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Abstract: We prove that m2 − pk is not a square, if n = pkm2 is an odd perfect number with
special prime p, under the hypothesis that σ(m2)/pk is a square. We are also able to prove the
same assertion without this hypothesis. We also show that this hypothesis is incompatible with
the set of assumptions

(
m2 − pk is a power of two

)
∧
(
p is a Fermat prime

)
. We end by stating

some conjectures.
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1 Introduction

Let σ(x) denote the sum of the divisors of x ∈ N, the set of positive integers. Denote the
deficiency [13] of x by D(x) = 2x − σ(x), and the sum of the aliquot divisors [14] of x by
s(x) = σ(x)− x. Note that we have the identity D(x) + s(x) = x.

If a positive integer n is odd and σ(n) = 2n, then n is said to be an odd perfect number [17].
Euler proved that an odd perfect number, if one exists, must have the form n = pkm2, where p is
the special prime satisfying p ≡ k ≡ 1 (mod 4) and gcd(p,m) = 1.
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Descartes, Frenicle, and subsequently Sorli conjectured that k = 1 always holds [1]. Sorli
conjectured k = 1 after testing large numbers with eight distinct prime factors for perfection
[15]. Dris [7], and Dris and Tejada [12], call this conjecture as the Descartes–Frenicle–Sorli
Conjecture, and derive conditions equivalent to k = 1.

Since m is odd, then m2 ≡ 1 (mod 4). Likewise, p ≡ k ≡ 1 (mod 4), which implies that
pk ≡ 1 (mod 4). It follows that m2 − pk ≡ 0 (mod 4). Since

pk <
2m2

3

(by a result of Dris [8]), we know a priori that

m2 − pk > pk

2

so that we are sure that m2 − pk > 0. In particular, since m2 − pk ≡ 0 (mod 4), we infer that
m2 − pk ≥ 4.

The index i(p) of the odd perfect number n = pkm2 at the prime p is then equal to

i(p) :=
σ(m2)

pk
=

m2

σ(pk)/2
=
D(m2)

s(pk)
=

s(m2)

D(pk)/2
= gcd(m2, σ(m2)).

The term index of an odd perfect number (at a certain prime) was coined by Chen and Chen [4].
In this paper, we will refer continually to the following result by Broughan et al., which we

will state without proof:

Lemma 1.1 ([2, Lemma 8, p. 7]). If n = pkm2 is an odd perfect number and σ(m2)/pk is a
square, then k = 1 holds.

2 Summary

We now present a summary of our results in this section.
The first proposition allows us to rule out m2 − pk = s2 (where s ≥ 2), under the assumption

that σ(m2)/pk is a square.

Theorem 2.1. If n = pkm2 is an odd perfect number and σ(m2)/pk is a square, then m2 − pk is
not a square.

In the second proposition, we remove the requirement that σ(m2)/pk is a square and prove
unconditionally that m2 − pk is not a square, with some help from MSE user FredH (https:
//math.stackexchange.com/users/82711).

Theorem 2.2. If n = pkm2 is an odd perfect number, then m2 − pk is not a square.

Finally, in the third proposition, we use the hypothesis that σ(m2)/pk is a square to prove that
m2 − pk is not a power of two when p is a Fermat prime.

Theorem 2.3. If n = pkm2 is an odd perfect number and σ(m2)/pk is a square, then either
m2 − pk 6= 22t+1 for integers t ≥ 1 or p is not a Fermat prime.
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3 A proof of Theorem 2.1

Suppose that n = pkm2 is an odd perfect number with special prime p, and that m2 − pk = s2,
for some s ≥ 2.

Then m2 − s2 = pk = (m+ s)(m− s), so that we obtainpk−v = m+ s

pv = m− s

where v is a positive integer satisfying 0 ≤ v ≤ (k − 1)/2. It follows that we have the systempk−v + pv = pv(pk−2v + 1) = 2m

pk−v − pv = pv(pk−2v − 1) = 2s

Since p is a prime satisfying p ≡ 1 (mod 4) and gcd(p,m) = 1, from the first equation it
follows that v = 0, so that we obtain pk + 1 = 2m

pk − 1 = 2s
,

which yields m =
pk + 1

2
< pk.

Lastly, note that the inequality p < m has been proved by Brown [3], Dris [6], and Starni [16],
so that we are faced with the inequality p < m < pk. This implies that k > 1.

However, by assumption we have that σ(m2)/pk is a square. This implies by Lemma 1.1 that
k = 1, a clear contradiction.

This ends the proof of Theorem 2.1.

Remark 3.1. The following shorter proof for Theorem 2.1 was communicated by a referee.
First, since σ(m2)/pk is a square by assumption, then k = 1 by Lemma 1.1.
Then m2 − pk = m2 − p, and it is straightforward to show that m2 − p = s2 for s ≥ 2 is

impossible: This would imply m = (p+ 1)/2, which contradicts p < m.

4 A proof of Theorem 2.2

The following proof is lifted verbatim from [10]:
Here’s a way to finish the proof without appealing to any conjecture.
If n = pkm2 is a perfect number with gcd(p,m) = 1, we have σ(pk)σ(m2) = 2pkm2. We

know that σ(pk) = (pk+1 − 1)/(p− 1) and we have shown in Theorem 2.1 that m = (pk + 1)/2,
so we can conclude that

2(pk+1 − 1)σ(m2) = (p− 1)pk(pk + 1)2. (∗)

Consider the GCD of pk+1 − 1 with the right-hand side:

gcd
(
pk+1 − 1, (p− 1)pk(pk + 1)2

)
≤ (p− 1) gcd(pk+1 − 1, pk + 1)2,

since pk is coprime to pk+1 − 1.
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Noticing that pk+1−1 = p(pk+1)−(p+1), we find gcd(pk+1−1, pk+1) = gcd(p+1, pk+1),
which is p+ 1 because k is odd. Thus gcd(pk+1 − 1, (p− 1)pk(pk + 1)2) ≤ (p− 1)(p+ 1)2.

Since k ≡ 1 (mod 4) and we have shown in Theorem 2.1 that k > 1, we have k ≥ 5. If (∗)
holds, the left-hand side of the inequality must be pk+1− 1, which is then greater than p5. But the
right-hand side is less than p4, so this is impossible.

This completes the proof of Theorem 2.2.

5 A proof of Theorem 2.3

Suppose that n = pkm2 is an odd perfect number with special prime p, and that σ(m2)/pk is a
square. We show that the assumption

(
m2 − pk = 22t+1, t ≥ 1

)
∧
(
p is a Fermat prime

)
shall

contradict Lemma 1.1.
(The following proof is adapted from the proof of Theorem 5 in [11].)
Assume to the contrary that m2 − pk = 22t+1 for some integer t ≥ 1, and that p is a Fermat

prime. This means that p = 2r + 1 for some integer r ≥ 2. Since p is a Fermat prime, we have
r = 2l, for some integer l ≥ 1. In other words, p = 22

l
+ 1 is a Fermat prime.

Now, note that it is trivial to prove that

3 | 22l−1 + 1 =
p+ 1

2
.

By assumption, σ(m2)/pk is a square, which implies that k = 1. It follows that

m2 − p = m2 − (22
l

+ 1) = 22t+1

from which we get m2 − 22
l
= 22t+1 + 1, which implies that 3 |

(
m2 − 22

l)
. This means that

3 - m2, since l ≥ 1 and 3 - 22l .
But we know that 3 | (p+ 1)/2 | m2. This contradicts 3 - m2.
This finishes the proof of Theorem 2.3.

Remark 5.1. The divisibility constraint (p+ 1)/2 | m2 is true in general since

(p+ 1) = σ(p) | σ(pk) | 2m2

follows from k ≡ 1 (mod 4), gcd(pk, σ(pk)) = 1, and the equation

σ(pk)σ(m2) = σ(pkm2) = σ(n) = 2n = 2pkm2.

6 Concluding remarks and future research

Actually, more stringent conditions on m2− pk can be derived when σ(m2)/pk is a square. Since
σ(m2)/pk is always odd, and by assumption it is a square, then since p ≡ k ≡ 1 (mod 4) holds,
we know that σ(m2) ≡ 1 (mod 4) also holds. This last congruence is known to hold if and only
if p ≡ k (mod 8) (see [5, 9]). Since by assumption σ(m2)/pk is a square, we obtain k = 1

by Lemma 1.1. In particular, we know that pk ≡ 1 (mod 8). But we also know that m is odd.
Therefore, we infer that m2 ≡ 1 (mod 8). It follows that m2 − pk ≡ 0 (mod 8).

What follows is an elementary attempt to rule out m2 − pk = 8.
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Lemma 6.1. If n = pkm2 is an odd perfect number with special prime p and σ(m2)/pk is a
square, then m2 − pk 6= 8.

Proof. Let n = pkm2 be an odd perfect number with special prime p. Suppose that σ(m2)/pk is
a square.

Assume to the contrary that m2 − pk = 8. Subtract 9 from both sides, then transfer pk to the
right-hand side:

m2 − 9 = pk − 1,

(m+ 3)(m− 3) = pk − 1.

This last equation implies that, in general, we have the divisibility constraint (m+3) | (pk−1).
This divisibility constraint then implies that (m + 3) ≤ (pk − 1), from which we obtain

m < m+ 4 ≤ pk.

Lastly, note that the inequality p < m has been proved by Brown [3], Dris [6], and Starni [16],
so that we are faced with the inequality p < m < pk. But this contradicts Lemma 1.1, so we are
done.

This ends the proof of Lemma 6.1.

We end this section with the following conjectures, which we leave for other researchers to
investigate.

Conjecture 6.2. If n = pkm2 is an odd perfect number and σ(m2)/pk is a square, then m2 − pk

is not a cube.

Conjecture 6.3. If n = pkm2 is an odd perfect number, then m2 − pk is not a cube.
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