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Abstract: We construct affine varieties over Q and imaginary quadratic number fields K with
a finite number of α-lattice points for a fixed α ∈ OK, where OK denotes the ring of algebraic
integers of K. These varieties arise from equations of the form F (y) = F (g(x1, x2, . . . , xk)) +

r(x1, x2 . . . , xk), where F is a rational function, g and r are polynomials over K, and the degree
of r is relatively small. We also give an example of an affine variety of dimension two, with
a finite number of algebraic integral points. This variety is defined over the cyclotomic field
Q(ξ3) = Q(

√
−3).
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1 Introduction

For decades mathematicians have been interested in Diophantine equations, i.e., in looking for
integral points on algebraic varieties. In this paper we identify algebraic varieties with solutions
of a system of rational equations over a fixed field. Generally an algebraic variety can have a finite
or an infinite number of integral points. The pivotal question arises: does there exist a general
method for finding nontrivial integral points, that is points that do not come from factors of the
polynomials defining the variety? There are various methods which are used to count the number
of solutions of Diophantine equations. For example, the theory of heights on algebraic varieties
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implies that there exist elliptic curves, which have a finite number of integral points which are
non-trivial in the above sense, cf. [7].

On the other hand, affine surfaces which come from projective curves Cn : Xn + Y n = Zn

for n ≥ 3 from the Fermat’s Last Theorem have an infinite number of integral points over Q and
all these points are trivial. This theorem proved Andrew Wiles in 1995, cf. [8], and in the proof
he used the theory of modular forms. Another example of varieties that have only trivial integral
points are the varieties that arise from the fact that a non-zero product of at least two consecutive
integers is never a perfect power, cf. [3, 4]. The proof is based on a prime factorization of the
product and the distribution of prime numbers. On the other hand, the set of Pythagorean triples
is an infinite set of solutions of the equation x2+y2 = z2 which can be proved by a parametrization
of rational points of the circle. In a similar way, one can prove that if an elliptic curve defined by
the equation F (x, y) = 0 has a rank greater than 0, then the equation F (x/z, y/z) = 0, defining
an affine surface, has an infinite number of integral solutions.

In this paper, we describe a family of algebraic varieties (over quadratic imaginary number
fields) with a finite number of lattice points. We consider these fields hence as stated in the
[1, Theorem 4.4] the rational number field and imaginary quadratic fields are the only one for
which a ring of integers has a least positive element. These varieties are defined by equations of
the form F (y) = F (g(X))+r(X), where F is an almost rational function, g is a polynomial which
asymptotically is greater than a power of maximal norm on the subset of complex numbers, and
the degree of polynomial r is small. The construction of this family is inspired by two results.
The first result is a very well known theorem of Siegel, which says that an algebraic curve of
genus greater than one has a finite number of integral points, cf. [6, Thm. D.9.1]. The second
result is a theorem of Vojtech Jarnik about the maximal asymptotic number of n-lattice points on
convex curves, cf. [2]. To obtain our results, we use tools of topological and analytic nature. In
particular, our methods are based on the fact that the set F−1(F (g(X)) + r(X)) is contained in a
sum of finite family of balls, which contain few lattice points. In order to obtain such a property,
we investigate the function X 7→ F−1(F (X)) and control the growth rate of functions g and r.
Functions F, g, r are described in technical Lemma 2.1 and Lemma 5.1.

In order to state our results, we need several definitions and a bit of notation.
All varieties in this paper are over the field K := Q(

√
−D), where D ≥ 1 is a square-free

integer or K := Q.

Definition 1.1. Let α be an algebraic integer of a number field K. Then a complex number z is
called an α-lattice number over K if z belongs to a subset 1

α
OK ⊂ C.

Similarly, we say that the point X := (x1, x2, . . . , xk) is an α-lattice point if X belongs to the
set

1

α
OkK :=

1

α
OK ×

1

α
OK × . . .×

1

α
OK︸ ︷︷ ︸

k times

,

which we consider as a subset of Ck, for k ≥ 1.

Definition 1.2. We say that a subset S of complex numbers is uniformly discrete if there exists
ε > 0 such that the distance in maximal metric of every two different points of S is at least equal
ε.
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In the proof of Theorem 1.1, it is crucial that a set of the form
n−1⋃
j=0

ξjnOK (1)

is a uniformly discrete set, where ξn = e2πi/n. What is equivalent to n
∣∣N(K), where

N(K) :=


6, if K = Q(

√
−3)

4, if K = Q(
√
−1)

0, if K = Q
2, otherwise.

.

Next definitions capture the notion of a function that has large values for large arguments.

Definition 1.3. Let k be a natural number and S ⊂ Ck be an infinite set. Let f, g : S → C. We
say that the function g dominates the function f on the set S if there exist constants M,C > 0

satisfying
|g(X)| ≥ C|f(X)|

for X ∈ S such that ‖X‖ > M .

Definition 1.4. Any rational function F (z) we can write as

f(z) +
f1(z)

f2(z)
=

n∑
i=0

aiz
i +

f1(z)

f2(z)
,

where f , f1 and f2 are polynomials and deg f1 < deg f2, then we define degree of rational
function F by equality degF := deg f .

Definition 1.5. For any 0 ≤ j < n = degF we put Aj :=
(ξjn−1)an−1

nan
and define a rational

function of k variables

Lj(X) := F (g(X))− F
(
ξjng(X) + Aj

)
+ r(X).

Our first main result provides a sufficient condition for a variety given by the equation

F (z) = F (g(X)) + r(X)

to have a finite number of α-lattice points over K, where X = (x1, x2, . . . , xk) and k ≥ 1.

Theorem 1.1. Let k andm be a natural number and F (z) ∈ K(z) be a rational function of degree
n ≥ 2 such that n

∣∣ N(K). Let S be a subset of theOkK and g(X), r(X) ∈ K[X] be polynomials of
k variables such that |g(X)| dominates ‖X‖m on the set S and the degree of r(X) is smaller than
(n− 1)m. Then the number of solutions of the equation

F (z) = F (g(X)) + r(X)

in the set S ×OK is finite, assuming that the number of zeros of the rational function
n−1∏
i=0

Lj(X) (2)

is finite in the set S.
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Remark 1.1.1. At this point, we would like to note some of the special cases of the Theorem 1.1.
If K = Q, then instead of zeros of the function (2) we can consider zeros of L0(X)Lbn/2c(X). If
k = 1, then every non-constant polynomial g ∈ C[x] dominates the m-th power of |x|. Moreover,
we can take m = deg g. In addition, if k = 1, then the function (2) has a finite number of zeros, if
and only if, rational functions Li are all non-zero, since every non-zero rational function of one
variable has a finite number of zeros.

In the last section of the paper, we will use Theorem 1.1 to prove that hyperelliptic curves
over Q(

√
−D) have a finite number of 1

α
OK points over Q(

√
−D). In addition, we do not use

Siegel’s theorem to prove the following

Corollary 1.1.2. Let α ∈ OQ(
√
−D) be an algebraic integral number and h ∈ Q(

√
−D)[x] be a

monic polynomial of degree 2m which has 2m distinct roots in C. Then a hyperelliptic curve over
Q(
√
−D) defined by the equation

y2 = h(x) = x2m +
2m−1∑
i=0

aix
i

has a finite number of α-lattice points over Q(
√
−D) .

After this proof, we apply the main result to obtain the following construction of higher
dimensional varieties over imaginary quadratic field with a finite number of α-lattice points. But
to construct such varieties we need polynomials of many variables which dominate a positive
power of maximal norm on the set of α-lattice points. Unfortunately, such polynomials have
large degree which increases as the square of the number of variables.

Theorem 1.2. Let K, k, n, α and F := f+ f1
f2

be as in Theorem 1.1. Let r ∈ K[X] be a polynomial
of k variables. If r(X) = 0 has a finite number of α-lattice solutions, and for any 0 ≤ j ≤ n− 1

a rational function F (z) − F (ξjnz + Aj) has a positive degree or ≡ 0, then there exists a
polynomial g(X) ∈ K[X] such that the variety defined by the equation

F (z) = F (g(X)) + r(X)

has a finite number of α-lattice points over K.
Moreover, the polynomial g can be chosen in such a way that its degree is smaller than
k(m0 + k − 1), where m0 is any integral number greater than

deg r

mindegLj>0,j=1,...,n{degLj}
.

2 Preliminaries

We start by reminding a big and a small o notation, cf. [5].

Definition 2.1. Let d be a natural number and f, g : Cd ⊃ S → C, then we write

i) f = o (g), if lim‖X‖→∞
∣∣∣f(X)
g(X)

∣∣∣ = 0,
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ii) f � g, if there exist C1, C2,M > 0 such that C1|f(X)| < |g(X)| < C2|f(X)|
for ‖X‖ > M which are contained in S.

Definition 2.2. Let ε > 0, k ∈ N and X0 ∈ Ck, then the following set

B(X0, ε) :=

{
X ∈ Ck

∣∣ max
1≤i≤k

|Xi −X0i| < ε

}
is a ball in the maximum metric.

Before we introduce the crucial lemma, we need the definition of functions which asymptotically
behave as monomials x 7→ anx

n.

Definition 2.3. We say that an open and continuous function F : C\P → C is an almost-rational
function of degree n if its domain is the set of all complex numbers except a finite set, and there
exist an−1 ∈ C and a non-zero an ∈ C such that an asymptotic equation

F (y)− anyn − an−1yn−1 = o
(
yn−1

)
holds, i.e.,

lim
|y|→∞

|F (y)− anyn − an−1yn−1|
|y|n−1

= 0.

Now we can describe a distribution of an inverse image of an image of almost-rational functions
for sufficiently large arguments.

Lemma 2.1. We fix natural numbers k,m. Let F be an almost-rational function of degree n, S
be a subset of OkK and g(X) ∈ OK[X] be a function which dominates ‖X‖m : Ck → C on the set
S. If we denote a set of points excluded from a domain of F by P , then the following statements
hold.

(i) If r : S → C is a function such that r(X) = o
(
‖X‖m(n−1)) and ε1 > 0, then there exists a

constant M1 :=M1(ε1, F, r, g,S) > 0 such that inclusion

r(X) ∈ {F (z)− F (g(X))|z ∈ B(g(X), ε1)}. (3)

holds for X ∈ S satisfying an inequality |g(X)| > M1

(ii) For any ε2, ε3 > 0, there exists a constant M2 := M2(ε2, ε3, F ) such that the following
inclusion holds

F−1(F (y0)) ⊂
n−1⋃
j=0

B(ξjny0 + Aj, ε2) ∪
⋃
p∈P

B(p, ε3),

whenever |y0| > M2.

Remark 2.1.1. Lemma 2.1.(i) is true when deg r = m(n − 1), assuming an extra condition on
the polynomial r(X). More precisely, we require the existence of constants C3 and M3 such that∣∣∣∣ r(X)

g(X)n−1

∣∣∣∣ ≤ C3 < |nanε1|,

whenever g(X) > M3.
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Before the proof of Lemma 2.1 we state and prove two more lemmas. The first one says that a
translation of almost-rational function asymptotically behaves as a monomial. The second lemma
describes a family of loops which are not contractible on C \ {z0}.

Lemma 2.2. Let P, n, an, an−1, F be as in Lemma 2.1. Then the following statements are true:
(i) There exists a linear transformation L : y 7→ y − an−1

nan
such that F (L(y)) = any

n + o (yn−1).
(ii) For any pair a, b ∈ C the equality

F (ay + b) = F (y) + o
(
yn−1

)
implies:

(a, b) ∈
{(

ξjn,
(ξjn − 1) an−1

nan

) ∣∣ 1 ≤ j ≤ n

}
.

Proof. (i) We calculate F (L(y)). We use the formula for the n-th power of sum to obtain

F
(
y − an−1

nan

)
= an

(
y − an−1

nan

)n
+ an−1

(
y − an−1

nan

)n−1
+ o

((
y − an−1

nan

)n−1)
= any

n − nan an−1

nan
yn−1 + o (yn−1) + an−1y

n−1 + o (yn−1) + o (yn−1)

= any
n + o (yn−1) .

(ii) First we reduce the coefficient an−1 using a linear transformation. Next we solve the problem
for functions of the form any

n + o (yn−1) and finally we use linear transformations to return to
the original function. F

(
y − an−1

nan

)
= any

n + o (yn−1), therefore, without loss of generality we

assume F (y) = any
n + o (yn−1). To solve this case it is enough to calculate the following limits

lim
|y|→∞

∣∣∣∣F (ay+b)−F (y)yn−1

∣∣∣∣= lim
|y|→∞

∣∣∣∣an((ay+b)n−yn)+o (yn−1)
yn−1

∣∣∣∣ =
{

∞ a 6=ξjn
nana

n−1b a=ξjn
.

Which implies that the following limit

lim
|y|→∞

∣∣∣∣F (ay + b)− F (y)
yn−1

∣∣∣∣ = 0

holds, if and only if (a, b) ∈ {(ξjn, 0)
∣∣ 1 ≤ j ≤ n}. Then we come back to original form of

function F

ξjny →
(
y − an−1

nan

)
◦ ξjny ◦

(
y +

an−1
nan

)
= ξjny +

(ξjn − 1) an−1
nan

.

Lemma 2.3. [About non-trivial loops on C\{z0}] Let R > R′ > 0, z0 ∈ C and a ∈ C be such
that |z0| < R − R′ and |a| = 1. If in addition a loop f : S1 → C satisfies f(z) ∈ B(azR,R′),
then the loop f is not contractible on C \ {z0}.

Proof. Without loss of generality we can assume that a = 1. Then, it is enough to take a
homotopy ft(x) = (1 − t)f(z) + tzR, which shows that the loop f is in the same class of
homotopy as a circle centered at 0 with radius equals R − R′ on C \ {z0}, but such circle is not
contractible.
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The idea of the proof of Lemma 2.1.(i) is following. When r(X) = 0, then the claim is
obvious. To prove inclusion (3) for r(X) 6= 0, we will find an upper estimate of |r(X)| and a
lower estimate of |F (y) − F (g(X))| for y ∈ C such that |y − g(X)| = ε1. Next, we use these
estimates to parametrize a loop F (y) − F (g(X)). On the power of Lemma 2.3 the loop is not
contractible on C \ {r(X)}. On the other hand, if r(X) 6∈ {F (y)−F (g(X))

∣∣ y ∈ B(g(X), ε1)},
then we can show that the loop F (y) − F (g(X)) is contractible on C \ {r(X)}. It implies the
claim of Lemma 2.1.(i).

Proof of Lemma 2.1.(i). Assume that r(X) 6= 0. We fix positive numbers C ′, C ′′ such that
C ′ + C ′′ < |nanε1|. Since the asymptotic equation |r(X)| = o

(
‖X‖(n−1)m

)
and the assumption

on function g, for any constant C ′ > 0 the inequality

|r(X)| < C ′Cn−1
0 ‖X‖(n−1)m < C ′|g(X)|n−1 (4)

holds if X ∈ S , ‖X‖ > M0 and |g(X)| is sufficiently large. We denote e(t) := e2πit, where
t ∈ (0, 1]. Then after some calculations for t ∈ (0, 1], we obtain

F (g(X) + ε1e(t))−F (g(X)) = nanε1e(t)g(X)n−1+o
(
g(X)n−1

)
.

Next we define a function F : Ck × (0, 1]→ C by

F(g(X), t) := F (g(X) + ε1e(t))−F (g(X))− nanε1e(t)g(X)n−1.

We use the above asymptotic inequality to obtain that

|F(g(X), t)| < C ′′|g(X)|n−1 (5)

for X ∈ S with sufficiently large |g(X)|, where C ′′ > 0 is defined earlier. Therefore, for
sufficiently large ‖X‖ from the set S the inequality

|F (g(X) + ε1e(t))−F (g(X))| ≥ |nanε1e(t)g(X)n−1| − C ′′|g(X)|n−1 (6)

holds. Finally, we define a constantM1 as the smallest value for which equations (4) and (6) hold,
whenever X ∈ S and |g(X)| > M1. We set X ∈ S such that |g(X)| > M1. Then we obtain a
loop

f : S1 → C \ {r(X)}
defined by

e(t) 7→ F (g(X) + ε1e(t))−F (g(X)).

Note that (5) implies the inclusion

F (g(X) + ε1e(t))−F (g(X)) ∈ B(nanε1e(t)g(X)n−1, C ′′|g(X)|n−1).

Hence on the power of Lemma 2.3 we obtain that f is not homotopic to a constant map on the
set C \ {r(X)}, since |r(X)| < |nanε1g(X)n−1| − C ′′|g(X)|n−1. Assume to the contrary that
r(X) 6∈ {F (y)− F (g(X))

∣∣ y ∈ B(g(X), ε1)}. Then we can define a homotopy

fs(t) = F (g(X) + (1− s)ε1e(t))−F (g(X)), where s ∈ [0, 1]

so that f0 = f and f1 is a constant map to 0 ∈ C \ {r(X)}. This contradicts the fact that the
loop f is not contractible on the set C \ {r(X)}. Therefore, r(X) ∈ {F (y) − F (g(X))

∣∣ y ∈
B(g(X), ε1)} holds, whenever |g(X)| > M1.
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Proof of Lemma 2.1.(ii). By the Lemma 2.2.(i) we can assume without loss of generality that
F (y) − yn = o (|y|n−1), since we can use a linear transformation to reduce coefficients an and
an−1 to 1 and 0. From these linear transformations arise constants Aj’s, see Lemma 2.2.(ii). In
order to investigate the set F−1(F (y0)), we have to solve the equation

F (y) = F (y0)

for y ∈ C \ P . Let ε2, ε3 be positive real numbers. By BP we denote the sum of the discs with
centers at points of the finite set P ,

BP :=
⋃
p∈P

B(p, ε3).

We fix the compact set BP \ BP . Since F is a continuous function on BP \ BP , the image
F (BP \ BP ) is a bounded subset of C. We fix a constant C > 0 which will be specified later.
We choose a sufficiently large ball B := B(0,M) ⊂ C such that BP \ BP ⊂ B and the function
F restricted to C \ B is close to a polynomial function yn. More precisely there exists a constant
M > 0 such that

|F (y)− yn| < C|y|n−1, whenever |y| > M.

By M we denote the maximum of the absolute value of the function F on the compact set
B(0,M) \BP ,

M := max
y 6∈BP and |y|≤M

|F (y)|.

We define the constant M2 as the minimal positive real number for which

|F (y)| >M, whenever |y| > M2.

Assume to the contrary that for y0 such that |y0| > M2, there exists a complex number y′ 6∈ BP

such that F (y′) = F (y0) and min1≤j≤n |y′ − y0| ≥ ε2. Then by the choice of M2 we would have
|y′| > M , hence using the triangle inequality we obtain

|F (y′)−F (y0)| ≥ |y′n−yn0 |−C|y′|n−1−C|y0|n−1 ≥
n∏
j=1

|y′−ξjny0|−2C(max |y′|, |y0|)n−1, (7)

where we have used the formula y′n−yn0 =
∏n

j=1(y
′−ξjny0). Let us fix 1 ≤ j0 ≤ n such that

|y′ − ξj0n y0| = min
1≤j0≤n

|y′ − ξjny0|.

Then for any 1 ≤ j ≤ n such that j 6= j0 we have obvious inequalities

|y′ − ξjny0|+ |y′ − ξj0n y0| ≥ |(ξj0n − ξjn)y0| = | sin(π(j − j0)/n)y0|

and
|ξn−j0n y′ − y0|+ |ξn−jn y′ − y0| ≥ |(ξn−j0n − ξn−jn )y′| = | sin(π(j − j0)/n)y′|.

Therefore, for j 6= j0

|y′ − ξjny0| ≥
sin(π/n)

2
max{|y′|, |y0|}. (8)
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We specify a positive number C such that C < ε2 sin
n−1 π/n
2

. Finally, we use inequalities (7) and
(8) to obtain following inequalities

|F (y′)− F (y0)| ≥
∏n

j=1 |y′ − ξjny0| − 2C(max |y′|, |y0|)n−1

≥ (min1≤j≤n |y′ − ξjny0|)(sin π/nmax |y′|, |y0|)n−1 − 2C(max |y′|, |y0|)n−1

≥ (ε2 sin
n−1 π/n− 2C)(max |y′|, |y0|)n−1

> 0

This is a contradiction, since F (y0) = F (y′).

Proposition 2.3.1. Any rational function of degree n is an almost-rational function of degree n.

In the proof of Theorem 1.1 we use Lemma 2.1 for rational functions of the form F = f + f1
f2

where f, f1, f2 ∈ C[y], deg f > 0 and deg f1 < deg f2. We also use a property of an image of
α-lattice points which is described in the following lemma.

Lemma 2.4. Let g ∈ K[X] and let α ∈ OK be a non-zero algebraic integer. Then there exists
α′ ∈ OK such that g(X) is an α′-lattice for any point X ∈ 1

α
OK.

Proof. Let
g(X) =

∑
I=(i1,i2,...,ik)

aIx
i1
1 x

i2
2 . . . x

ik
k ,

where the sum runs over all I such that aI 6= 0. We put

aI =
pI
qI
, xj =

rj
α

for some pI , qI , rj ∈ OK. Then it is enough to set α′ = αdeg g ·
∏

I qI .

3 Proof of Theorem 1.1

Proof. Recall that ξn := e2πi/n is the n-th primitive root of unity, Aj :=
(ξjn−1)an−1

nan
and S is

an infinite subset of the set of α-lattice points over the field K. For the sake of simplicity, we
introduce the following notation. If K = Q(

√
−D), then we denote by α′ := α′(K, f, g,S) an

algebraic integer of K such that

{ξjng(X) + Aj
∣∣ 0 ≤ j ≤ n− 1, X ∈ S} ⊂ 1

α′
OK.

If K = Q, then we denote by α′ := α′(K, f, g,S) an algebraic integer of K such that

{ξjng(X) + Aj
∣∣ j ∈ {0, n/2} ∩ Z, X ∈ S} ⊂ 1

α′
OK.

Observe that the number α′ defined above exists by Lemma 2.4, since n
∣∣N(K) implies that

ξn ∈ K or K = Q. Recall also that we are interested in varieties in Ak+1
K given by the equation

F (y) = F (g(X)) + r(X). (9)
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Let P be the set of poles of function F . We choose positive real numbers ε1, ε2 and ε3, such that
ε1 + ε2 = ε < |1/α′(K, f, g,S)| and ε3 < d(P \ 1

α
OK,

1
α
OK), where d(A,B) denotes a distance

between sets A and B in the maximum metric. By assumptions g(X) dominates ‖X‖m on the set
S and the degree of r(X) is smaller than (n− 1)m, hence we obtain asymptotic formula

r(X) = o
(
g(X)n−1

)
(10)

on the set S , i.e.,

lim
X∈S and ‖X‖→∞

r(X)

g(X)n−1
= 0.

Proposition 2.3.1. implies that a rational function F (z) satisfies the conditions of Lemma 2.1 with
ε1, ε2, ε3 > 0 as in the beginning of the proof. Then by Lemma 2.1(i) we obtain the inclusion

F (g(X)) + r(X) ∈ F (B(g(X), ε1)) (11)

for X ∈ S , such that |g(X)| > M1 = M1(ε1, F, r, g,S). Recall that P denotes the set of poles
of rational function F (z). In order to simplify notation, we put Bj := B(ξjng(X) + Aj, ε) and
Bp = B(p, ε3). Then by Lemma 2.1.(ii) there exists M2 =M2(ε2, ε3, F ) such that we obtain

F−1(F (B(g(X), ε1))) ⊂
n−1⋃
j=0

 ⋃
y∈B(g(X),ε1)

B(ξjny + Aj, ε2)

 ∪ ⋃
p∈P

Bp =
n−1⋃
j=0

Bj ∪
⋃
p∈P

Bp (12)

for X ∈ S such that |g(X)| > Mε := max{M1,M2}. By (11) and (12) we obtain

F−1(F (g(X)) + r(X)) ⊂
n−1⋃
j=0

Bj ∪
⋃
p∈P

Bp (13)

for X ∈ S such that |g(X)| > Mε. We choose ε3 < d(P \ 1
α
OK,

1
α
OK). This implies that

1

α
OK ∩

(⋃
p∈P

Bp

)
⊂ P, (14)

hence
1

α
OK ∩ F−1(F (g(X)) + r(X)) ⊂ 1

α
OK ∩

(
n−1⋃
j=0

Bj

)
, (15)

for |g(X)| > Mε, since P consists of poles of F and the inclusions (13) and (14) hold.
In order to conclude the thesis, we will show that the α-lattice point (X, y0) on the variety

defined by
F (y0) = F (g(X)) + r(X)

such that |g(X)| > Mε satisfies equation

Lj(X) = 0

for some 1 ≤ j ≤ n. Assume that (X, y0) ∈ S × 1
α
OK is a point of the variety

F (y) = F (g(X)) + r(X) = 0
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such that |g(X)| > Mε. Then the inclusion (15) implies

y0 ∈ Bj0 for some 0 ≤ j0 < n.

We have chosen ε < 1
α′(K,f,g,S) with α′(K, f, g,S) as in the beginning of the proof. This implies

that ξj0n g(X) + Aj0 is the only α′-lattice point in Bj0 = B(ξj0n g(X) + Aj0 , ε). Therefore,

y0 = ξj0n g(X) + Aj0 ,

since inclusion 1
α
OK ⊂ 1

α′
OK holds. Then X has to be an α-lattice point which is a zero of the

rational function Lj0(X) = f(g(X))− f (ξj0n g(X) + Aj0) + r(X). But the number of zeros in the
set S of the rational function

k∏
i=1

Lj(X)

is finite, hence the variety (9) has finitely many α-lattices points (X, y0) satisfying |g(X)| > Mε.
On the other hand, the number of points such that |g(X)| ≤ Mε is finite, since |g(X)| dominates
‖X‖m on the set S . This completes the proof.

4 Results for varieties over Q

In this section we use Theorem 1.1 to prove Corollary 4.0.1, which is a useful fact about polynomials
with integral coefficients. We will consider the following variety

F (y) = F (g(X)) + r(X) (16)

over rationals, where g[X] ∈ Z[X] is the polynomial with k variables.

Corollary 4.0.1. Let P ∈ Z[x] be a monic polynomial of even degree 2m. If P (a) is a square
of an integer for infinitely many integers a, then P is a square of a polynomial with integer
coefficients.

Proof. Let
P (x) = x2m + c2m−1x

2m−1 + . . .+ c0.

Then we construct a polynomial

g(x) = xm + bm−1x
m−1 + . . .+ b0,

such that its coefficients are given by the following equalities

bm−1 · 1 + 1 · bm−1 = c2m−1
bm−2 · 1 + bm−1bm−1 + 1 · bm−2 = c2m−2

...
b0 · 1 + b1bm−1 + . . .+ bm−1b1 + 1 · b0 = c2m−m.

Then polynomial r(x) := P (x)−g(x)2 has a degree smaller thanm and g, r ∈ Q[x]. If r(x) 6≡ 0,
then Theorem 1.1 with K = Q, S = Z and F (y) = y2 implies that y2 = g(x)2 + r(x) = P (x)

has a finite number of solutions in integers, since L1 = L2 = r. Moreover, by the Gauss Lemma
we have g(x) ∈ Z[x].
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5 Varieties over Q(
√
−D)

In the first part of this section we will show a proof of Corollary 1.1.2. from the Corollary 5.0.1
which is a consequence of Theorem 1.1. In the second part we derive a family of varieties over
Q(ξ3) = Q(

√
−3) with a finite number of α-lattice points. In the last part we prove Theorem.1.2

which allows us construct varieties with a finite number of 1
α
OK points.

Corollary 5.0.1. Let K = Q(
√
−D). We fix numbers m,n ∈ N. Let α ∈ OK be a non-zero

integral number and f(x), g(x), and r(x) ∈ K[x] be polynomials such that:

1. deg f = n ≥ 2, deg g = m and deg r < nm−m;

2. n divides N(K);

3. for every 0 ≤ j ≤ n− 1

f(ξjng(x) + Aj)− f(g(x)) 6≡ r(x),

where Aj =
(
1−ξj(n−1)

n

)
an−1(f)

nξ
j(n−1)
n an(f)

. Then the variety defined by the equation

f(y) = f(g(x)) + r(x) (17)

has a finite number of α-lattice solutions (x, y).

Proof of Corollary 1.1.2. It is sufficient to take f(y) = y2 and construct g(x) as in Corollary
4.0.1 such that deg g > deg r, where r(x) := x2k +

∑2k−1
i=0 aix

i − (g(x))2. In addition, r(x) has
to be a non-zero polynomial, since

x2k +
2k−1∑
i=0

aix
i

is not a square in K[x] ⊂ C[x]. The claim follows if one applies Corollary 5.0.1.

In this part, we derive a family of varieties over Q(ξ3) with a finite number of α-lattice points,
where α ∈ OQ(

√
−D). For this purpose, we need an appropriate polynomial g(X) which dominates

a positive power of ‖X‖ on the set 1
α
OkK, where K = Q(

√
−D) and α ∈ OK. Such polynomials

come from the following lemma.

Lemma 5.1. We fix the natural numbers k, m1,m2, . . . ,mk. Let K = Q(
√
−D) and let

g(X) ∈ OK[x1, . . . , xk] be a polynomial of the form

g(X) :=
k∏
i=1

xmi
i +

∑
li<mi

al1,...,lkx
l1
1 · · · x

lk
k .

We define m := min{m1, . . . ,mk}. Then there exist constants C,M > 0 such that the equality

|g(X)| ≥ C‖X‖m

holds, for α-lattice points X = (x1, x2 . . . , xk), where
∏k

i=1 xi 6= 0 and ‖X‖ > M .
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Proof. Recall that the norm of non-zero algebraic integers of Q(
√
−D) is greater or equal to 1,

which gives that |xi| ≥ 1/|α|. This implies the inequality

|al1,...,lk ||α|
∑

(mi−li−1)
k∏
i=1

|xmi−1
i | ≥ |al1,...,lk ||x

li
i |.

We use the triangle inequality and the above inequality to obtain

|g(X)| ≥
k∏
i=1

|xmi
i | − C ′

k∏
i=1

|xmi−1
i | =

(
1− C ′∏k

i=1 |xi|

)
k∏
i=1

|xmi
i |,

where C ′ =
∑

li<mi
|al1,...,lk ||α|

∑
(mi−li−1). Moreover,

C ′∏k
i=1 |xi|

≤ C ′|α|k−1

‖X‖
‖X‖→∞−−−−−→ 0.

This implies that for any 0 < ε < 1 and the point ‖X‖ > C′|α|k−1

ε
the following inequalities

|g(X)| > (1− ε)
k∏
i=1

|xmi
i | ≥ (1− ε) ‖X‖m

|α|m1+m2+...+mk−m
,

hold. In order to finish the proof, we put C := 1−ε
|α|m1+m2...+mk−m and M := C′|α|k−1

ε
.

Example 5.1. Let K := Q(ξ3) = Q(
√
−3) and let a, b, c, d ∈ Z[ξ3] be algebraic integers

such that c 6= 0, ab. We fix polynomials f(z) = z3 + dz, g(x, y) = x3y3 + x2 + y2 and
r(x, y) = xy + ax+ by + c. Then the variety

f(z) = f(g(x, y)) + r(x, y)

has a finite number of points in Z[ξ3] × Z[ξ3] × Z[ξ3]. In order to show this, we consider four
cases. We show that in each case the number of points on the variety is finite.

Case 1: x = y = 0. In order to find points on the variety it is sufficient to solve the equation
z3 + dz = c. But this equation has a finite number of solutions.

Case 2: y = 0 and x 6= 0. Then the equation which defines a variety reduces to
f(z) = f(g1(x)) + r1(x), where g1(x) = x2 and r1(x) = ax + c. Polynomials f, g1
and r1 obviously satisfy the assumptions of Theorem 1.1, when S = Z[ξ3]. To check the
statement (A) of Theorem 1.1 it is enough to check that polynomials Lj are non-zero.
Indeed, in this case we have:

Lj(x) = f(g1(x))− f(ξj3g1(x) + 0) + r1(x) = d(1− ξj3)x+ ax+ c 6≡ 0,

because c 6= 0. Hence by Theorem 1.1 the number of points of the form (x, 0, z) is finite.

Case 3: x = 0 and y 6= 0. This case is completely analogous to the previous one.
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Case 4: xy 6= 0. In view of Lemma 5.1, the assumptions of Theorem 1.1 are satisfied for
S = {(x, y) ∈ Z[ξ3]× Z[ξ3]|xy 6= 0}. In this case we have

Lj(x, y) = D(1− ξj3)(x3y3 + x2 + y2) + xy + Ax+By + C,

where j ∈ {0, 1, 2}. Then the equation L0(x, y) = 0 is equivalent to (x + b)(y + a) =

ab− c. This equation has only a finite number of solutions in Z[ξ3]×Z[ξ3], since ab 6= c

and the norm of non-zero α-lattice points is bounded from below by 1/|α|.

For j = 1, 2 we use Lemma 5.1 to obtain that there exists a constant C ′ such that

|Lj(x, y)| ≥ C ′‖(x, y)‖3 for large ‖(x, y)‖, where xy 6= 0.

Hence L1(x, y) and L2(x, y) also have a finite number of zeros in the set

{(x, y) ∈ Z[ξ3]× Z[ξ3]|xy 6= 0}.

We expand the last example to Theorem 1.2, which says that instead of the variety
0 = r(x, y) = xy + ax + by + c, we can use any variety r(x1, x2, . . . , xk) = 0, with a finite
number of α-lattice points to construct a variety of higher dimension with a finite number of
α-lattice points.

Proof of Theorem 1.2. We first write α-lattice points as a sum of family of sets.

1

α
OkK =

⋃
I⊂{1,2,...k}

SI , where SI :=
{
X ∈ 1

α
OkK

∣∣ xi = 0 if and only if i ∈ I
}
.

In each set SI we put 0 on fixed coordinates. Let

m0 >
deg r

mindegLj>0,j=1,...,n{degLj}
.

Consider the function

g(X) :=
k∑
i=1

∑
1≤h1<h2<...<hi≤k

∏
h∈{h1,h2,...,hi}

xm0+i−1
h .

By Lemma 5.1 we deduce that for any I ⊂ {1, . . . , k} there exist constants CI > 0 and MI > 0

such that
|g(X)| > CI‖X‖m0+|I|−1 ≥ CI‖X‖m0 ,

for X ∈ SI , such that ‖X‖ > MI . This implies that there exist constants C > 0 and M > 0

such that |g(X)| > C‖X‖m0 , for X ∈ 1
α
OkK, such that ‖X‖ > M . Then S := 1

α
OkK, f , g and

r satisfies assumptions of Theorem 1.1. In addition for 1 ≤ j ≤ n the polynomial Lj(X) is
equal to r(X) or dominates ‖X‖ to the powerm0 ·mindegLj>0,j=1,...,n{degLj}. Hence, the variety
f(g(X)) − f (ξjng(X) + Aj) + r(X) = 0 has a finite number of α-lattice points. This implies
statement (A) of Theorem 1.1. Therefore, by Theorem 1.1 we obtain the claim.
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