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1 Introduction 

In a previous paper [9], we defined a generalized Fibonacci polynomial by 
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with P0 (see below) set as unity for notational convenience, and {un} and {vn} are generalized 
arbitrary order r number sequences defined formally by 
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where the Pj are arbitrary integers and jα  are the roots, assumed distinct of the associated 

auxiliary equation 
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which is associated with the homogeneous arbitrary order linear recurrence relations which the 
generalized Fibonacci numbers satisfy. For example, when r = 2, we have  

2211 −−
−= nnn uPuPu  

or { } ( ){ }211 ,;,1( PPPun ≡  in Horadam’s notation [5]. These are the Lucas fundamental numbers 

[6] and the { } ( ){ }211 ,;,2( PPPvn ≡  correspond to the Lucas primordial numbers which can be 

readily shown to satisfy 
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When ,121 =−= PP  we get the Fibonacci numbers { } { }1+
≡ nn Fu  and the ordinary Lucas 

numbers { } { }nn Lu ≡ , the principal properties of which can be found in Hoggatt [3]. There are 

many variations of Fibonacci polynomials in the literature with a common theme that all 
polynomials can be expressed in terms of appropriately defined Fibonacci polynomials [4, 8] 
which we demonstrate for the subject of this paper in Section 3 below. Here we propose merely 
to consider some aspects of the coordinates in (1.1) from some specific examples of (1.1). 

2 Preliminary results 

We can develop another result between Lucas’ primordial and fundamental sequences. To do this 
we establish a recurrence relation for the generalized Fibonacci polynomial (1.1) with the use of 
a result from [9]: 
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(2.1) 

in which ��  is the falling factorial coefficient. 

Proof: Since from [9] 
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we have that 
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which yields the required result when we equate coefficients. For example, when x = 0, Equation 
(2.1) becomes 

���� = 
 
�������/�� + 1��
���  

 

(2.2) 

since �! = ���� − #�! and when r = 2 and n = 1, the right-hand side of (2.2) reduces to 

12 
 
������� = 12 �
��� + 
%����
���  

= 12 &'�'� + �'�% − 2'%�( 

= '�% − '%.  

More specifically, for r = 2, '� = −'% = 1, 
� = )�, ���� = *�, the ordinary Lucas and Fibonacci 

numbers, and Equation (2.1) becomes �*��� = 4*, = 20,  

and 
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 = 1 × 3 + 3 × 2 + 4 × 1 + 7 × 1  

   = 20.  

Now 
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so that on equating coefficients of tn we obtain 
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 ���3�
3�� ���3�3 

 

(2.3) 

and 
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 7�48 ���0��3�
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(2.4) 

Then ����� = �� = 1.  

3 Generalized polynomials 

Formula (2.4) can be written in the suggestive form ����� = �� + ���0���,  

which is analogous to the well-known :���� = �� + :��0���  

for the Bernoulli polynomials, and wherein it is understood that after expansion of the right 
member, terms of the form ak are replaced by terms of the form ak, as in the umbral calculus [7]. 
We now find that with successive differentiation we can obtain in turn that ;%����� = ;�;������  

   = �;�������  

= ��� − 1����%���,  

and so on, so that ;������ = �! �����, 
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and then the not surprising result 

              ;������ = �!.  

It follows then that any polynomial can be expanded in a series of these generalized polynomials. 
The proof is as follows: 
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That is, if P0 = 1 as set earlier, then 
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Equate coefficients of the powers of t, and 
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It follows from this that the first few generalized Fibonacci polynomial examples of (1.1) are ����� = 1  = ��, ����� = � + '�  = ��� + ��, �%��� = �% + 2'�� + 2�'�% − '%�  = ���% + 2��� + 2�%, �/��� = �/ + 3'��% + 6�'�% − '%�� + 6�'�/ − 2'�'% + '/�  = ���/ + 3���% + 6�%� + 6�/, 
which agree with the first few examples of equations (2.3) and (2.4). The coefficient array is set 
out in Table 1, from which Tables 2 and 3 are in turn drawn. 

 0 1 2 3 4 5 6 7 
0 1        
1 1 1       
2 1 2 2      
3 1 3 6 6     
4 1 4 12 24 24    
5 1 5 20 60 120 120   
6 1 6 30  120  360 720 720  
7 1 7 42 210 840 2520 5040 5040 

Table 1. Polynomial coefficients [Sloane [7] A122851] 
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The elements of this table can lead to a variety of relationships between the generalized Lucas 
fundamental and primordial sequences if, in the coefficient array, we make use of  

���3 = ��� − 1�������3. 
 

Sequences 0 1 2 3 4 5 6 7 Sloane [7] 
Diagonal 1 1 2 3 6 11 24 51 A122852 [11] 

Row 1 2 5 16 65 326 1957 13700 A000522 [2] 

Table 2. Diagonal and row sequences 

The references are included here because they can take the interested reader to conjectures 
related to the topics of this paper. 

 

↓ Partial 
Column  

 Sloane 

0 1 2 3 4 5 6 7 8 0! x A000027 
1 1 3 6 10 15 21 28  1! x A230364 
2 2 8 20 40 70 112   2! x A000292 
3 6 30 90 210 420    3! x A000332 
4 24 144 504 1344     4! x A000389 

Table 3. Partial column sequences 

The relations among the generalized Lucas sequences make these neat relations seem 
obvious since the first column of this table consists of the factorial numbers (Sloane A000142), 
but they do take the interested reader further afield [10]. For instance, by inserting alternating 
positive and negative signs into this series one gets a divergent series which can lead into Borel 
summation techniques [1]. 
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