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1 Introduction

The graphs considered in this paper have no loops and parallel edges and are undirected. Let G
be an arbitrary graph with vertex set V(G) = {v1,v9,...,v,}. Let A(G) be the adjacency matrix
of G. Itis an n x n symmetric matrix, A(G) = (ai;)nxn, Where a;; = 1 if v; and v; are connected
by an edge in (&, and 0 elsewhere.

Let the degree of v; in G be d; (number of vertices adjacent to v;) and the diagonal degree
matrix of G be D(G) = diag(dy, ds, . . ., d,). Laplacian matrix and signless Laplacian matrix are
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defined as L(G) = D(G) — A(G) and Q(G) = D(G) + A(G), respectively. For more details see
[2,4,7,14]. The characteristic polynomial of the graph G is defined as f;(A : x) = det(zI, — A),
where [, is the identity matrix of order n. The eigenvalues of G are the roots of fo(A : z) = 0.
They are denoted by \; > A\ > --- > )\, and usually called adjacency spectrum or A-spectrum
of G. Similarly the eigenvalues of L(G) and Q(G) are denoted by 0 = 1 < pg < -++ < pp,
and 1y > vy > --- > v,. They are called the Laplacian and signless Laplacian spectrum (or
L-spectrum and Q-spectrum respectively) of G. The eigenvalues of A(G), L(G) and Q(G) are
real numbers since the matrices are real and symmetric. Cospectral graphs are those graphs with
the same spectrum.

Let G be a graph with vertex set V(G) = {v1,va,...,v,}. Let U(G) = {x1,x9,...,2,} be
another set. Draw z; adjacent to all the vertices in A/ (v;), the neighborhood set of v;, in G for each
1 and delete the edges of GG only. The graph thus obtained is called the duplication graph [15] of G
and we denote it as DG. Let G; and G5 be two graphs with n; and n, vertices. The corona of G,
and (5, is the graph obtained by taking one copy of (G; and n; copies of GG5 and joining -th vertex
of (G; to every vertices in the i-th copy of GG5. Frucht and Harary in [5] introduced this concept
and their spectrum by Cvetkovi¢ et. al [3]. Gopalapillai in [6] introduced neighborhood corona of
graphs and calculated the corresponding spectrum. In [17,19] Varghese and Susha defined some
new join and corona-type graphs based on duplication graph of an arbitrary graph. In [10, 16, 18]
new product related to corona of graph are studied. Motivated from these works, here we define
a new corona-type graph namely, duplication corresponding corona and determine its adjacency,
Laplacian and signless Laplacian spectrum.

The paper is organized as follows. In Section 2 we state some necessary preliminaries. In
Section 3 we define duplication corresponding corona and find their adjacency, Laplacian and
signless Laplacian spectrum. Also we discuss some concepts like the number of spanning trees,
the Kirchhoff index and the incidence energy of the new graph. Also we introduce some new
classes of cospectral graphs using this new product.

2  Preliminaries

M, M.
' > | bea symmetric block matrix of order 2 x 2. Then the
My M,

eigenvalues of M are those of M, + M, together with M, — M.

Lemma 2.1 ([2]). Let M =

Proposition 2.2 ([2]). Let Py, P,, P, and P3 be matrices of order nq X nyi, ny X ng, Mg XNy, No X Ny
respectively. Then

det(Py) det(Ps — PyPy ' Py), if Py is invertible

det(Ps) det(Py — PPy 'P,), if Ps is invertible

Py P
Py, Pj

det

Definition 2.3 ([13]). Let A be the adjacency matrix of a graph G with n vertices. The determinant,
det(xl — A) = fo(A : x) # 0, is invertible being the characteristic matrix of A. The A-coronal,
xa(z), of G is defined to be the sum of the entries of the matrix (I — A)~'. We denote this as

xa(z) =jp(xI — A)7'j,, (1)
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where j,, is an x 1 column vector with all entries equal to 1.

Let A = (a;;) and B be matrices. Then the Kronecker product, A ® B, of A and B is defined
as the partition matrix (a;; B). For details see [2].

o (A® B)T = AT ® BT, where A and B are of appropriate order;

(A+B)®C=A®C+B&C,

(A® B)(C ® D) = AC ® BD whenever the product AC' and BD exist;

e (A® B)™' = A~! @ B~! for the non-singular matrix A and B;

det(A ® B) = (det A)? (det B)"™ where A and B are n X n and p X p matrices.

3 Duplication corresponding corona of graphs

The following definition describes a new graph corona-type product based on the duplication
graph of a graph.

Definition 3.1. Let GG; and G, be two vertex disjoint graphs with n; and n, vertices, respectively.
Let V(G1) U U(Gy) where, V(Gy) = {vi,ve,...,v, } and U(Gy) = {x1,29,...,2,,} be
vertex set of DG, the duplication graph of G;. The vertex x; is a duplication of v; for each
t = 1,2,...ny. Duplication corresponding corona of GG; and (G2, denoted by GG1 %G5 and is the
graph obtained from DG, and n; copies of GG by making x; and v; adjacent to every vertices in
the i-th copy of Gy fori =1,2,...,n;.

Figure 1. Duplication corresponding corona Cy K

Theorem 3.2. Let G; be two graphs with spectrum \jy > Njg > -+ > Ay, for i = 1,2. Then the
characteristic polynomial of G1% G5 is

ng ni ni

fenxe, (A=) = H(iU = Ag))" [ [+ 0) H($ = 2X, () = Avi).



Proof. Let G; and GG, be two graphs with n; and n, vertices, respectively. Let the vertex set of Gy
be V(G1) = {v1,v2,...,0s, } and U(Gy) = {x1, 22, ..., 2, } be aset of vertices corresponding
to V(G1). The vertex in the i-th copy of Gy is {uf, uj, ..., u;,} and let W; = {uj, u, ... u}?
forj = 1,2,...,ny. Then V(G,) UU(Gy) U{W, UW,y U...U W, } is a vertex partition of
G1% G5 with nq(ng + 2) vertices.

By this vertex partitioning, the block form of the adjacency matrix of G %G is

0 Al j£2 ® Inl
A<G1§G2) = Al On1 Xni1 jZ;Q ® Inl 3
j’n2 ® Im j’n2 ® Im A2 ® Inl
where A; and A; are the adjacency matrices of G; and G, respectively. j,,, is a ny x 1 column

vector with all entries equal to 1 and /,,, is an identity matrix of order n;.
The characteristic polynomial of G'1 %G is

xlnl —Ar _j£2®1n1
. I T
fGlﬁGz (A . 1’) = —A xln, —Jn2®fn1 ,
_jn2®1n1 _jn2®1n1 (Z‘In2 _A2)®In1

= det((xl,, — A2) ® I,,) det(S),
Z'[nl _Al
—A1 J,’Inl
o _j;l“;g ® [nl
_jzl—‘z ® Inl

where, S =

((:L’Im - A2) ® ]m)_l _jn2 ® Im _jTLQ ® [nl

By using the property of Kronecker product we can substantiate that

(JT:ZL; ® In1)<<x[n2 - A2)_1 ® ]nl)(jng X [nl) = XA2 (:L’)Im
Therefore,
xInl _Al B XAz (x)[nl XAz ('r)[nl
_Al x[m XAy (I)Inl XA (.I‘)Im 7

_ xjnl - XAz(x)[nl _Al — XA (‘r)[nl
_Al — XAy ('r)[m 'r‘[nl — X4 (I)Inl

This implies that, det(S) = det(z] — M), where

M = XAz (a:)[nl Al + X4 <x>In1 ] '

Al +XA2(x)In1 XAz(x>In1

By Lemma 2.1 the eigenvalues of M are those of Ay + 2x4,(z)l,, and —A;, i.e., the roots of
det(x[nl - 2XA2 (x>[n1 - Al) = 0 and det(x[m + Al) = 0.
Also

det((z1,, — Ag) @ I, ) = (det(xL,, — Ag))™ (det(L, )™
= H(w — o)™
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Hence,

n2 ni ni

oo (A x) = [ [ =2)™ [ [ (2 + M) [ [ (= — 240 () = M), u

j=1 i=1 i=1

Corollary 3.3. Fori = 1,2, let G; be two graphs with n; vertices with spectrum \;; > Njg >
<o 2> Nin,. If Go is mo-regular, then A-spectrum of G1% G, consists of

1. Xy, repeated n, times for j = 2,3,...,ng;
2. —/\1i,f0ri = ]_, 2, ey Ny

(ro+A14)E£4/ (r2a—A14)24+8n2 .
3. 5 Jfori=1,2 ..

.,y

n2

Proof. Since G is ro-regular, from Equation 1 we get, x4, (z) = 2

U

_9 D W W
r XA2(‘7:) 1 x T —1y 1

132 — Xrg — 2n2 — LE)\U + 7“2)\17;

T — To
o ZL‘2 — (/\lz + T‘Q)[E + T’Q)\h‘ — 27l2
B T — Ty '

Hence from Theorem 3.2 and use the fact A\o; = 79, we get

n2 ni ni

Jarsaa(Azx) = [ (@ = o)™ [T + A [T (2% = Qv )z + 1oy — 2n).
j=2 i=1 i=1
This completes the proof of the corollary. ]

Corollary 3.4. Let G| be an arbitrary graph with n, vertices and spectrum A1 > A\ > -+ >
AMny- If Gy = K, (totally disconnected graph on ny vertices), then A-spectrum of G1%Go
consists of,

1. 0, repeated ni(ny — 1) times;
2. —/\1i,f0ri = ]_, 2, e,y

A1itA/ A2 +8no .
3. ——5—, fori=1,2,..

., ny.

Proof. Since Gy is K,,,, X 4,(z) = ™ and the Ayj =0forj=1,2,... no.

xT

Using Theorem 3.2 and Corollary 3.3 we get the characteristic polynomial as,

ni ni

forsa, (A x) = gm2=l) H(:c + A1) H(:U2 — A — 2ny).

i=1 =1

This completes the proof of the corollary. ]
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Theorem 3.5. Let Gy be an r1-regular graph on n, vertices and G5 be an arbitrary graph on no
vertices with Laplacian spectrum 0 = pij1 < pjo < -+ < gy, for j = 1,2. Then L - spectrum of
GG consists of,

(i) 0,

(ii) ng +2;

(iii) 2 + po;, repeated ny times fori =2,3,...,ny;

(iii) ng + 2r1 — py;, for 1=1,2,... ny;

(iv) Two roots of the equation,

22— (ng + i + 2)x 4 201, = 0, i = 2,3, ,ny.

Proof. Let (G; be an ri-regular graph with n; vertices and G, be an arbitrary graph with 7y
vertices. Let V(G1) = {vy, v, ..., vy, } be the vertex set of Gy and U(G1) = {1, 22, ..., Ty, } be
the set of vertices corresponding to V' (Gy). The vertex in the i-th copy of Gy is {uf, ub, ..., u},_}.
The degree of the vertices of G1%G are

dey G, (Vi) = dayxao () =ng + 11,71 =1,2,...,n; and

dayxa, (uh) = dgy(uy) +2,fori=1,2,...,nyand j = 1,2,...,ny.

The diagonal degree matrix of G %G5 is,

(r1 + n2) Ly, 0 0
D(GlﬁGg) = 0 (7"1 +n2)[m 0 ,
0 0 (D(Gs) +21,,) ® I,

where D(G5) is the diagonal degree matrix of the graph G.

(D(G2) + 2In2> ® [nl — A ® Im - (D(G2> + 2]712 - AQ) ® [nl
= (L2 + 2[n2) @ Iy,

Also from the proof of Theorem 3.2, the adjacency matrix of G %G, is,

0 A Gl ® I,
A = Al On1 Xni j;l;Q ® [nl 9
jng ® [711 jZZQ ® [711 AQ ® [nl

where A; and A, are the adjacency matrices of (G; and G5, respectively.
The Laplacian matrix of G'1 %G’ is,

L=D-A

(Tl + nQ)In1 _A]. _j;l;z ® [nl
= —Al (T‘1 + n2)]n1 _jZZQ ® Im ’
_jTLQ ® Im _jng ® Inl (LQ + 21”2) ® Im

where L5 is the Laplacian matrix of the graph Go.
Here we use the properties of Kronecker product and can easily proved that

(ng & Im)(((x - 2)In2 - LQ)_I ® Inl)(jm & ]nl) = XLo (JZ - 2)In1'
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The Laplacian characteristic polynomial of G %G, is,

(z—r1—n2)In, A j322®1n1
fGlﬁGz (L : ZL‘) = Aq (x—r1—n2)In, jz:2®ln1
jn2®1n1 jn2®1n1 ((x72)1n27L2)®1n1
— det(((z = 2)1n, — Ly) ® L) det(S),
where, S = (z = = n2)ln, A
i Al (I’ — T — ng)]m
S
Jn ® I'fl —1 . .
S CCER R S P RET N ET Y
— (I —n- n2)]n1 Ay
i Al (l’ — T — ng)]nl

B XLs (ZL’ - 2)In1 XL (x - 2)]711
XL (I - 2)[711 XLa (:L‘ - 2)]711

_ | (== = X (z = 2)) At = X1y (@ — 2) I,
Al - XLQ(x - 2)In1 (:I” — 71— N2 — XLy (Qf - 2))[711

Hence, det(S) = det(xI — M), where,

(ri+no+ X (= 2)) 0, —AL+ X1 (7 = 2)],,

M =
—A; + x1,(x —2)I,, (r1 +ng + x,(x — 2)) 1,

By Lemma 2.1 the eigenvalues of M are those of (71 +no+x1,(—2)) I, — A1+ X1, (x—2) 1,
together with (r;y + ny + xr,(z — 2)I,, + A — xu,(x — 2)I,, ie. those of
(r1 +no + 2xp,(x — 2))1,, — A; together with (ng + 1)1, + A;.

We use the fact that L = D — A, so, for a r;-regular graph we have L = r[,, — A; and
=11 — N, fori=1,2,... n.

Therefore the eigenvalues of M are those of (ns + 2xr,(z — 2))I,, + L; together with
(na + 2r1) L, — Ly

det(((z — 2) 1, — Lo) ® I,,) = det((x — 2)1,, — Lo)"* (det(1,,))™

n2
= [ —2—pay)m.
j=1

Hence,
no ni ni
farzan(L:x) = [J(x =2 = poy)™ [[ (= = 21 = ma + i) [ (2 = ma = 2x1, (2 — 2) — p22).
j=1 i=1 i=1

Using equation (1) we have,
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2712

I—TLQ—QXLQ(QC—Q)—Muzx—m—x_Q—Mu
_2? = (ng + 2+ pyi)T + 24
B T — 2
o r(z—n2—2) ™, o
H(JC—M = 2XL, (¢ = 2) — pug) = —H(I — (N2 + 2+ pi)x + 24013)

(x —2)m

i=1 =2

Also, since 111 = o1 = 0, the characteristic polynomial becomes

no ni

forsan(L @) = ol —nz —2) [ [ (o = 2 — o)™ T[ (& = a2 — 2r1 + )
j=2 i=1

ni

H(l’Q — (n2 + pai + 2)x + 2414).
=2

Hence the theorem is proved. [

Remark 3.6. Spanning tree of a graph is a subgraph of it which is also a tree. The number of

spanning trees of a graph G is denoted by ¢(G). If GG is a connected graph with n vertices and the

Laplacian spectrum 0 = 111 (G) < pa(G) < -+ < p,(G), then [11] the number of spanning trees
Q) uz(G) - 1, (G

n

Corollary 3.7. Let G be an ry-regular graph on ny vertices and G5 be an arbitrary graph on no

vertices. Then the number of spanning trees of G1%G5 is,

ng ni
H(GrxGa) =27 1(Gh) [[(2 + pay)™ [ [ (n2 + 21 — ps).
j=2 i=1
Proof. The proof follows from Theorem 3.5 and equation (2). ]

Remark 3.8. Klein and Randi¢ in [9] introduced a new notion named resistance distance based
on electric resistance in a network corresponding to a graph, in which the resistance distance
between any two adjacent vertices is 1 ohm. The electric resistance is calculated by means of the
Kirchhoff laws called Kirchhoff index.

For a graph G with n vertices, where n > 2, and the Laplacian spectrum 0 = u;(G)
< ua(G) < - -+ < pn(G), then the Kirchhoff index, K f(G), is defined as

KfG) =nY —. 3)

Corollary 3.9. Let G be an ri-regular graph on ny vertices and Gy be an arbitrary graph on no
vertices. Then Kirchhoff index of G1% G is,

C2m(ne+ri+1) ni(ng —1)(ne+2)  (ng+2)°

K X = K
f(G1%Gy) 2 + 5 + f(G)
+n (n + 2) i " + i ;
e =2 2+ H2j o no + 27”1 — M1
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Proof. Lety;; and y;- be the roots of the equation z2 — (ng+pu1;+2)x+2pu,; = 0, 1 = 2,3,...,ny.

1 +i:yil+yi2

Uil Yi2 Yi1Yi2

_ ng+ 2+
2401
Mo + 2 1
= + =
2 2
(1 1 ns + 2 ny —1
Z(—+—): TR (G +
— \Yir  Yi2 2ny 2
The remaining proof follows from Theorem 3.5 and equation (3). []

J. Liu and B. Liu defined a new Laplacian graph invariant in [12], Laplacian-energy-like
invariant (LEL).

Let G be a graph with n vertices and the Laplacian spectrum 0 = 11(G) < ua(G)--- <
tn(G). LEL of G is defined as,

LEL(G) =Y Vi 4)
=2

Corollary 3.10. Let G be an ri-regular graph on ny vertices and G be an arbitrary graph on

ny vertices with Laplacian spectrum {0 = 1, pa, . . ., pin }. Then,

no ni
LEL(G1%G3) = vVna +2 +m Z 2+ poj + Z \/ Mo + 21 —
j=2 i=1
™ 1/2
+ Z [(n2 + pi +2) + 2y 2#11} -
i=2

Proof. The proof follows from Theorem 3.5, equation (4) and the identity

(VT + V0)? = (x +y) + 2,/77. O

Corollary 3.11. For two L-cospectral regular graphs GG, and G5 and an arbitrary graph H, the
graphs G1%H and G9% H are L-cospectral. Also if G is a regular graph and H, and H, are
L-cospectral graphs, then G H, and GxH, are L-cospectral.

Theorem 3.12. Let G| be an r1-regular graph on ny vertices and Gy be an arbitrary graph on no
vertices with signless Laplacian spectrum v;; > vy > -+ > vy, for i = 1,2, respectively. Then

the signless Laplacian characteristic polynomial of G1% G, is,

n2 ni ni

farx6.(Q 1 x) = H(m — 2 — )™ H(x —ng — 2r1 + V1) H(x —ng — 2x0,(r — 2) — vy;).

j=1 i=1 i=1

Proof. As like the notations defined in Theorem 3.5, we can define the signless Laplacian matrix
of G %Gy is:
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(r1 +n2)ly, Ay JZQ ® Iy,

Q= Ay (11 +n2) Ly, JZL; ® In,
jTLQ ® Im jTLQ ® ]m <2In2 + QQ) ® ]m
(z—r1—n2)In, —A1 7j£2®1n1
farx6,(Q 1 x) = —Ar @)y i@l :
*jn2®1n1 *jn2®ln1 ((x*Q)InQ*Q2)®In1

= det((z — 2)1,, — Q2) ® I, det(95),

where (), is the signless Laplacian matrix of Go.
As like in Theorem 3.5 proved above,

g — (:L’ — 71— N2 = XQ, (.1’ - 2)>In1 _Al — XQ2 ($ - 2)[711 _
_Al - XQ2<x - 2)[n1 (:C — 71— N2 = XQ (ﬂ? - 2))In1

Hence det S = det(xI — M), where,

M= (11 +n2 + xQ,(z — 2)) I, A1+ xq,(x — 2) 1, ]

Al + XQz(x - 2)]n1 (7“1 + N2+ XQ, (x - 1))[ﬂ1

By Lemma 2.1 the eigenvalues of M are those of (11 + na + 2x¢,(z — 2))1,, + A; together
with (11 + n2)1,, — A;.

We use the fact that () = D + A, since G is an r;-regular graph we have () = I + A; and
then, vy; =11 + Ay for i =1,2,..., n.

Therefore, the eigenvalues of A are those of (ny + 2xq,(z — 2))1,, + Q1 together with
(ng + 2ry) 1, — Q1.

Also,
det(((z — 2)In, — Q2) ® In,) = det((z — 2)In, — Q2)" (det(In,))"™
— H(.CE — 2 — VQj)nl.
j=1
Hence,

no ni ni

forsan (@ x) = [ [ =2 = wop)" [ (& = n2 = 21+ vi) [ (& = 12 = 2xqu (& = 2) = v10).
j=1 i=1 i=1

This completes the proof. []

Corollary 3.13. Let G; be an r;-regular graph on n; vertices i = 1,2 with signless Laplacian
spectrum 2r; = vy > Vi >« > Uy, for t = 1,2, respectively. Then the )-spectrum of G1% G

consists of:
(i) vo; + 2, repeats ny times fori=2,3,...,ny;
(ii) no+2ry — vy fori=1,2,...,n1;
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(iii) two roots of the equation

2% — (ng 4 2ry 4 v1; + 2)x 4 2(ngry 4 vy + o) = 0 fori = 2,3,...,ny.

Proof. Since (G5 is ry-regular, vo; = 2ry. Using equation (1) we have,

na
—9) = ‘
XQ2 (l’ ) T —2— 2y
Therefore,
n2 ni
farza(Q:x) =[x =2 = voy)" [[(& — 2r1 = na + v12)
j=2 i=1
ni
H(CEQ - (2 + 2T2 + no + Vli)l' — 2(7127’2 + vy + 7”21/11')). ]

i=1

Corollary 3.14. For two Q-cospectral regular graphs G and Gy and an arbitrary graph H,
the graphs G1xH and GyxH are Q-cospectral. Also if G is a regular graph and H, and
Hy are identical Q-cospectral graphs (xqm,)(x) = Xq(u,) (%)), then GxHy and GxH, are
Q-cospectral.

Let A be any real n x m matrix with transpose A”. The square roots of the eigenvalues of
AAT are called the singular values of the matrix A. The incidence matrix [1] of G is the 0 — 1
matrix R = (r;;) with rows indexed by vertices and columns by edges where 7;; = 1 when the
vertex v; is an end point of the edge e; and 0 otherwise.

Definition 3.15. [8] Let py, po, . . ., p, be the singular values of the incidence matrix 1 of a graph
G. The incidence energy of G is defined as ZE(G) = >, pi.

It is clear that ZE(G) > 0 and the equality holds if and only if G is totally disconnected.
We have, RRT = Q [1] and let v; > vy > --- > v, be the signless Laplace spectrum of G. In [8]
Jooyandeh et. al. defined the incidence energy as

TZE(Q) = Z N (5)

Corollary 3.16. Fori = 1,2 let G; be an r;-regular graph on n; vertices with signless Laplacian

spectrum {2r; = Vi1, Via, . . ., Vin, }- Then the incidence energy of G1% G5 is,

no ni
Ig<G1ﬁG2):nlz\/2+V2j +Z\/ﬂ2+27”1—1/12’
=2 i=1

ni

+ Z [(ng + 2ro 4+ p1; + 2) + 2\/2(7127'2 + vy + o)

i=1

1/2

Proof. The proof follows the identity (v/z + /y)*> = (z + y) + 2,/zy and using Corollary 3.13
and Equation (5).
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Let z;; and x;5 be the roots of the equation x* — (ng + 21y + v1; + 2)x + 2(nare + vy; +rovy;) = 0.

(VTi1 + VTi2)? = (351 + Ti2) + 2¢/Ti1 a2

= (Tlg + 27"2 + M4 + 2) + 2\/2(n2r2 + V14 + 7’21/1i>

1/2
vV Ti1 + /L9 = (TLQ + 27"2 + J57] + 2) + 2\/2(7127“2 + V14 + T’QVU)] .

Then the corollary follows. [
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