

and
f 4(q)f 4(−q2)
qf 4(q3)f 4(−q6)

=
(−q,−q,−q,−q;−q)∞(q2, q2, q2, q2; q2)∞

q.(−q3,−q3,−q3,−q3;−q3)∞(q6, q6, q6, q6; q6)∞
. (38)

combining (37) and (38), as precondition given in (26), we complete our demonstration of assertion
(29).

We thus have completed our proof of the above Theorem.
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3 Connections with combinatorial partition-theoretic
identities

Several extensions and generalizations of partition-theoretic identities and other q-identities,
which we have investigated in this paper, as well as their connections with combinatorial partition-
theoretic identities, can be found in several recent works (see, for example, [26], [38] and [39]).
The demonstrations in some of these recent developments are also based upon their combinatorial
interpretations and generating functions (see also [24]).

On the connections of different partition-theoretic identities, several findings and observations
had been made by the researchers. But, recently valuable progress in this direction has been made
by Andrews et al. (see [3]); and established three results for the double series associated with
Schur’s partitions, Göllnitz–Gordon partitions and Göllnitz partitions in terms of multivariate
R-functions. Further, Srivastava et al (see [33]) has generalized multivariate R-functions in terms
of Rα, Rβ and Rm.

4 Concluding remarks and observations

In this article, we have established three new relationships among Rα, Rβ and Rm functions
related to Jacobi’s triple-product identity and the family of theta-function identities, which were
motivated by several recent developments dealing essentially with theta-function identities and
combinatorial partition-theoretic identities. Here, in this article, we have established a family
of three presumably new theta-function identities which depict the inter-relationships that exist
among q-product identities and multivariateR-functions. We have also considered several closely
related identities such as (for example) q-product identities and Jacobi’s triple-product identities.
And, with a view to further motivating researches involving theta-function identities and
combinatorial partition-theoretic identities, we have chosen to indicate rather briefly a number
of recent developments on the subject-matter of this article. The list of citations, which we have
included in this article, is believed to be potentially useful for indicating some of the directions
for further researches and related developments on the subject-matter which we have dealt with
here. In particular, the recent works by Cao et al. [6], Chaudhary et al. (see [8], [19–23]), Hahn
et al. [24], and Srivastava et al. (see [29, 31, 34, 37–39]) are worth mentioning here.
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