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1 Introduction

The graphs considered in this paper have no loops and parallel edges and are undirected. Let G
be an arbitrary graph with vertex set V (G) = {v1, v2, . . . , vn}. Let A(G) be the adjacency matrix
of G. It is an n×n symmetric matrix, A(G) = (aij)n×n, where aij = 1 if vi and vj are connected
by an edge in G, and 0 elsewhere.

Let the degree of vi in G be di (number of vertices adjacent to vi) and the diagonal degree
matrix of G be D(G) = diag(d1, d2, . . . , dn). Laplacian matrix and signless Laplacian matrix are
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defined as L(G) = D(G)−A(G) and Q(G) = D(G) +A(G), respectively. For more details see
[2,4,7,14]. The characteristic polynomial of the graphG is defined as fG(A : x) = det(xIn−A),
where In is the identity matrix of order n. The eigenvalues of G are the roots of fG(A : x) = 0.
They are denoted by λ1 ≥ λ2 ≥ · · · ≥ λn and usually called adjacency spectrum or A-spectrum
of G. Similarly the eigenvalues of L(G) and Q(G) are denoted by 0 = µ1 ≤ µ2 ≤ · · · ≤ µn
and ν1 ≥ ν2 ≥ · · · ≥ νn. They are called the Laplacian and signless Laplacian spectrum (or
L-spectrum and Q-spectrum respectively) of G. The eigenvalues of A(G), L(G) and Q(G) are
real numbers since the matrices are real and symmetric. Cospectral graphs are those graphs with
the same spectrum.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Let U(G) = {x1, x2, . . . , xn} be
another set. Draw xi adjacent to all the vertices inN (vi), the neighborhood set of vi, inG for each
i and delete the edges ofG only. The graph thus obtained is called the duplication graph [15] ofG
and we denote it as DG. Let G1 and G2 be two graphs with n1 and n2 vertices. The corona of G1

andG2 is the graph obtained by taking one copy ofG1 and n1 copies ofG2 and joining i-th vertex
of G1 to every vertices in the i-th copy of G2. Frucht and Harary in [5] introduced this concept
and their spectrum by Cvetković et. al [3]. Gopalapillai in [6] introduced neighborhood corona of
graphs and calculated the corresponding spectrum. In [17,19] Varghese and Susha defined some
new join and corona-type graphs based on duplication graph of an arbitrary graph. In [10,16,18]
new product related to corona of graph are studied. Motivated from these works, here we define
a new corona-type graph namely, duplication corresponding corona and determine its adjacency,
Laplacian and signless Laplacian spectrum.

The paper is organized as follows. In Section 2 we state some necessary preliminaries. In
Section 3 we define duplication corresponding corona and find their adjacency, Laplacian and
signless Laplacian spectrum. Also we discuss some concepts like the number of spanning trees,
the Kirchhoff index and the incidence energy of the new graph. Also we introduce some new
classes of cospectral graphs using this new product.

2 Preliminaries

Lemma 2.1 ([2]). Let M =

[
M1 M2

M2 M1

]
be a symmetric block matrix of order 2× 2. Then the

eigenvalues of M are those of M1 +M2 together with M1 −M2.

Proposition 2.2 ([2]). Let P0, P1, P2 and P3 be matrices of order n1×n1, n1×n2, n2×n1, n2×n2

respectively. Then

det

[
P0 P1

P2 P3

]
=

det(P0) det(P3 − P2P
−1
0 P1), if P0 is invertible

det(P3) det(P0 − P1P
−1
3 P2), if P3 is invertible

Definition 2.3 ([13]). LetA be the adjacency matrix of a graphGwith n vertices. The determinant,
det(xI − A) = fG(A : x) 6= 0, is invertible being the characteristic matrix of A. The A-coronal,
χA(x), of G is defined to be the sum of the entries of the matrix (xI − A)−1. We denote this as

χA(x) = jTn (xI − A)−1jn, (1)
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where jn is a n× 1 column vector with all entries equal to 1.

Let A = (aij) and B be matrices. Then the Kronecker product, A⊗B, of A and B is defined
as the partition matrix (aijB). For details see [2].

• (A⊗B)T = AT ⊗BT , where A and B are of appropriate order;

• (A+B)⊗ C = A⊗ C +B ⊗ C;

• (A⊗B)(C ⊗D) = AC ⊗BD whenever the product AC and BD exist;

• (A⊗B)−1 = A−1 ⊗B−1 for the non-singular matrix A and B;

• det(A⊗B) = (detA)p (detB)n where A and B are n× n and p× p matrices.

3 Duplication corresponding corona of graphs

The following definition describes a new graph corona-type product based on the duplication
graph of a graph.

Definition 3.1. Let G1 and G2 be two vertex disjoint graphs with n1 and n2 vertices, respectively.
Let V (G1) ∪ U(G1) where, V (G1) = {v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1} be
vertex set of DG1, the duplication graph of G1. The vertex xi is a duplication of vi for each
i = 1, 2, . . . n1. Duplication corresponding corona of G1 and G2, denoted by G1>G2 and is the
graph obtained from DG1 and n1 copies of G2 by making xi and vi adjacent to every vertices in
the i-th copy of G2 for i = 1, 2, . . . , n1.

Figure 1. Duplication corresponding corona C4>K2

Theorem 3.2. Let Gi be two graphs with spectrum λi1 ≥ λi2 ≥ · · · ≥ λini
for i = 1, 2. Then the

characteristic polynomial of G1>G2 is

fG1>G2(A : x) =

n2∏
j=1

(x− λ2j)n1

n1∏
i=1

(x+ λ1i)

n1∏
i=1

(x− 2χA2(x)− λ1i).
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Proof. LetG1 andG2 be two graphs with n1 and n2 vertices, respectively. Let the vertex set ofG1

be V (G1) = {v1, v2, . . . , vn1} and U(G1) = {x1, x2, . . . , xn1} be a set of vertices corresponding
to V (G1). The vertex in the i-th copy of G2 is {ui1, ui2, . . . , uin2

} and let Wj = {u1j , u2j , . . . , u
n2
j }

for j = 1, 2, . . . , n1. Then V (G1) ∪ U(G1) ∪ {W1 ∪W2 ∪ . . . ∪Wn1} is a vertex partition of
G1>G2 with n1(n2 + 2) vertices.

By this vertex partitioning, the block form of the adjacency matrix of G1>G2 is

A(G1>G2) =

 0 A1 jTn2
⊗ In1

A1 0n1×n1 jTn2
⊗ In1

jn2
⊗ In1 jn2

⊗ In1 A2 ⊗ In1

 ,
where A1 and A2 are the adjacency matrices of G1 and G2, respectively. jn2

is a n2 × 1 column
vector with all entries equal to 1 and In1 is an identity matrix of order n1.

The characteristic polynomial of G1>G2 is

fG1>G2(A : x) =

∣∣∣∣∣ xIn1 −A1 −jTn2
⊗In1

−A1 xIn1 −jTn2
⊗In1

−jn2
⊗In1 −jn2

⊗In1 (xIn2−A2)⊗In1

∣∣∣∣∣ ,
= det((xIn2 − A2)⊗ In2) det(S),

where, S =

[
xIn1 −A1

−A1 xIn1

]

−

[
−jTn2

⊗ In1

−jTn2
⊗ In1

]
((xIn2 − A2)⊗ In1)

−1
[
−jn2

⊗ In1 −jn2
⊗ In1

]
.

By using the property of Kronecker product we can substantiate that

(jTn2
⊗ In1)((xIn2 − A2)

−1 ⊗ In1)(jn2
⊗ In1) = χA2(x)In1 .

Therefore,

S =

[
xIn1 −A1

−A1 xIn1

]
−

[
χA2(x)In1 χA2(x)In1

χA2(x)In1 χA2(x)In1

]
,

=

[
xIn1 − χA2(x)In1 −A1 − χA2(x)In1

−A1 − χA2(x)In1 xIn1 − χA2(x)In1

]
.

This implies that, det(S) = det(xI −M), where

M =

[
χA2(x)In1 A1 + χA2(x)In1

A1 + χA2(x)In1 χA2(x)In1

]
.

By Lemma 2.1 the eigenvalues of M are those of A1 + 2χA2(x)In1 and −A1, i.e., the roots of
det(xIn1 − 2χA2(x)In1 − A1) = 0 and det(xIn1 + A1) = 0.

Also

det((xIn2 − A2)⊗ In1) = (det(xIn2 − A2))
n1(det(In1))

n2

=

n2∏
j=1

(x− λ2j)n1 .
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Hence,

fG1>G2(A : x) =

n2∏
j=1

(x−λ2j)n1

n1∏
i=1

(x+λ1i)

n1∏
i=1

(x−2χA2(x)−λ1i).

Corollary 3.3. For i = 1, 2, let Gi be two graphs with ni vertices with spectrum λi1 ≥ λi2 ≥
· · · ≥ λini

. If G2 is r2-regular, then A-spectrum of G1>G2, consists of

1. λ2j , repeated n1 times for j = 2, 3, . . . , n2;

2. −λ1i, for i = 1, 2, . . . , n1;

3.
(r2+λ1i)±

√
(r2−λ1i)2+8n2

2
, for i = 1, 2, . . . , n1.

Proof. Since G2 is r2-regular, from Equation 1 we get, χA2(x) =
n2

x−r2 .

x− 2χA2(x)− λ1i = x− 2
n2

x− r2
− λ1i

=
x2 − xr2 − 2n2 − xλ1i + r2λ1i

x− r2

=
x2 − (λ1i + r2)x+ r2λ1i − 2n2

x− r2
.

Hence from Theorem 3.2 and use the fact λ21 = r2, we get

fG1>G2(A : x) =

n2∏
j=2

(x− λ2j)n1

n1∏
i=1

(x+ λ1i)

n1∏
i=1

(x2 − (λ1i + r2)x+ r2λ1i − 2n2).

This completes the proof of the corollary.

Corollary 3.4. Let G1 be an arbitrary graph with n1 vertices and spectrum λ11 ≥ λ12 ≥ · · · ≥
λ1n1 . If G2 = Kn2 (totally disconnected graph on n2 vertices), then A-spectrum of G1>G2

consists of,

1. 0, repeated n1(n2 − 1) times;

2. −λ1i, for i = 1, 2, . . . , n1;

3.
λ1i±
√
λ21i+8n2

2
, for i = 1, 2, . . . , n1.

Proof. Since G2 is Kn2 , χA2(x) =
n2

x
and the λ2j = 0 for j = 1, 2, . . . , n2.

Using Theorem 3.2 and Corollary 3.3 we get the characteristic polynomial as,

fG1>G2(A : x) = xn1(n2−1)

n1∏
i=1

(x+ λ1i)

n1∏
i=1

(x2 − λ1ix− 2n2).

This completes the proof of the corollary.
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Theorem 3.5. Let G1 be an r1-regular graph on n1 vertices and G2 be an arbitrary graph on n2

vertices with Laplacian spectrum 0 = µj1 ≤ µj2 ≤ · · · ≤ µjnj
for j = 1, 2. Then L - spectrum of

G1>G2 consists of,
(i) 0 ;
(ii) n2 + 2 ;
(iii) 2 + µ2i, repeated n1 times for i = 2, 3, . . . , n2 ;
(iii) n2 + 2r1 − µ1i, for i = 1, 2, . . . , n1;
(iv) Two roots of the equation,

x2 − (n2 + µ1i + 2)x+ 2µ1i = 0, i = 2, 3, . . . , n1.

Proof. Let G1 be an r1-regular graph with n1 vertices and G2 be an arbitrary graph with n2

vertices. Let V (G1) = {v1, v2, . . . , vn1} be the vertex set ofG1 andU(G1) = {x1, x2, . . . , xn1} be
the set of vertices corresponding to V (G1). The vertex in the i-th copy of G2 is {ui1, ui2, . . . , uin2

}.
The degree of the vertices of G1>G2 are
dG1>G2(vi) = dG1>G2(xi) = n2 + r1, i = 1, 2, . . . , n1 and
dG1>G2(u

i
j) = dG2(uj) + 2, for i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

The diagonal degree matrix of G1>G2 is,

D(G1>G2) =

 (r1 + n2)In1 0 0

0 (r1 + n2)In1 0

0 0 (D(G2) + 2In2)⊗ In1

 ,
where D(G2) is the diagonal degree matrix of the graph G2.

(D(G2) + 2In2)⊗ In1 − A2 ⊗ In1 = (D(G2) + 2In2 − A2)⊗ In1

= (L2 + 2In2)⊗ In1 .

Also from the proof of Theorem 3.2, the adjacency matrix of G1>G2 is,

A =

 0 A1 jTn2
⊗ In1

A1 0n1×n1 jTn2
⊗ In1

jn2
⊗ In1 jTn2

⊗ In1 A2 ⊗ In1

 ,
where A1 and A2 are the adjacency matrices of G1 and G2, respectively.
The Laplacian matrix of G1>G2 is,

L = D − A

=

 (r1 + n2)In1 −A1 −jTn2
⊗ In1

−A1 (r1 + n2)In1 −jTn2
⊗ In1

−jn2
⊗ In1 −jn2

⊗ In1 (L2 + 2In2)⊗ In1

 ,
where L2 is the Laplacian matrix of the graph G2.
Here we use the properties of Kronecker product and can easily proved that

(jTn2
⊗ In1)(((x− 2)In2 − L2)

−1 ⊗ In1)(jn2
⊗ In1) = χL2(x− 2)In1 .
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The Laplacian characteristic polynomial of G1>G2 is,

fG1>G2(L : x) =

∣∣∣∣∣ (x−r1−n2)In1 A1 jTn2
⊗In1

A1 (x−r1−n2)In1 jTn2
⊗In1

jn2
⊗In1 jn2

⊗In1 ((x−2)In2−L2)⊗In1

∣∣∣∣∣
= det(((x− 2)In2 − L2)⊗ In1) det(S),

where, S =

[
(x− r1 − n2)In1 A1

A1 (x− r1 − n2)In1

]

−

[
jTn2
⊗ In1

jTn2
⊗ In1

]
(((x− 2)In2 − L2)⊗ In1)

−1
[

jn2
⊗ In1 jn2

⊗ In1

]
=

[
(x− r1 − n2)In1 A1

A1 (x− r1 − n2)In1

]

−

[
χL2(x− 2)In1 χL2(x− 2)In1

χL2(x− 2)In1 χL2(x− 2)In1

]

=

[
(x− r1 − n2 − χL2(x− 2))In1 A1 − χL2(x− 2)In1

A1 − χL2(x− 2)In1 (x− r1 − n2 − χL2(x− 2))In1

]
.

Hence, det(S) = det(xI −M), where,

M =

[
(r1 + n2 + χL2(x− 2))In1 −A1 + χL2(x− 2)In1

−A1 + χL2(x− 2)In1 (r1 + n2 + χL2(x− 2))In1

]
.

By Lemma 2.1 the eigenvalues ofM are those of (r1+n2+χL2(x−2))In1−A1+χL2(x−2)In1

together with (r1 + n2 + χL2(x − 2))In1 + A1 − χL2(x − 2)In1 , i.e., those of
(r1 + n2 + 2χL2(x− 2))In1 − A1 together with (n2 + r1)In1 + A1.

We use the fact that L = D − A, so, for a r1-regular graph we have L = r1In1 − A1 and
µ1i = r1 − λ1i for i = 1, 2, . . . , n.

Therefore the eigenvalues of M are those of (n2 + 2χL2(x − 2))In1 + L1 together with
(n2 + 2r1)In1 − L1.

det(((x− 2)In2 − L2)⊗ In1) = det((x− 2)In2 − L2)
n1(det(In1))

n2

=

n2∏
j=1

(x− 2− µ2j)
n1 .

Hence,

fG1>G2(L : x) =

n2∏
j=1

(x− 2− µ2j)
n1

n1∏
i=1

(x− 2r1 − n2 + µ1i)

n1∏
i=1

(x− n2 − 2χL2(x− 2)− µ1i).

Using equation (1) we have,
χL2(x− 2) =

n2

x− 2
.
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x− n2 − 2χL2(x− 2)− µ1i = x− n2 −
2n2

x− 2
− µ1i

=
x2 − (n2 + 2 + µ1i)x+ 2µ1i

x− 2
n1∏
i=1

(x− n2 − 2χL2(x− 2)− µ1i) =
x(x− n2 − 2)

(x− 2)n1

n1∏
i=2

(x2 − (n2 + 2 + µ1i)x+ 2µ1i)

Also, since µ11 = µ21 = 0, the characteristic polynomial becomes

fG1>G2(L : x) = x(x− n2 − 2)

n2∏
j=2

(x− 2− µ2j)
n1

n1∏
i=1

(x− n2 − 2r1 + µ1i)

n1∏
i=2

(x2 − (n2 + µ1i + 2)x+ 2µ1i).

Hence the theorem is proved.

Remark 3.6. Spanning tree of a graph is a subgraph of it which is also a tree. The number of
spanning trees of a graph G is denoted by t(G). If G is a connected graph with n vertices and the
Laplacian spectrum 0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G), then [11] the number of spanning trees

t(G) =
µ2(G)µ3(G) · · ·µn(G)

n
. (2)

Corollary 3.7. Let G1 be an r1-regular graph on n1 vertices and G2 be an arbitrary graph on n2

vertices. Then the number of spanning trees of G1>G2 is,

t(G1>G2) = 2n1−1 t(G1)

n2∏
j=2

(2 + µ2j)
n1

n1∏
i=1

(n2 + 2r1 − µ1i).

Proof. The proof follows from Theorem 3.5 and equation (2).

Remark 3.8. Klein and Randić in [9] introduced a new notion named resistance distance based
on electric resistance in a network corresponding to a graph, in which the resistance distance
between any two adjacent vertices is 1 ohm. The electric resistance is calculated by means of the
Kirchhoff laws called Kirchhoff index.

For a graph G with n vertices, where n ≥ 2, and the Laplacian spectrum 0 = µ1(G)

≤ µ2(G) ≤ · · · ≤ µn(G), then the Kirchhoff index, Kf(G), is defined as

Kf(G) = n
n∑
i=2

1

µi
. (3)

Corollary 3.9. Let G1 be an r1-regular graph on n1 vertices and G2 be an arbitrary graph on n2

vertices. Then Kirchhoff index of G1>G2 is,

Kf(G1>G2) =
2n1(n2 + r1 + 1)

n2 + 2r1
+
n1(n1 − 1)(n2 + 2)

2
+

(n2 + 2)2

2
Kf(G1)

+ n1(n2 + 2)

[
n2∑
j=2

n1

2 + µ2j

+

n1∑
i=2

1

n2 + 2r1 − µ1i

]
.
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Proof. Let yi1 and yi2 be the roots of the equation x2−(n2+µ1i+2)x+2µ1i = 0, i = 2, 3, . . . , n1.

1

yi1
+

1

yi2
=
yi1 + yi2
yi1yi2

=
n2 + 2 + µ1i

2µ1i

=
n2 + 2

2µ1i

+
1

2
n1∑
i=2

(
1

yi1
+

1

yi2

)
=
n2 + 2

2n1

Kf(G1) +
n1 − 1

2
.

The remaining proof follows from Theorem 3.5 and equation (3).

J. Liu and B. Liu defined a new Laplacian graph invariant in [12], Laplacian-energy-like
invariant (LEL).

Let G be a graph with n vertices and the Laplacian spectrum 0 = µ1(G) ≤ µ2(G) · · · ≤
µn(G). LEL of G is defined as,

LEL(G) =
n∑
i=2

√
µi. (4)

Corollary 3.10. Let G1 be an r1-regular graph on n1 vertices and G2 be an arbitrary graph on
n2 vertices with Laplacian spectrum {0 = µ1, µ2, . . . , µn}. Then,

LEL(G1>G2) =
√
n2 + 2 + n1

n2∑
j=2

√
2 + µ2j +

n1∑
i=1

√
n2 + 2r1 − µ1i

+

n1∑
i=2

[
(n2 + µ1i + 2) + 2

√
2µ1i

]1/2
.

Proof. The proof follows from Theorem 3.5, equation (4) and the identity
(
√
x+
√
y)2 = (x+ y) + 2

√
xy.

Corollary 3.11. For two L-cospectral regular graphs G1 and G2 and an arbitrary graph H , the
graphs G1>H and G2>H are L-cospectral. Also if G is a regular graph and H1 and H2 are
L-cospectral graphs, then G>H1 and G>H2 are L-cospectral.

Theorem 3.12. Let G1 be an r1-regular graph on n1 vertices and G2 be an arbitrary graph on n2

vertices with signless Laplacian spectrum νi1 ≥ νi2 ≥ · · · ≥ νini
for i = 1, 2, respectively. Then

the signless Laplacian characteristic polynomial of G1>G2 is,

fG1>G2(Q : x) =

n2∏
j=1

(x− 2− ν2j)n1

n1∏
i=1

(x− n2 − 2r1 + ν1i)

n1∏
i=1

(x− n2 − 2χQ2(x− 2)− ν1i).

Proof. As like the notations defined in Theorem 3.5, we can define the signless Laplacian matrix
of G1>G2 is:
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Q =

 (r1 + n2)In1 A1 jTn2
⊗ In1

A1 (r1 + n2)In1 jTn2
⊗ In1

jn2
⊗ In1 jn2

⊗ In1 (2In2 +Q2)⊗ In1

 .
fG1>G2(Q : x) =

∣∣∣∣∣ (x−r1−n2)In1 −A1 −jTn2
⊗In1

−A1 (x−r1−n2)In1 −jTn2
⊗In1

−jn2
⊗In1 −jn2

⊗In1 ((x−2)In2−Q2)⊗In1

∣∣∣∣∣ ,
= det((x− 2)In2 −Q2)⊗ In1 det(S),

where Q2 is the signless Laplacian matrix of G2.
As like in Theorem 3.5 proved above,

S =

[
(x− r1 − n2 − χQ2(x− 2))In1 −A1 − χQ2(x− 2)In1

−A1 − χQ2(x− 2)In1 (x− r1 − n2 − χQ2(x− 2))In1

]
.

Hence detS = det(xI −M), where,

M =

[
(r1 + n2 + χQ2(x− 2))In1 A1 + χQ2(x− 2)In1

A1 + χQ2(x− 2)In1 (r1 + n2 + χQ2(x− 1))In1

]
.

By Lemma 2.1 the eigenvalues of M are those of (r1 + n2 + 2χQ2(x− 2))In1 + A1 together
with (r1 + n2)In1 − A1.

We use the fact that Q = D + A, since G1 is an r1-regular graph we have Q = r1I + A1 and
then, ν1i = r1 + λ1i for i = 1, 2, . . . , n.

Therefore, the eigenvalues of M are those of (n2 + 2χQ2(x − 2))In1 + Q1 together with
(n2 + 2r1)In1 −Q1.

Also,

det(((x− 2)In2 −Q2)⊗ In1) = det((x− 2)In2 −Q2)
n1(det(In1))

n2

=

n2∏
j=1

(x− 2− ν2j)n1 .

Hence,

fG1>G2(Q : x) =

n2∏
j=1

(x− 2− ν2j)n1

n1∏
i=1

(x− n2 − 2r1 + ν1i)

n1∏
i=1

(x− n2 − 2χQ2(x− 2)− ν1i).

This completes the proof.

Corollary 3.13. Let Gi be an ri-regular graph on ni vertices i = 1, 2 with signless Laplacian
spectrum 2ri = νi1 ≥ νi2 ≥ · · · ≥ νini

for i = 1, 2, respectively. Then the Q-spectrum of G1>G2

consists of:

(i) ν2i + 2, repeats n1 times for i = 2, 3, . . . , n2 ;

(ii) n2 + 2r1 − ν1i for i = 1, 2, . . . , n1 ;
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(iii) two roots of the equation

x2 − (n2 + 2r2 + ν1i + 2)x+ 2(n2r2 + ν1i + r2ν1i) = 0 for i = 2, 3, . . . , n2.

Proof. Since G2 is r2-regular, ν21 = 2r2. Using equation (1) we have,

χQ2(x− 2) =
n2

x− 2− 2r2
.

Therefore,

fG1>G2(Q : x) =

n2∏
j=2

(x− 2− ν2j)n1

n1∏
i=1

(x− 2r1 − n2 + ν1i)

n1∏
i=1

(x2 − (2 + 2r2 + n2 + ν1i)x− 2(n2r2 + ν1i + r2ν1i)).

Corollary 3.14. For two Q-cospectral regular graphs G1 and G2 and an arbitrary graph H ,
the graphs G1>H and G2>H are Q-cospectral. Also if G is a regular graph and H1 and
H2 are identical Q-cospectral graphs (χQ(H1)(x) = χQ(H2)(x)), then G>H1 and G>H2 are
Q-cospectral.

Let A be any real n × m matrix with transpose AT . The square roots of the eigenvalues of
AAT are called the singular values of the matrix A. The incidence matrix [1] of G is the 0 − 1

matrix R = (rij) with rows indexed by vertices and columns by edges where rij = 1 when the
vertex vi is an end point of the edge ej and 0 otherwise.

Definition 3.15. [8] Let ρ1, ρ2, . . . , ρn be the singular values of the incidence matrix R of a graph
G. The incidence energy of G is defined as IE(G) =

∑n
i=1 ρi.

It is clear that IE(G) ≥ 0 and the equality holds if and only if G is totally disconnected.
We have, RRT = Q [1] and let ν1 ≥ ν2 ≥ · · · ≥ νn be the signless Laplace spectrum of G. In [8]
Jooyandeh et. al. defined the incidence energy as

IE(G) =
n∑
i=1

√
νi. (5)

Corollary 3.16. For i = 1, 2 let Gi be an ri-regular graph on ni vertices with signless Laplacian
spectrum {2ri = νi1, νi2, . . . , νini

}. Then the incidence energy of G1>G2 is,

IE(G1>G2) = n1

n2∑
j=2

√
2 + ν2j +

n1∑
i=1

√
n2 + 2r1 − ν1i

+

n1∑
i=1

[
(n2 + 2r2 + µ1i + 2) + 2

√
2(n2r2 + ν1i + r2ν1i)

]1/2
.

Proof. The proof follows the identity (
√
x +
√
y)2 = (x + y) + 2

√
xy and using Corollary 3.13

and Equation (5).
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Let xi1 and xi2 be the roots of the equation x2− (n2+2r2+ν1i+2)x+2(n2r2+ν1i+r2ν1i) = 0.

(
√
xi1 +

√
xi2)

2 = (xi1 + xi2) + 2
√
xi1xi2

= (n2 + 2r2 + µ1i + 2) + 2
√

2(n2r2 + ν1i + r2ν1i)

√
xi1 +

√
xi2 =

[
(n2 + 2r2 + µ1i + 2) + 2

√
2(n2r2 + ν1i + r2ν1i)

]1/2
.

Then the corollary follows.
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