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1 Introduction

The Fibonacci and Lucas numbers arise in several areas such as mathematics, physics, computer
science and related fields. The Fibonacci and Lucas numbers are defined by the recurrence
relations, for n ≥ 0,

F (0) = 0, F (1) = 1, Fn+2 = Fn+1 + Fn, (1)

and
L(0) = 2, L(1) = 1, Ln+2 = Ln+1 + Ln, (2)

respectively. For more information about the Fibonacci and Lucas numbers, we refer the readers
to book [12]. Until this time, there have been a lot of applications and generalizations of the
Fibonacci and Lucas numbers [1, 5, 6, 19–21]. For example, Falcon and Plaza found the general
k−Fibonacci sequence {Fk,n}∞n=0 by studying the recursive application of two geometrical
transformations used in the well-known 4−triangle longest-edge (4TLE) partition [6].
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Furthermore, Yayenie [19] defined the modified generalized Fibonacci sequence as

Q0 = 0, Q1 = 1, Qn =

aQn−1 + cQn−2 if n is even

bQn−1 + dQn−2 if n is odd
, n ≥ 2, (3)

where a, b, c and d are real numbers. Also he gave generating function, the generalized Binet
formula and some basic identities for Qn. By analogy to the studies [5] and [19], Bilgici [1]
defined the bi-periodic Lucas numbers and modified generalized Lucas numbers and gave
generating functions, the Binet formulas and some special identities for these sequences. He
defined the modified generalized Lucas sequence as

U0 =
d+ 1

d
, U1 = a, Un =

bUn−1 + dUn−2 if n is even

aUn−1 + cUn−2 if n is odd
, n ≥ 2, (4)

where a, b, c and d are real numbers. The generating functions of Qn and Un are given by

H(x) =
∞∑
n=0

Qnx
n =

x (1 + ax− cx2)
1− (ab+ c+ d)x2 + cdx4

(5)

and

U(x) =
∞∑
n=0

Unx
n =

1

d

(
d+ 1 + adx− (ab+ cd+ c)x2 + adx3

1− (ab+ c+ d)x2 + cdx4

)
, (6)

respectively. In addition, the Binet formulas of the sequences Qn and Un are also given by the
following formulas:

Qn =
a1−ξ(n)

(ab)b
n
2
c

(
αb

n
2
c (α + d− c)n−b

n
2
c − βbn2 c (β + d− c)n−b

n
2
c

α− β

)
(7)

and

Un =
aξ(n)

(ab)
bn−1

2 c

(
(α+ d+ 1)αbn−1

2 c (α+ d− c)b
n
2 c − (β + d+ 1)βbn−1

2 c (β + d− c)b
n
2 c

α− β

)
, (8)

where α =
ab+ c− d+

√
(ab+ c− d)

2
+ 4abd

2
and β =

ab+ c− d−
√

(ab+ c− d)
2

+ 4abd

2
are the

roots of the polynomial x2− (ab+ c− d)x−abd = 0 and ξ(n) = n−2bn
2
c is the parity function

which we use throughout the paper. Note that, we also assume that ∆ = (ab+ c− d)2+4abd > 0.
The Cayley–Dickson algebras are a sequence {A0, A1, A2, . . .} of non-associative R−algebras

with involution. Every algebra Ak is built up from the previous one Ak−1 with a procedure which
destroy some algebra properties. The first five Cayley–Dickson algebras are familiar: A0 = R,
A1 = C, A2 = H (Quaternions), A3 = O (Octonions) and A4 = S (Sedenions). The concept of
the quaternion algebra, 4−dimensional associative and a non-commutative algebra over R, was
discovered by William Rowan Hamilton in October 1843. Two months later, John Graves made
a discovery on 8−dimensional associative and a non-commutative algebra over R and called as
octonions. Quaternions and high order dimension algebras, arise in many areas especially in
mathematics, coding theory, physics, robotics, computer science, etc. In recent years, several
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researchers have studied the quaternions and their generalizations [2, 7–9, 11, 13, 14, 17]. For
example, Halıcı investigated the Fibonacci and Lucas quaternions and presented their generating
functions, the Binet formulas [9]. She also derived some sums formulas for these quaternions.
Keçilioğlu and Akkuş defined the Fibonacci and Lucas octonions and they gave some identities
such as Catalan identity, Cassini’s identity and d’Ocagne’s identity for these octonions [11].
Bilgici et al. proposed the Fibonacci and Lucas sedenions, 16−dimensional non-associative
and non-commutative algebra over R, and then they gave some identities for these sedenions
by using the Binet formula [2]. Gül illustrated the k−Fibonacci and k−Lucas trigintaduonions,
32−dimensional non-associative and non-commutative algebra over R, and she gave some
properties of these trigintaduonions and derive relationships between them [8]. Göcen and Soykan
defined the Horadam 2k−ions, which are the generalization of the some earlier studies, and
investigated their properties [7]. Moreover, the authors defined the 2k−ions S ∈ Ak as

S =
N−1∑
i=0

aiei = a0 +
N−1∑
i=1

aiei, (9)

where N = 2k is the dimension of Ak, e0 is the unit, e1, e2, . . . , eN−1 are imaginaries and
a0, a1, a2, . . . , aN−1 are real numbers. Furthermore, for S1, S2 ∈ Ak, the multiplication of two
2k−ions are

S1S2 =

(
N−1∑
i=0

aiei

)(
N−1∑
i=0

biei

)
=

N−1∑
i,j=0

aibj(eiej). (10)

In this paper, by analogy to the earlier studies, we define a new generalization of the 2k−ions.
The rest of the paper is organized as follows. In section 2 and 3, we define the modified feneralized
Fibonacci 2k−ions and modified feneralized Lucas 2k−ions, respectively. Besides that, we give
generating functions, Binet formulas and some well-known identities for these 2k−ions. In the
last section, we give a concise conclusion.

2 Modified generalized Fibonacci 2k−ions

In this section, by virtue of the Eq. (3), we define the modified generalized Fibonacci 2k−ions.
By the help of formal power series representation, we give the generating functions for these
2k−ions. Also, we derive the Binet formula for the modified generalized Fibonacci 2k−ions with
the help of Eq. (7).

Definition 1. For n ∈ N0, the modified generalized Fibonacci 2k−ions Θn is defined by

Θn =
N−1∑
l=0

Qn+lel, (11)

where Qn is the nth modified generalized Fibonacci numbers that is defined in (3).

It is clear from the following Table 1 that the modified generalized Fibonacci 2k−ions are the
generalization of many studies in the literature for the special cases of a, b, c, d and k.
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a b c d k Modified Generalized Fibonacci 2k−ions
1 1 1 1 2 Fibonacci quaternions [10]
a b 1 1 2 Biperiodic Fibonacci quaternions [17]
k k 1 1 2 k−Fibonacci quaternions [14]
2 2 1 1 2 Pell quaternions [15]
1 1 2 2 2 Jacobsthal quaternions [16]
1 1 1 1 3 Fibonacci octonions [11]
a b 1 1 3 Biperiodic Fibonacci octonions [22]
k k 1 1 3 k−Fibonacci octonions
2 2 1 1 3 Pell octonions [15]
1 1 2 2 3 Jacobsthal octonions [4]
1 1 1 1 4 Fibonacci sedenions [2]
a b 1 1 4 Biperiodic Fibonacci sedenions
k k 1 1 4 k−Fibonacci sedenions
2 2 1 1 4 Pell sedenions
1 1 2 2 4 Jacobsthal sedenions

Table 1. The modified generalized Fibonacci 2k−ions

Theorem 2.1. The generating function for the modified generalized Fibonacci 2k−ion Θn is

G(t) =
Θ0 + (Θ1 − bΘ0) t+ (a− b)R1(t) + (c− d)R2(t)

1− bt− dt2
, (12)

where

R1(t) = e0tf(t) +
N−1∑
l=1

el

f(t)−
∑b l+1

2 c
s=1 Q2s−1t

2s−1

tl−1


R2(t) =

2∑
l=0

elt
2−lh(t) +

N−1∑
l=3

el

h(t)−
∑b l−1

2 c
s=1 Q2st

2s

tl−2


f(t) =

t− ct3

1− (ab+ d+ c) t2 + cdt4
,

h(t) =
at2

1− (ab+ d+ c) t2 + cdt4
.

Proof. We use formal power series representation in order to find the generating function of Θm.
Now we define

G(t) =
∞∑
m=0

Θmt
m = Θ0 + Θ1t+

∞∑
m=2

Θmt
m. (13)

Note that,

btG(t) =
∞∑
m=0

bΘmt
m+1 =

∞∑
m=1

bΘm−1t
m = btΘ0 +

∞∑
m=2

bΘm−1t
m (14)
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and

dt2G(t) =
∞∑
m=0

dΘmt
m+2 =

∞∑
m=2

dΘm−2t
m. (15)

SinceQn satisfies the recurrence relationsQ2m=aQ2m−1+cQ2m−2 andQ2m+1=bQ2m+dQ2m−1,
we obtain(

1−bt− dt2
)
G(t)

= Θ0 + (Θ1 − bΘ0) t+
∞∑
m=2

(Θm − bΘm−1 − dΘm−2) t
m

= Θ0 + (Θ1 − bΘ0) t

+ e0

(
(a− b)t

∞∑
m=1

Q2m−1t
2m−1 + (c− d)t2

∞∑
m=1

Q2m−2t
2m−2

)

+ e1

(
(a− b)

∞∑
m=2

Q2m−1t
2m−1 + (c− d)t

∞∑
m=2

Q2m−2t
2m−2

)

+ e2

((
a− b
t

) ∞∑
m=2

Q2m−1t
2m−1 + (c− d)

∞∑
m=2

Q2m−2t
2m−2

)

+ e3

((
a− b
t2

) ∞∑
m=3

Q2m−1t
2m−1 +

(
c− d
t

) ∞∑
m=3

Q2m−2t
2m−2

)
+ · · ·+

+ eN−1

(a− b
tN−2

) ∞∑
m=bN+2

2 c
Q2m−1t

2m−1 +

(
c− d
tN−3

) ∞∑
m=bN+2

2 c
Q2m−2t

2m−2


= Θ0 + (Θ1 − bΘ0) t

+
N−1∑
l=0

el

(a− b
tl−1

) ∞∑
m=b l+3

2 c
Q2m−1t

2m−1 +

(
c− d
tl−2

) ∞∑
m=b l+3

2 c
Q2m−2t

2m−2


= Θ0 + (Θ1 − bΘ0) t

+ e0
(
(a− b) tf(t) + (c− d) t2h(t)

)
+ e1 ((a− b) (f(t)−Q1t) + (c− d) th(t))

+ e2

((
a− b
t

)
(f(t)−Q1t) + (c− d)h(t)

)
+ e3

((
a− b
t2

)(
f(t)−Q1t−Q3t

3
)

+

(
c− d
t

)(
h(t)−Q2t

2
))

+ · · ·+

+ eN−1

((
a− b
tN−2

))(
f(t)−Q1t−Q3t

3 −Q5t
5 − · · · −QN−1−ξ(N)t

N−1−ξ(N)
)

+ eN−1

((
c− d
tN−3

))(
h(t)−Q2t

2 −Q4t
4 −Q6t

6 − · · · −QN−3+ξ(N−1)t
N−3+ξ(N−1))

= Θ0 + (Θ1 − bΘ0) t+ (a− b)R1(t) + (c− d)R2(t),
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where

R1(t) = e0tf(t) +
N−1∑
l=1

el

f(t)−
∑b l+1

2 c
s=1 Q2s−1t

2s−1

tl−1


R2(t) =

2∑
l=0

elt
2−lh(t) +

N−1∑
l=3

el

h(t)−
∑b l−1

2 c
s=1 Q2st

2s

tl−2


f(t) =

∞∑
m=1

Q2m−1t
2m−1

h(t) =
∞∑
m=1

Q2m−2t
2m−2.

On the other hand, the modified generalized Fibonacci numbers satisfy

Q2m−1 = bQ2m−2 + dQ2m−3

= b (aQ2m−3 + cQ2m−4) + dQ2m−3

= (ab+ d)Q2m−3 + bcQ2m−4

= (ab+ d)Q2m−3 + cQ2m−3 − cdQ2m−5

= (ab+ d+ c)Q2m−3 − cdQ2m−5, (16)

and

Q2m−2 = aQ2m−3 + cQ2m−4

= a (bQ2m−4 + dQ2m−5) + cQ2m−4

= (ab+ c)Q2m−4 + adQ2m−5

= (ab+ c)Q2m−4 + dQ2m−4 − cdQ2m−6

= (ab+ d+ c)Q2m−4 − cdQ2m−6. (17)

Using (16) and (17), we obtain(
1− (ab+ d+ c) t2 + cdt4

)
f(t) =t+ (ab+ d) t3 − (ab+ d+ c) t3

+
∞∑
m=3

(Q2m−1 − (ab+ d+ c)Q2m−3 + cdQ2m−5) t
2m−1,

and(
1− (ab+ d+ c) t2 + cdt4

)
h(t) = at2 +

∞∑
m=3

(Q2m−2 − (ab+ d+ c)Q2m−4 + cdQ2m−6) t
2m−2.

Rearranging the above expressions, we get

f(t) =
t− ct3

1− (ab+ d+ c) t2 + cdt4

and

h(t) =
at2

1− (ab+ d+ c) t2 + cdt4
.
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Therefore, by using f(t), h(t), R1(t) and R2(t), we obtain the generating function of Θn as:

G(t) =
Θ0 + (Θ1 − bΘ0) t+ (a− b)R1(t) + (c− d)R2(t)

1− bt− dt2
. (18)

This completes the proof.

Now, we derive the Binet formula of the modified generalized Fibonacci 2k−ion by the help
of the Binet formula of Qn.

Theorem 2.2. For n ∈ N0, the Binet formula for the modified generalized Fibonacci 2k−ion is

Θn =
1

(ab)b
n
2
c
αξ(n)α

bn
2
c (α+ d− c)n−b

n
2
c − βξ(n)βb

n
2
c (β + d− c)n−b

n
2
c

α− β
, (19)

where

αξ(n) =
N−1∑
l=0

aξ(l+1−ξ(n))

(ab)b
l+ξ(n)

2
c

(α + d− c)b
l+1−ξ(n)

2
c αb

l+ξ(n)
2
cel

and

βξ(n) =
N−1∑
l=0

aξ(l+1−ξ(n))

(ab)b
l+ξ(n)

2
c

(β + d− c)b
l+1−ξ(n)

2
c βb

l+ξ(n)
2
cel.

Proof. By using the Binet formula of the modified generalized Fibonacci sequence, we can write

Θ2n =
N−1∑
l=0

Q2n+lel

= e0
a

(ab)n

(
αn (α + d− c)n − βn (β + d− c)n

α− β

)
+ e1

1

(ab)n

(
αn (α + d− c)n+1 − βn (β + d− c)n+1

α− β

)

+ e2
a

(ab)n+1

(
αn+1 (α + d− c)n+1 − βn+1 (β + d− c)n+1

α− β

)

+ e3
1

(ab)n+1

(
αn+1 (α + d− c)n+2 − βn+1 (β + d− c)n+2

α− β

)
+ . . .

+ eN−2
a

(ab)n+
N−2

2

(
αn+

N−2
2 (α + d− c)n+

N−2
2 − βn+N−2

2 (β + d− c)n+
N−2

2

α− β

)

+ eN−1
1

(ab)n+
N−2

2

(
αn+

N−2
2 (α + d− c)n+

N
2 − βn+N−2

2 (β + d− c)n+
N
2

α− β

)

Θ2n =
1

(ab)n
αn (α + d− c)n

α− β
×

(
e0a+ e1(α + d− c) + e2

(
aα(α + d− c)

ab

)

+ e3

(
α(α + d− c)2

ab

)
+ · · ·+ eN−2

(
aα

N−2
2 (α + d− c)N−2

2

(ab)
N−2

2

)
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+ eN−1

(
α
N−2

2 (α + d− c)N2
(ab)

N−2
2

))

− 1

(ab)n
βn (β + d− c)n

α− β
×

(
e0a+ e1(β + d− c) + e2

(
aβ(β + d− c)

ab

)

+ e3

(
β(β + d− c)2

ab

)
+ · · ·+ eN−2

(
aβ

N−2
2 (β + d− c)N−2

2

(ab)
N−2

2

)

+ eN−1

(
β
N−2

2 (β + d− c)N2
(ab)

N−2
2

))

=
1

(ab)n
α0α

n (α + d− c)n − β0βn (β + d− c)n

α− β
, (20)

where

α0 =
N−1∑
l=0

aξ(l+1)

(ab)b
l
2
c

(α + d− c)b
l+1
2
c αb

l
2
cel

and

β0 =
N−1∑
l=0

aξ(l+1)

(ab)b
l
2
c

(β + d− c)b
l+1
2
c βb

l
2
cel.

Similarly, we can obtain

Θ2n+1 =
1

(ab)n
α1α

n (α + d− c)n+1 − β1βn (β + d− c)n+1

α− β
, (21)

where

α1 =
N−1∑
l=0

aξ(l)

(ab)b
l+1
2
c

(α + d− c)b
l
2
c αb

l+1
2
cel

and

β1 =
N−1∑
l=0

aξ(l)

(ab)b
l+1
2
c

(β + d− c)b
l
2
c βb

l+1
2
cel.

Combining the equations (20) and (21), we get

Θn =
1

(ab)b
n
2
c
αξ(n)α

bn
2
c (α + d− c)n−b

n
2
c − βξ(n)βb

n
2
c (β + d− c)n−b

n
2
c

α− β
,

where

αξ(n) =
N−1∑
l=0

aξ(l+1−ξ(n))

(ab)b
l+ξ(n)

2
c

(α + d− c)b
l+1−ξ(n)

2
c αb

l+ξ(n)
2
cel

and

βξ(n) =
N−1∑
l=0

aξ(l+1−ξ(n))

(ab)b
l+ξ(n)

2
c

(β + d− c)b
l+1−ξ(n)

2
c βb

l+ξ(n)
2
cel.

In the following theorem we derive the Catalan’s identity with the help of the Binet formula of
Qn. Furthermore, we give the Cassini’s identity which is the special case of the Catalan’s identity
for r = 1.

180



Theorem 2.3 (Catalan’s identity). For n, r ∈ N0 and r ≤ n, we have the identity

Θ2(n+r)+ξ(i)Θ2(n−r)+ξ(i) −Θ2
2n+ξ(i)

=
(−c)ξ(i)

(ab)2r (α− β)2

×

[
αξ(i)βξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
α + d

β + d

)r)

+βξ(i)αξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
β + d

α + d

)r)]
,

where αξ(i) and βξ(i) are defined in Theorem 2.2 and i ∈ {0, 1}.

Proof. By using the Binet formula of the modified generalized Fibonacci 2k−ion, for i = 0, we
get

Θ2(n+r)Θ2(n−r) −Θ2
2n

=

(
1

(ab)n+r
α0α

n+r (α + d− c)n+r − β0βn+r (β + d− c)n+r

α− β

)

×

(
1

(ab)n−r
α0α

n−r (α + d− c)n−r − β0βn−r (β + d− c)n−r

α− β

)

−

(
1

(ab)n
α0α

n (α + d− c)n − β0βn (β + d− c)n

α− β

)2

=
1

(ab)2n(α− β)2

(
α0β0

(
αnβn(α + d− c)n(β + d− c)n

− αn+rβn−r(α + d− c)n+r(β + d− c)n−r
)

+ β0α0

(
αnβn(α + d− c)n(β + d− c)n

− αn−rβn+r(α + d− c)n−r(β + d− c)n+r
))

=
1

(ab)2r (α− β)2

(
α0β0

(
(ab)2r(cd)n − (ab)2r(cd)n

(
α + d

β + d

)r)

+ β0α0

(
(ab)2r(cd)n − (ab)2r(cd)n

(
β + d

α + d

)r))
. (22)

Similarly, for i = 1, we get

Θ2(n+r)+1Θ2(n−r)+1 −Θ2
2n+1

= − c

(ab)2r (α− β)2

(
α1β1

(
(ab)2r+1(cd)n − (ab)2r+1(cd)n

(
α + d

β + d

)r)

+β1α1

(
(ab)2r+1(cd)n − (ab)2r+1(cd)n

(
β + d

α + d

)r))
. (23)
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By combining the equations (22) and (23), we obtain

Θ2(n+r)+ξ(i)Θ2(n−r)+ξ(i) −Θ2
2n+ξ(i)

=
(−c)ξ(i)

(ab)2r (α− β)2

×

[
αξ(i)βξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
α + d

β + d

)r)

+βξ(i)αξ(i)

(
(ab)2r+ξ(i)(cd)n − (ab)2r+ξ(i)(cd)n

(
β + d

α + d

)r)]
,

where αξ(i) and βξ(i) are defined in Theorem 2.2 and i ∈ {0, 1}.

Corollary 2.3.1 (Cassini’s identity). For n ∈ N0, we have the identity

Θ2(n+1)+ξ(i)Θ2(n−1)+ξ(i) −Θ2
2n+ξ(i)

=
(−c)ξ(i)

(ab)2 (α− β)2

×

[
αξ(i)βξ(i)

(
(ab)2+ξ(i)(cd)n − (ab)2+ξ(i)(cd)n

(
α + d

β + d

))

+βξ(i)αξ(i)

(
(ab)2+ξ(i)(cd)n − (ab)2+ξ(i)(cd)n

(
β + d

α + d

))]
,

where αξ(i) and βξ(i) are defined in Theorem 2.2 and i ∈ {0, 1}.

3 Modified generalized Lucas 2k−ions

In this section, we define the modified generalized Lucas 2k−ion ϑn. We give the generating
function, the Binet formula and some important identities for this 2k−ion. The theorems and
results in this section can be proven similar to the results in Section 2. Hence, we omit the proofs.

Definition 2. For n ∈ N0, the modified generalized Lucas 2k−ion ϑn is defined by

ϑn =
N−1∑
l=0

Un+lel, (24)

where Un is the modified generalized Lucas numbers that is defined in (4).

It is clear from the following Table 2 that the modified generalized Lucas 2k−ions are the
generalization of many studies in the literature for the special cases of a, b, c, d and k.
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a b c d k Modified Generalized Lucas 2k−ions
1 1 1 1 2 Lucas quaternions [10]
a b 1 1 2 Biperiodic Lucas quaternions [18]
k k 1 1 2 k−Lucas quaternions [14]
1 1 1 1 3 Lucas octonions [11]
a b 1 1 3 Biperiodic Lucas octonions [23]
k k 1 1 3 k−Lucas octonions
1 1 1 1 4 Lucas sedenions [2]
a b 1 1 4 Biperiodic Lucas sedenions
k k 1 1 4 k−Lucas sedenions

Table 2. The modified generalized Lucas 2k−ions

Theorem 3.1. The generating function for the modified generalized Lucas 2k−ion ϑn is

L(t) =
ϑ0 + (ϑ1 − aϑ0) t+ (b− a)R1(t) + (d− c)R2(t)

1− at− ct2
, (25)

where

R1(t) = e0tf(t) +
N−1∑
l=1

el

f(t)−
∑b l+1

2 c
s=1 U2s−1t

2s−1

tl−1


R2(t) =

2∑
l=0

elt
2−lh(t)−

2∑
l=1

elt
2−lU0 +

N−1∑
l=3

el

h(t)−
∑b l−1

2 c
s=0 U2st

2s

tl−2


f(t) =

at+ at3

1− (ab+ d+ c) t2 + cdt4
,

h(t) =

(
d+1
d

)
+ (ab+ d+ 1)t2 − (ab+ d+ c)

(
d+1
d

)
t2

1− (ab+ d+ c) t2 + cdt4
.

Proof. Proof can be made similarly to Theorem (2.1).

Theorem 3.2. For n ∈ N0, the Binet formula for the modified generalized Lucas 2k−ion is

ϑn =
1

(ab)b
n−1
2
c

(
α?ξ(n)(α + d+ 1)αb

n−1
2
c (α + d− c)b

n
2
c

α− β

−
β?ξ(n)(β + d+ 1)βb

n−1
2
c (β + d− c)b

n
2
c

α− β

)
, (26)

where

α?ξ(n) =
N−1∑
l=0

aξ(l+ξ(n))

(ab)b
l+1−ξ(n)

2
c

(α + d− c)b
l+ξ(n)

2
c αb

l+1−ξ(n)
2

cel

and

β?ξ(n) =
N−1∑
l=0

aξ(l+ξ(n))

(ab)b
l+1−ξ(n)

2
c

(β + d− c)b
l+ξ(n)

2
c βb

l+1−ξ(n)
2

cel.

Proof. The proof can be made similarly to Theorem 2.2.
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In the following theorem we derive the Catalan’s identity with the help of the Binet formula of
Un. Furthermore, we give the Cassini’s identity which is the special case of the Catalan’s identity
for r = 1.

Theorem 3.3 (Catalan’s identity). For n, r ∈ N0 and r ≤ n, we have the identity

ϑ2(n+r)+ξ(i)ϑ2(n−r)+ξ(i) − ϑ2
2n+ξ(i) =

(−c)1−ξ(i)(α + d+ 1)(β + d+ 1)

(ab)2r (α− β)2

×

[
α?ξ(i)β

?
ξ(i)

(
(ab)2r+1−ξ(i)(cd)n−1+ξ(i) − (ab)2r+1−ξ(i)(cd)n−1+ξ(i)

(
α + d

β + d

)r)

+ β?ξ(i)α
?
ξ(i)

(
(ab)2r+1−ξ(i)(cd)n−1+ξ(i) − (ab)2r+1−ξ(i)(cd)n−1+ξ(i)

(
β + d

α + d

)r)]
,

where α?ξ(i) and β?ξ(i) are defined in Theorem 3.2 and i ∈ {0, 1}.

Proof. The proof can be made similarly to Theorem 2.3.

Corollary 3.3.1 (Cassini’s identity). For n ∈ N0, we have the identity

ϑ2(n+1)+ξ(i)ϑ2(n−1)+ξ(i) − ϑ2
2n+ξ(i) =

(−c)1−ξ(i)(α + d+ 1)(β + d+ 1)

(ab)2 (α− β)2

×

[
α?ξ(i)β

?
ξ(i)

(
(ab)3−ξ(i)(cd)n−1+ξ(i) − (ab)3−ξ(i)(cd)n−1+ξ(i)

(
α + d

β + d

))

+ β?ξ(i)α
?
ξ(i)

(
(ab)3−ξ(i)(cd)n−1+ξ(i) − (ab)3−ξ(i)(cd)n−1+ξ(i)

(
β + d

α + d

))]
,

where α?ξ(i) and β?ξ(i) are defined in Theorem 3.2 and i ∈ {0, 1}.

Theorem 3.4. Let n ≥ 1 be integer. Then the modified generalized Lucas 2k−ion satisfies the
relation

ϑn = Θn−1 + Θn+1. (27)

Proof. By considering the identity Un = Qn−1 + Qn+1, which is given by [1, Theorem 20], we
can easily obtain the desired result.

4 Conclusion

In this paper, we define the modified generalized Fibonacci and modified generalized Lucas
2k−ions. Moreover, we give the Catalan’s identity and Cassini’s identity. Since our study both
generalization of several studies in the literature and includes some new results, it contributes to
the literature by providing essential information on the generalization of the 2k−ions.
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