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1 Introduction

The intersection of sequences was and continue to be an interesting subject of research. In
[14], Stein examined the intersection of Fibonacci sequences. In particular, he proved that two
Fibonacci sequences generally do not meet and that if they do meet at least three times, then
one is simply the tail of the other. In [12] generalized Stein’s work by looking at conditions for
fewer than two intersections, exactly two intersections, and more than two intersections. We will
continue in the same spirit by studying the intersection between the Mersenne numbers and the
Padovan or Perrin numbers.
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A Mersenne number, denoted by Mj , is a number of the form

Mj = 2j − 1,

where j is a nonnegative integer. It is named after a French mathematician of the seventeenth
century Marin Mersenne (1588–1648). The Mersenne sequence (Mj)j≥0 can be defined recursively
as

Mj+2 = 3Mj+1 − 2Mj,

with the initial values M0 = 0 and M1 = 1. A Mersenne prime is a Mersenne number that is
prime. The first few Mersenne numbers are

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, . . .

These numbers have been studied in great depth, in particular, the Mersenne primes. An easy
exercise shows that if Mj is a prime, then j is also a prime, though not all Mj with j prime are
primes. In fact, given a prime number j, only very few numbers of the form 2j−1 are primes. For
example, M7 = 27−1 is a prime number, whereas M11 = 2047 = 23 ·89 is composite. The quest
for Mersenne primes is still an active research field. It is conjectured that there are infinitely many
Mersenne primes, [9]. The largest known Mersenne prime number, also known as M82589933 is
282,589,933 − 1, which was discovered by Patrick Laroche in December 2018. For the history, the
list of known Mersenne primes and the current progress, one can see GIMPS [7]. Historically, the
study of Mersenne primes was influenced by their deep connection to the perfect numbers, i.e.,
the numbers that are equal to the sum of their proper divisors. It is well-known that a necessary
and sufficient condition that k be an even perfect number is that k = 2j−1(2j−1), where 2j−1 is
a Mersenne prime. The sufficiency was proved by Euclid (IV–III century BC) and the necessity
was first proved two millennia late by Euler (1707–1783). However though, it is still unknown
if there are any odd perfect numbers. For some of the new results, one can see [4, 6]. A lot
of interesting results concerning the Mersenne numbers can be found in the book [9], (Křı́žek,
Luca and Somer, 2001). This book also contains an extensive list of references for any interested
reader.

Recently in [2], Bravo and Gómez (2016) found all k-Fibonacci numbers which are also
Mersenne numbers. On related results, Bravo and Herrera determined all k-Fibonacci and k-Lucas
numbers that are also Fermat numbers, see [3]. In [11], Rihane, Adegbindin and Togbé found all
of the Padovan and Perrin numbers, which we define below, that are also in the sequence of
Fermat numbers.

Let (Pm)m≥0 be the Padovan sequence (sequence A000931 in the OEIS [13]) given by

Pm+3 = Pm+1 + Pm,

for all m ≥ 0, where P0 = 0 and P1 = P2 = 1. The first few terms of this sequence are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, · · ·

Similarly, let (Em)m≥0 be the Perrin sequence (sequence A001608 [13]) given by

Em+3 = Em+1 + Em,
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for m ≥ 0, where E0 = 3, E1 = 0 and E2 = 2. The first few terms of this sequence are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, · · ·

In the present paper, we continue this discussion and identify all Mersenne numbers in the
sequences of Padovan and Perrin numbers. Our results are the following.

Theorem 1.1. The only Mersenne numbers in the Padovan sequence are M0 = 0,M1 = 1,

M2 = 3 and M3 = 7.

Theorem 1.2. The only Mersenne numbers in the Perrin sequence are M0 = 0,M2 = 3 and
M3 = 7.

The outline of this paper is as follows. Our method follows similar to that of [11]. The main
results, Theorems 1.1 and 1.2, come as the studies of the Diophantine equations

Pn = 2m − 1 (1)

and
En = 2m − 1 (2)

in nonnegative integers (n,m), respectively. For this, in Sections 2 and 3, we state some of the
results that are useful in studying the equations (1) and (2). Particularly, we recall some of the
properties of Padovan and Perrin numbers (Section 2), a result of Matveev [10] that we will use to
obtain the lower bounds for linear forms in logarithms of algebraic numbers, de Weger reduction
method, [16]. In the last two sections, we will completely prove our results using Baker method
and the reduction method (subsection 3.2).

2 Auxiliary results

First, we recall some facts and properties of the Padovan and the Perrin sequences (Pn)n≥0 and
(En)n≥0, respectively, which will be used later. One can also see [11]. The characteristic equation

x3 − x− 1 = 0

has roots α, β, γ = β, where

α =
ω1 + ω2

6
, β =

−ω1 − ω2 + i
√

3(ω1 − ω2)

12
,

and

ω1 =
3

√
108 + 12

√
69, ω2 =

3

√
108− 12

√
69.

Let

cα =
(1− β)(1− γ)

(α− β)(α− γ)
=

1 + α

−α2 + 3α + 1
,

cβ =
(1− α)(1− γ)

(β − α)(β − γ)
=

1 + β

−β2 + 3β + 1
,

cγ =
(1− α)(1− β)

(γ − α)(γ − β)
=

1 + γ

−γ2 + 3γ + 1
= cβ.

(3)
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With these notations, Binet’s formula for Pn is given by

Pn = cαα
n + cββ

n + cγγ
n for all n ≥ 0, (4)

and Binet’s formula for En is given by

En = αn + βn + γn, for all n ≥ 0. (5)

Numerically, we have
1.32 < α < 1.33,

0.86 < |β| = |γ| = α−1/2 < 0.87,

0.72 < cα < 0.73,

0.24 < |cβ| = |cγ| < 0.25.

(6)

Furthermore, by induction on n, we can prove that

αn−2 ≤ Pn ≤ αn−1, for all n ≥ 4 (7)

and
αn−2 ≤ En ≤ αn+1, for all n ≥ 2. (8)

3 The tools

The next tools are related to the transcendental approach to solve Diophantine equations. For
any non-zero algebraic number γ of degree d over Q, whose minimal polynomial over Z is
a
∏d

j=1

(
X − γ(j)

)
, we denote by

h(γ) =
1

d

(
log |a|+

d∑
j=1

log max
(
1, |γ(j)|

))
the usual absolute logarithmic height of γ. We also require some of the properties of the absolute
logarithmic height of algebraic numbers. These properties are contained in Lemma 3.1 below.

Lemma 3.1. [15, Property 3.3, Page 75] For algebraic numbers γ and η, we have

h(γ · η) ≤ h(γ) + h(η),

and
h(γ + η) ≤ h(γ) + h(η) + log 2.

Moreover, for any algebraic number ζ 6= 0 and for any m ∈ Z, we have

h (ζm) = |m| h(ζ).

3.1 Linear forms in logarithms

To prove Theorems 1.1 and 1.2, we use lower bounds for linear forms in logarithms to bound the
index n appearing in equations (1) and (2). We need the following general lower bound for linear
forms in logarithms due to Matveev [10].
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Theorem 3.2. Let γ1, . . . , γ` be real algebraic numbers and let b1, . . . , b` be nonzero rational
integer numbers. Let D be the degree of the number field Q(γ1, . . . , γ`) over Q and let Aj be a
positive real number satisfying

Aj = max{Dh(γ), | log γ|, 0.16} for j = 1, . . . , `.

Assume that
B ≥ max{|b1|, . . . , |b`|}.

If γb11 · · · γ
b`
` − 1 6= 0, then

|γb11 · · · γ
b`
` − 1| ≥ exp(−1.4 · 30`+3 · `4.5 ·D2(1 + logD)(1 + logB)A1 · · ·A`).

3.2 De Weger reduction method

The upper bound of n we obtain so far is generally too large. Therefore, the next step is to reduce
it further to a reasonable level. For this reduction purpose, we present a variant of the reduction
method of Baker and Davenport due to de Weger [16].

Let ϑ1, ϑ2, β ∈ R be given, and let x1, x2 ∈ Z be unknowns. Let

Λ = β + x1ϑ1 + x2ϑ2. (9)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive. Assume that

|Λ| < c · exp(−δ · Y ), (10)

Y ≤ X ≤ X0. (11)

When β = 0 in (9), we get
Λ = x1ϑ1 + x2ϑ2.

Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued fraction expansion
of ϑ be given by

[a0, a1, a2, . . .]

and let the k-th convergent of ϑ be pk/qk for k = 0, 1, 2, . . .. We may assume without loss of
generality that |ϑ1| < |ϑ2| and that x1 > 0. We have the following results.

Lemma 3.3. [16, Lemma 3.2] Let
A = max

0≤k≤Y0
ak+1,

where

Y0 = −1 +
log(
√

5X0 + 1)

log
(

1+
√

5
2

) .

If (10) and (11) hold for x1, x2 and β = 0, then

Y <
1

δ
log

(
c(A+ 2)X0

|ϑ2|

)
. (12)

When β 6= 0 in (9), put ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2. Then we have

Λ

ϑ2

= ψ − x1ϑ+ x2.
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Let p/q be a convergent of ϑwith q > X0. For a real number x, we let ‖x‖ = min{|x−n|, n ∈
Z} be the distance from x to the nearest integer. We have the following result.

Lemma 3.4. [16, Lemma 3.3] Suppose that

‖ qψ ‖> 2X0

q
.

Then, the solutions of (10) and (11) satisfy

Y <
1

δ
log

(
q2c

|ϑ2|X0

)
.

4 Proof of Theorem 1.1

First, we explore a relation between n and m. By combining equation (1) with the inequality (7),
we get

αn−2 ≤ Pn = 2m − 1 < 2m, (13)

and
2m−1 < 2m − 1 = Pn ≤ αn−1, (14)

which hold for all n ≥ 5 and m ≥ 1. In the case when n < 4 and m < 1, the only solution to the
equation (1) is (0, 0). Now, taking logarithms on both sides of the inequalities (13) and (14) and
putting them together, we obtain

(n− 2)
logα

log 2
< m < (n− 1)

logα

log 2
+ 1. (15)

To make our computation simpler, let us first assume that n ≤ 200. Then, the inequality (15)
above implies that m ≤ 83. A simple computation in Maple reveals that the only solution of the
equation (1) in this range are

(n,m) ∈ {(0, 0), (1, 1), (2, 1), (3, 1)(6, 2), (9, 3)}.

This means that 0, 1, 3 and 7 are the only Mersenne numbers that are also Padovan numbers as
listed in Theorem 1.1 in this range.

Next, we consider the situation when n > 200. Then the inequality (15) implies, in general,
that

m ≤ n. (16)

Therefore, to solve equation (1), it is sufficient to solve it for a good upper bound for n. The rest
of our work focuses on it.

Next, we rewrite equation (1) using the Binet’s formula (4) and taking the absolute values as

|2m − cααn| ≤ |cββn + cγγ
n + 1| < 1.44.

Dividing both sides of the last inequality by cααn, we get∣∣2mc−1
α α−n − 1

∣∣ < 2

αn
. (17)

Let us put
Γ1 := 2mc−1

α α−n − 1.
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Now, we apply Matveev’s result Theorem 3.2 on Γ1. First, we need to determine that it is
nonzero. If it were indeed zero, then we would get 2m = cαα

n. But this is not true since if we
conjugate this relation by the automorphism of Galois σ := (αβ) and taking the absolute values,
we would get 1 < 2m = |cβ| · |βn| < 1, which is false. In order to apply Theorem 3.2, we take
` := 3 and

γ1 := 2, γ2 := cα, γ3 := α,

and
b1 := m, b2 := −1, b3 := −n.

The algebraic numbers γ1, γ2 and γ3 all belong to Q(α), and so we take D = 3. Also,
B = max{1,m, n}. Furthermore, h(γ1) = log 2 and h(γ3) =

logα

3
. Further, the minimal

polynomial of cα is 23x3−23x2+6x−1, which has roots cα, cβ, cγ . Also, max{|cα|, |cβ|, |cγ|} < 1

(see (6)). Thus, h(γ2) = (log 23)/3. Hence, we can take

B := n, A1 := 2.1, A2 := 3.14, A3 := logα.

Now, by Theorem 3.2 and with a straightforward calculation, we obtain the following estimate:

|Γ1| ≥ exp(−1.79 · 1013 · logα · (1 + log n))

> exp(−3.57 · 1013 · logα · log n), (18)

where we also used the fact that 1 + log n < 2 log n. Comparing the inequalities (17) and (18),
and solving for n, we obtain

n < 1.25 · 1015. (19)

As we see, the bound we obtained for n is very large. So, our next step is to reduce it to a
reasonable value. For this purpose, we use Lemma 3.4. Recall that

Γ1 := 2mc−1
α α−n − 1 = eΛ1 − 1,

where we set
Λ1 := m log 2− n logα + log(1/cα).

Since Γ1 6= 0, it follows that Λ1 6= 0. So, we have two possibilities. If Λ1 > 0, then we get

0 < Λ1 < |eΛ1 − 1| = |Γ1| <
2

αn
.

If Λ1 < 0, then 1− eΛ1 = |Γ1| < 1
2
, as n > 200. Therefore, we have

0 < |Λ1| < e|Λ1| − 1 = e|Λ1||Γ1| <
4

αn
.

Combining both of these cases, we have

0 < |log(1/cα) + n (− logα) +m log 2| < 4 exp(−n logα).

Now, we are in a situation to apply Lemma 3.4 as we planned. For this, we can take
X0 := 1.25 · 1015. Further, we choose

c := 4, δ := logα, β := log(1/cα),

(ϑ1, ϑ2) := (− logα, log 2), ϑ :=
logα

log 2
, ψ :=

log(1/cα)

log 2
.
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Using Maple, we find that q41 = 22636316802853379 satisfies the hypotheses of Lemma 3.4.
Furthermore, Lemma 3.4 implies that

n <
1

δ
· log

(
226363168028533792 · 4

log 2 · 1.25 · 1015

)
< 200,

which contradicts our assumption that n > 200. This proves Theorem 1.1.

5 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2, using the above method in the proof of Theorem 1.1.
For the sake of completeness, we will give almost all of the details.

First, we rewrite equation (2) using the inequality (8) to obtain the following useful inequalities:

αn−2 ≤ En = 2m − 1 < 2m, (20)

and
2m−1 < 2m − 1 = En ≤ αn+1, (21)

which hold for all n ≥ 2 and m ≥ 1. In the case when n < 2 and m < 1, the only solution of the
equation (2) is (1, 0). Now, taking logarithms on both sides of the inequalities (20) and (21) and
combining them, we obtain

(n− 2)
logα

log 2
< m < (n+ 1)

logα

log 2
+ 1. (22)

As before, we first assume that n ≤ 125. So, by inequality (22), we have m ≤ 52. In this range,
a quick computation in Maple reveals that the only solutions of the equation (2) in nonnegative
integers (n,m) are

(n,m) ∈ {(0, 2), (1, 0), (3, 2), (7, 3)}.

That is, the only Mersenne numbers in the Perrin sequence are 0, 3, and 7, which are listed in the
Theorem 1.2 in this range.

From now on, we assume that n > 125. Then, the inequality also tells us that

m < n. (23)

Therefore, to completely solve equation (2), we would try to obtain a reasonable upper bound
for n. As before, using the Binet’s formula (5), we rewrite equation (2) as

2m − αn = βn + γn + 1,

from which we can deduce that
|2m − αn| < 2.74.

Dividing both sides of the last inequality by αn, we get∣∣2mα−n − 1
∣∣ < 2.74

αn
. (24)

Let us put
Γ2 := 2mα−n − 1.
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Now, we plan to apply Matveev’s result Theorem 3.2 on Γ2. Similarly as in the case of Γ1

above, we have Γ2 6= 0. In order to apply Theorem 3.2, we take ` := 2 and

γ1 := 2, γ2 := α, b1 := m, b2 := −n.

The algebraic numbers γ1 and γ2 both belong to Q(α), so we takeD = 3. Also,B = max{1,m, n}.
As before, we choose

B := n, A1 := 2.1, A2 := logα.

Now, Theorem 3.2 gives us the following estimate:

|Γ2| ≥ exp(−1.4 · 305 · 24.5 · 32 · (1 + log 3) · (1 + log n) · 2.1 · logα)

> exp(−6.11 · 1010 · logα · log n), (25)

where we also used the fact that 1 + log n < 2 log n. Comparing the inequalities (24) and (25),
and solving for n, we obtain

n < 1.77 · 1012. (26)

Next, we attempt to reduce the upper bound for n further by using Lemma 3.3. Recall that

Γ2 := 2mα−n − 1 = eΛ2 − 1,

where we set
Λ2 := m log 2− n logα.

Since Γ2 6= 0, which follows that Λ2 6= 0. If Λ2 > 0, then we get

0 < Λ2 < |eΛ2 − 1| = |Γ2| <
2.74

αn
.

If Λ2 < 0, then 1− eΛ2 = |Γ2| = |Γ2| < 1
2
, as n > 125. Therefore, we have

0 < |Λ2| < e|Λ2| − 1 = e|Λ2||Γ2| <
5.48

αn
.

Combining both of these cases, we have

0 < |n (− logα) +m log 2| < 5.48 exp(−n logα).

As planned, to apply Lemma 3.3 we take X0 := 1.77 · 1012 (by (26)), which also gives us
Y0 = 59.2784846677 . . .. We furthermore choose

c := 5.48, δ := logα, (ϑ1, ϑ2) := (− logα, log 2), ϑ :=
logα

log 2
.

Using Maple, we find that
A := max

0≤k≤Y0
ak+1 = 80.

Finally, by Lemma 3.3 we find that

n <
1

logα
· log

(
4.96 · (80 + 2) · 1.77 · 1012

log 2

)
≤ 124,

which contradicts our assumption that n > 125. This completes the proof of Theorem 1.2.
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