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1 Introduction

The generalized second order sequences {Un} and {Vn}, are defined for n > 0 and nonzero
integer number p by Un+1 = pUn + Un−1 and Vn+1 = pVn + Vn−1,in which U0 = 0, U1 = 1

and V0 = 2, V1 = p, respectively. If p = 1, then Un = Fn (n-th Fibonacci number) and Vn = Ln

(n-th Lucas number). The Binet formulas for these sequences are given by

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α and β are
(
1±
√

5
)
/2. By the Binet formulas for Fn and Ln,

F−n = (−1)n+1Fn and L−n = (−1)nLn.
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Many identities related to binomial or generalized binomial coefficients, the numbers obtained
by using linear homogeneous recurrence relations have been extensively studied in great detail
by many authors such as [1–4, 12, 13, 15–19]. Carlitz [1] considers some sums that involve
Fibonacci or Lucas numbers with one binomial coefficient. Kılıç et. al. [9] introduce the sums and
alternating sums of products of terms of sequences {Ukn} and {Vkn} with binomial coefficients.
They study the sums have the form:

n∑
i=0

(
n

i

)
Uk(a+bi)Vk(c+di) and

n∑
i=0

(
n

i

)
(−1)iUk(a+bi)Vk(c+di).

Kılıç et. al. [6] prove formulas for the sums and alternating sums of powers of terms of sequences
{Fn} and {Ln} with binomial coefficients. Kılıç and Belbachir [8] consider various double
binomial sums related to certain second-, third- and fourth-order recursions. Also they derive a
new binomial sums with complex coefficients related with a generalized second order recursion.
Kılıç and Arıkan [7] present many interesting sums with two binomial coefficients. As double
binomial sums examples, they present the following new special results:∑

0≤i,j≤n

(
n− i
j

)(
i+ j

j

)
(−1)i = Fn+1 and

∑
0≤i,j≤n

(
n+ i

2j

)(
i

j

)
2j = F3n+1.

Kılıç and Taşdemir [10] compute various sums including {Un} or {Vn} with one binomial
coefficient. Kılıç and Taşdemir [11] also derive some different special binomial and alternating
binomial double sums with the Fibonacci numbers. Taşdemir and Toska [21] consider some
special binomial and alternating binomial double sums with the Lucas numbers. For example, for
t 6= −1, they present the following result:∑

0≤i,j≤n

(
i

j

)
L(4t+2)i+j =

L2n(t+1)F2(n+1)(t+1)

F2(t+1)

.

Recently, Ömür and Duran [14] compute binomial triple sums with two binomial coefficients.
They consider certain binomial triple sums given by∑

0≤i,j,k≤n

(
i

j

)(
j

k

)
Fri+j+k.

More recently, Taşdemir [20] consider various binomial and alternating binomial triple sums
including two binomial coefficients and the Lucas numbers. As a binomial triple sum example,
the following new result is given:∑

0≤i,j,k≤n

(
i

j

)(
j

k

)
L(4t+1)i+j+k =

1

3 + 2L4t+3

×

 2n+1
(

2L (4t+3)n
2

L (4t+3)n
2

+ 5F (4t+3)(n+1)−3
2

F (4t+3)(n+1)+3
2

)
+ 2L2t+1L2t+2 if n is even,

2n+1
(

10F (4t+3)n+1
2

F (4t+3)n−1
2

+ L (4t+3)(n+1)
2

L (4t+3)(n+1)
2

)
+ 2L2t+1L2t+2 if n is odd.

In this study, the binomial triple sums involving three binomial coefficients and the Fibonacci
numbers are considered. Besides, some alternating analogues of them whose powers depend on
the index or indices are computed. Moreover, these sums we shall compute are evaluated in nice
multiplication form in terms of again {Fn} and {Ln}.
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2 Binomial triple sums with the Fibonacci numbers

In this section, we will present some new triple binomial sums. Before them, we will need the
following two auxiliary lemmas for further use.

Lemma 2.1. For any real numbers x, y and z∑
0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
xiyjzk = (1 + x+ xy + xyz)n .

Proof. From Binomial Theorem, it can be clearly obtained.

Also we give the following lemma without proof that could be easily derived from the Binet
formulas for Fibonacci and Lucas numbers (see [22] ).

Lemma 2.2. Let t be an integer. Then,

1 + (−1)tα2t = (−1)tαtLt,

1 + (−1)tβ2t = (−1)tβtLt,

1 + (−1)t+1α2t = (−1)t+1αtFt

√
5,

1 + (−1)t+1β2t = (−1)tβtFt

√
5.

We can give the first of the results now.

Theorem 2.3. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+(4t+1)j+k = F n

2t+1

{
5

n
2F(2t+3)n if n is even

5
n−1
2 L(2t+3)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+(4t+3)j+k = Ln

2t+2F(2t+4)n

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+2j+k = 2nF4n

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+j+5k = 5nF4n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+j = 3nF2n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+k = F4n

Proof. We only prove the first claim. The others could be similarly proven. Consider the left-hand
side of the first claim, by the Binet formula, equals

1

α− β
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)[
αi+(4t+1)j+k − βi+(4t+1)j+k

]
,
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which, by Lemma 2.1, equals

1

α− β
[(

1 + α + α4t+2 + α4t+3
)n − (1 + β + β4t+2 + β4t+3

)n]
=

1

α− β
[(

1 + α)n(1 + α4t+2
)n − (1 + β)n(1 + β4t+2

)n]
which, since α2 = α + 1, β2 = β + 1 and by Lemma 2.2 equals

1

α− β
[
α2n5

n
2α(2t+1)nF n

2t+1 − (−1)nβ2n5
n
2 β(2t+1)nF n

2t+1

]
= 5

n
2F n

2t+1

[
α(2t+3)n − (−1)n β(2t+3)n

α− β

]
Thus,

∑
0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
Fi+(4t+1)j+k = F n

2t+1

{
5

n
2F(2t+3)n if n is even,

5
n−1
2 L(2t+3)n if n is odd,

as claimed.

3 Alternating analogues of binomial triple sums
with the Fibonacci numbers

Now we will give alternating analogues of the results given in the previous section. We shall
present our results but for later use, we recall with two auxiliary lemmas from [5].

Lemma 3.1. Let t be any integer.
i) For odd k,

(−1)tα−k(2t+1) − αk = (−1)t+1Vk(t+1)β
kt,

(−1)tβ−k(2t+1) − βk = (−1)t+1Vk(t+1)α
kt.

ii) For even k,

α−k(2t+1) − αk = −
√

∆Uk(t+1)β
kt,

β−k(2t+1) − βk =
√

∆Uk(t+1)α
kt.

Lemma 3.2. Let t be an integer.
i) For odd k,

(−1)tαk(1−2t) − αk = (−1)tUktβ
k(t−1)

√
∆,

(−1)tβk(1−2t) − βk = (−1)t+1Uktα
k(t−1)

√
∆.

ii) For even k,

αk(1−2t) − αk = −Uktβ
k(t−1)

√
∆,

βk(1−2t)) − βk = Uktα
k(t−1)

√
∆.
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Theorem 3.3. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFi+(4t+2)j+k = (−1)nF n

2t+3

{
5

n
2F(2t+2)n if n is even

5
n−1
2 L(2t+2)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFi+4tj+k = (−1)nLn

2t+2F(2t+1)n

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFi+j = (−1)n

{
5

n
2F2n if n is even

5
n−1
2 L2n if n is odd

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFi+j+4k = (−1)n5nF3n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iF2i+j+k = (−1)n3nF3n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iF3i+j+k = (−1)n5nF3n

(vii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFj+k = (−1)nF3n

Proof. We only prove the first claim. The others could be similarly proven. Consider the left-hand
side of the first claim, by the Binet formula, equals

1

α− β
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i

[
αi+(4t+2)j+k − βi+(4t+2)j+k

]
,

which, by Lemma 2.1 and since α2 = α + 1 and β2 = β + 1, equals

1

α− β
[(

1− α− α4t+3 − α4t+4
)n − (1− β − β4t+3 − β4t+4

)n]
=

1

α− β
[
(1− α− α4t+5)n −

(
1− β − β4t+5

)n]
=

1

α− β
[
(−α−1 − α4t+5)n −

(
−β−1 − β4t+5

)n]
=

(−1)n

α− β
[
(α4t+5 + α−1)n −

(
β4t+5 + β−1

)n]
which, from Lemma 3.2 by taking k = −1 and t = 2t+ 3, equals

(−1)n5
n
2F n

2t+3

[
α(2t+2)n − (−1)nβ(2t+2)n

α− β

]
.

Finally, we write∑
0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)iFi+(4t+2)j+k = (−1)nF n

(2t+3)

{
5

n
2F(2t+2)n if n is even,

5
n−1
2 L(2t+2)n if n is odd,

as claimed.
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Now, we give the other results.

Theorem 3.4. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jFi+(4t+3)j+k = (−1)nF n

2t+2

{
5

n
2F(2t+4)n if n is even

5
n−1
2 L(2t+4)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jFi+(4t+1)j+k = (−1)nLn

2t+1F(2t+3)n

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jFi+j+tk = (−1)nF(t+2)n

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jFi+2j+k = (−1)nF11n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jF3i+j+k = (−1)n3nF3n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jF4i+j+k = (−1)n5nF3n

(vii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)jFi+k = (−1)nFn

Proof. We only prove the second claim. The others could be similarly proven. Consider the
left-hand side of the second claim, by the Binet formula, equals

1

α− β
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j

[
αi+(4t+1)j+k − βi+(4t+1)j+k

]
,

which, by Lemma 2.1 equals

1

α− β
[(

1 + α− α4t+2 − α4t+3
)n − (1 + β − β4t+2 − β4t+3

)n]
=

1

α− β
[
(1 + α)n (1− α4t+2)n − (1 + β) (1− β4t+2)n

]
which, by Lemma 2.2 and since α2 = α + 1 and β2 = β + 1, equals

1

α− β
[
α2n(−1)nα(2t+1)nLn

2t+1 − β2n(−1)nβ(2t+1)nLn
2t+1

]
=

(−1)nLn
2t+1

α− β
[α(2t+3)n − β(2t+3)n]

= (−1)nLn
2t+1F(2t+3)n

as claimed. Hence, the proof of the second claim finishes.

By using previously given lemmas the next results could be proved similarly.
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Theorem 3.5. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+(4t+2)j+k = (−1)nF n

2t

{
5

n
2F(2t+2)n if n is even

5
n−1
2 L(2t+2)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+4tj+k = (−1)nLn

(2t−1)F(2t+1)n

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+j+3k = (−1)n

{
5

n
2F2n if n is even

5
n−1
2 L2n if n is odd

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+5j+k = (−1)n2nF3n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+j+4k = (−1)n3nF3n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+j+2k = (−1)nFn

(vii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+3j+k = (−1)nFn

(viii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFi+j = F2n

(ix)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)kFti+j+k = 0

Theorem 3.6. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+jFi+4tj+k = F n

2t+2

{
5

n
2F(2t+1)n if n is even

5
n−1
2 L(2t+1)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+jFi+(4t+2)j+k = F(2t+2)nL

n
2t+3

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+jF2i+j+k =

{
5

n
2F3n if n is even

5
n−1
2 L3n if n is odd

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+jFi+j+3k = 5nF2n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+jFj+k = F3n
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Theorem 3.7. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kFi+4tj+k = F n

2t−1

{
5

n
2F(2t+1)n if n is even

5
n−1
2 L(2t+1)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kFi+(4t+2)j+k = F(2t+2)nL

n
2t

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kF3i+j+k =

{
5

n
2F3n if n is even

5
n−1
2 L3n if n is odd

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kFi+3j+k = F4n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kFi+5j+k = 2nF4n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)j+kFi+j+tk = F(t+2)n

Theorem 3.8. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+(4t+3)j+k = F n

2t+2

{
5

n
2F(2t+1)n if n is even

5
n−1
2 L(2t+1)n if n is odd

(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+(4t+1)j+k = F2tnL

n
2t+1

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+j+2k =

{
5

n
2Fn if n is even

5
n−1
2 Ln if n is odd

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+j+3k = 3nF2n

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+j = −Fn

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+kFi+k = −F2n

Theorem 3.9. For nonnegative integer n and integer t

(i)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+(4t+1)j+k = (−1)nF n

2t+1

{
5

n
2F2tn if n is even

5
n−1
2 L2tn if n is odd
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(ii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+(4t+3)j+k = (−1)nF(2t+1)nL

n
2t+2

(iii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+2j+k = (−1)n2nFn

(iv)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+k = (−1)nFn

(v)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kF5i+j+k = (−1)n5nF3n

(vi)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kF2i+j+k = (−1)nF3n

(vii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kF4i+j+k = (−1)n3nF3n

(viii)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+j+2k = (−1)n3nFn

(ix)
∑

0≤i,j,k≤n

(
n

i

)(
i

j

)(
j

k

)
(−1)i+j+kFi+j = −Fn

Finally, we would like to mention that we consider the sums including Fibonacci numbers
rather than Lucas numbers. Similarly sums including the Lucas numbers could be computed and
it could be shown that they have nice multiplication forms.
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