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Abstract: The 3x + 1 conjecture pertains to iteration of the function T defined by T (x) = x/2

if x is even and T (x) = (3x + 1)/2 if x is odd. The conjecture asserts that the trajectory of
every positive integer eventually reaches the cycle (2, 1). We show that the essential dynamics of
T -trajectories can be more clearly understood by restricting attention to numbers congruent to 2

(mod 3). This approach leads to an equivalent conjecture for an underlying function TR whose
iterates eliminate many extraneous features of T -trajectories. We show that the function TR that
governs the refined conjecture has particularly simple mapping properties in terms of partitions
of the set of integers, properties that have no parallel in the classical formulation of the conjec-
ture. We then use those properties to obtain a new characterization of T -trajectories and we show
that the dynamics of the 3x + 1 problem can be reduced to an iteration involving only numbers
congruent to 2 or 8 (mod 9).
Keywords: 3x+ 1 problem, Collatz conjecture.
2010 Mathematics Subject Classification: 11B83.

1 Introduction

The 3x+1 problem pertains to iteration of the following function defined on the set Z of integers:

T (n) =


n

2
, if n ≡ 0 (mod 2),

3n+ 1

2
, if n ≡ 1 (mod 2).

We adopt the notation T 0(n) = n and T k+1(n) = T (T k(n)) for k = 0, 1, 2, . . .. We refer to

the sequence of iterates (T k(n))k≥0 as the T -trajectory of n, with similar terminology for other
functions.
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The 3x + 1 conjecture states that, for every positive integer n, the T -trajectory of n

eventually reaches the cycle (2, 1). The 3x + 1 problem, to either prove or disprove this
conjecture, remains unsolved after decades of attention and continues to be a problem of great in-
terest. Lagarias [1] provides a comprehensive survey of the problem, with extensive
references and full text of some of the historically most important related articles.

In what follows, we show that the standard formulation of the conjecture in terms of T in-
herently involves extraneous features that obscure important properties of T -trajectories. We
present a modified form of the conjecture that eliminates these unnecessary features and, as a
consequence, reveals interesting new structure in the underlying dynamics.

Following some preliminary observations, we derive the refined conjecture for a modified
function TR in Section 2. In Section 3 we explore advantages of the new form of the conjecture.
An immediate consequence is that the refined conjecture involves shorter, smoother trajectories.
More significantly, however, the modified function has special mapping properties that are par-
ticularly easy to describe and which have no known equivalent in the traditional form of the
conjecture. We extend those properties in Section 4 and then express the results back in terms of
T , showing that T -trajectories are dominated by numbers congruent to 2 or 8 (mod 9). We then
construct an accelerated iteration that effectively involves only those numbers.

2 Refining the 3x + 1 iteration

We begin with two simple facts that follow from the definition of T . Our first proposition is not
new, but is important as an initial illustration of how the classical 3x+ 1 conjecture incorporates
spurious features that mask the essential dynamics of the problem.

Proposition 2.1. The T -trajectory of any nonzero integer n consists of finitely many numbers
congruent to 0 (mod 3) followed only by numbers congruent to 1 or 2 (mod 3).

Proof. We may write any nonzero n in the form n = m2k, with m odd and k ≥ 0. The first k
iterates of n are then obtained by divisions by 2, so these numbers are either all congruent to 0

(mod 3) or all not congruent to 0 (mod 3). The kth iterate is m, which is odd. But no iterate of
an odd number is divisible by 3, since 3n + 1 is never divisible by 3 and such divisibility is not
affected by subsequent divisions by 2.

Numbers divisible by 3 are therefore transient elements of the T -trajectory of any nonzero n,
appearing at most as initial terms of such a trajectory. For the purpose of exploring long-term
behavior of trajectories, it is then beneficial to ignore these transient numbers and restrict our
attention only to numbers congruent to 1 or 2 (mod 3).

Proposition 2.2. If n ≡ 1 (mod 3), then T (n) ≡ 2 (mod 3).

Proof. If n ≡ 1 (mod 3), then n is of the form 6j + 1 or 6j + 4. But T (6j + 1) = 9j + 2 and
T (6j + 4) = 3j + 2, each of which is congruent to 2 (mod 3).

We refer to numbers congruent to 1 (mod 3) as isolated since no two such numbers appear
consecutively in a T -trajectory. This is a term we will use again in subsequent sections.
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Proposition 2.2 suggests that, in addition to disregarding the transient numbers divisible by
3, further simplification of the dynamics may be obtained by advancing the iteration one step
past numbers congruent to 1 (mod 3). This requires the additional observation that the only
predecessor of 3n+ 1 in a T -trajectory is the even number 6n+ 2, since any odd number 2j + 1

iterates to 3j+2 6∈ {3n+1}. For brevity, we also introduce the notation [j]m to denote the set of
integers congruent to j (mod m).

Definition 2.3. Let F : [2]3 → [2]3 be defined by

F (n) =

{
T (n), if n ≡ 5 (mod 6)

T 2(n), if n ≡ 2 (mod 6).
(1)

For n ∈ [2]3, the F -trajectory of n is then the same as the T -trajectory of n with numbers
congruent to 1 (mod 3) removed.

Lemma 2.4. The 3x + 1 conjecture is true if and only if the F -trajectory of any positive integer
in [2]3 converges to 2.

Proof. Suppose the 3x + 1 conjecture holds, so that the T -trajectory of any positive n ∈ [2]3
eventually reaches 2. The F -trajectory of n therefore also reaches 2, which is a fixed point
of F .

Conversely, suppose the F -trajectory of any positive integer in [2]3 reaches 2. If n is an
arbitrary positive integer, then by Propositions 2.1 and 2.2, there is some k such that
T k(n) ∈ [2]3. Since the F -trajectory of T k(n) consists of further iterations by T , the
T -trajectory of T k(n) eventually reaches 2, which says that the T -trajectory of n reaches 2.

Having expressed the conjecture in terms only of integers congruent to 2 (mod 3), it is now
possible to convert once again to an iteration on all of Z by means of a conjugacy with the
function S(x) = 3x + 2. As we show below, this leads to the following reformulation of the
3x+ 1 conjecture.

Conjecture 2.5 (The refined 3x+ 1 conjecture). Let TR : Z→ Z be defined by

TR(n) =



3n

4
, if n ≡ 0 (mod 4),

n− 2

4
, if n ≡ 2 (mod 4),

3n+ 1

2
, if n ≡ 1 (mod 2) .

(2)

Then for every integer n ≥ 0, the TR-trajectory of n converges to 0.

Theorem 2.6. The 3x+ 1 conjecture is true if and only if the refined 3x+ 1 conjecture is true.

Proof. Let S : Z→ [2]3 be defined by S(n) = 3n+2, so S−1(n) =
n− 2

3
. Define G : Z→ Z by
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G(n) = (S−1 ◦ F ◦ S)(n).

Then the G-trajectory of every n ≥ 0 converges to 0 if and only if the F -trajectory of every
positive S(n) ∈ [2]3 converges to S(0) = 2. By Lemma 2.4, this, in turn, is equivalent to the
3x + 1 conjecture since every positive element of [2]3 is equal to S(n) for some n ≥ 0. We will
show that G = TR as defined above.

First, if n ≡ 0 (mod 4), n = 4j, then

G(n) = S−1 (F (3(4j) + 2))

= S−1 (F (12j + 2))

= S−1
(
T 2(12j + 2)

)
= S−1(9j + 2)

= 3j

=
3n

4
.

Next, if n ≡ 2 (mod 4), n = 4j + 2, then

G(n) = S−1 (F (3(4j + 2) + 2))

= S−1 (F (12j + 8))

= S−1
(
T 2(12j + 8)

)
= S−1(3j + 2)

= j

=
n− 2

4
.

Finally, if n ≡ 1 (mod 2), n = 2j + 1, then

G(n) = S−1 (F (3(2j + 1) + 2))

= S−1 (F (6j + 5))

= S−1 (T (6j + 5))

= S−1(9j + 8)

= 3j + 2

=
3n+ 1

2
.

3 Features of the refined 3x + 1 conjecture

By expressing the 3x + 1 conjecture in terms of TR instead of T , we have effectively filtered
out from T -trajectories the transient numbers divisible by 3 and the isolated numbers that are
congruent to 1 (mod 3). The following result for TR will be used later, and provides
an interesting analogue to Proposition 2.2 for T .
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Proposition 3.1. If n ≡ 1 (mod 3) , then TR(n) 6≡ 1 (mod 3).

Proof. If n ≡ 1 (mod 3), then n has the form 6j+1, 12j+4, or 12j+10. But TR(6j+1) = 9j+2 ≡
2 (mod 3), TR(12j + 4) = 9j + 3 ≡ 0 (mod 3), and TR(12j + 10) = 3j + 2 ≡ 2 (mod 3).

By Proposition 3.1, numbers congruent to 1 (mod 3) are isolated terms in TR-trajectories just
as they are in T -trajectories.

We now explore additional features of the refined mapping TR. In the subsequent section, we
will use these results to obtain new information about T -trajectories.

3.1 Smoothing of trajectories

From the proof of Theorem 2.6, we have

F (n) =
(
S ◦ TR ◦ S−1

)
(n), for n ≡ 2 (mod 3).

By iterating, it follows that

S
(
T k
R(n)

)
= F k (S(n)) , for k = 0, 1, 2, . . . , and n ∈ Z. (3)

So elements of a TR-trajectory (n, TR(n), . . .) are mapped by S to (S(n), F (S(n)), . . .). By
the definition of F , these are the elements of the T -trajectory of S(n) that are congruent to
2 (mod 3).

Example 3.2. Figure 1 illustrates graphically, for n = 65, both the standard T -trajectory and
the corresponding F -trajectory that is related to TR by conjugation with S. The terms of the
T -trajectory, with the elements of the F -trajectory in bold, are(

T k(65)
)
k>0

= (65,98, 49,74, 37,56, 28,14, 7,11,17,26, 13,20, 10,5,8, 4,2, 1,2, . . .) .
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Fig. 1. The classical trajectory (dotted) and the refined trajectory (solid) for n = 65.
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The corresponding TR-trajectory is(
T k
R(21)

)
k>0

= (21, 32, 24, 18, 4, 3, 5, 8, 6, 1, 2, 0, 0, . . .) .

The refined F -trajectory is shorter and smoother than the classical T -trajectory, eliminating
much oscillatory behavior. The removed numbers are congruent to 1 (mod 3) and so are either
of the form 6j + 1 with predecessor 12j + 2 and successor 9j + 2, or the form 6j + 4 with
predecessor 12j + 8 and successor 3j + 2. In either case the central number is less than the
mean of its predecessor and successor, so the removed portions of the graph of the T -trajectory
are always below the graph of the refined trajectory.

3.2 Mapping of a 5-partition to a 3-partition

We now show that the refined conjecture and associated function TR reveal new information about
3x+ 1 dynamics. Consider partitioning the integers into sets of numbers congruent to 1 (mod 2),
0 (mod 4) or 2 (mod 4). The latter set can be further partitioned into sets of numbers congruent
to 2, 6, or 10 (mod 12). This is useful since

TR(4j) = TR(12j + 2) = 3j,

TR(12j + 6) = 3j + 1,

TR(12j + 10) = TR(2j + 1) = 3j + 2.

(4)

We will find it convenient to rewrite such relationships using the notation

[b]a
f−→ [d]c

to indicate that f(aj + b) = cj + d for every integer j. The label on the arrow may be dropped
when the function f is clear from context.

With this notation, the results expressed in Equations (4) are represented in Figure 2. We see
that each of five partition subsets of Z is mapped element-wise to one of the congruence classes of
3. This easily described structure has no analogue in the classical problem, and it holds promise
of making the underlying dynamics of the 3x + 1 conjecture amenable to further analysis. We
describe one consequence of this structure in the next subsection.

Z = [0]4 ∪ [2]12 ∪ [6]12 ∪ [10]12 ∪ [1]2

[0]3 ∪ [1]3 ∪ [2]3 = Z

Fig. 2. A schematic of the refined 3x+ 1 mapping TR.

3.3 Symmetries in TR-iterates

The mapping property of TR as shown in Figure 2 suggests that further insights may be obtained
by iterating the congruence classes of 3 to themselves. We summarize the result of such a process
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in this section. Our analysis rests upon the following useful partition:

Z = [1]2 ∪ [0]2

= [1]2 ∪ [0]4 ∪ [2]4

= [1]2 ∪ [0]4 ∪ [6]8 ∪ [2]8

= [1]2 ∪ [0]4 ∪ [6]8 ∪ [2]16 ∪ [10]16

= [1]2 ∪ [0]4 ∪ [6]8 ∪ [2]16 ∪ [26]32 ∪ [10]32

= [1]2 ∪ [0]4 ∪ [6]8 ∪ [2]16 ∪ [26]32 ∪ [10]64 ∪ [42]64. (5)

We now advance the TR iteration according to the congruence classes in Equation (5). This gives
an accelerated iteration with special properties.

Define T ∗
R : Z→ Z by

T ∗
R(n) =


TR(n), if n ≡ 1 (mod 2) or n ≡ 0 (mod 4)

T 2
R (n), if n ≡ 6 (mod 8) or n ≡ 2 (mod 16)

T 3
R (n), if n ≡ 26 (mod 32), n ≡ 10 (mod 64) or n ≡ 42 (mod 64).

In order to better describe the mapping properties of T ∗
R, we first reorder the partition of

Equation (5) as follows:

Z = [0]4 ∪ [2]16 ∪ [10]64 ∪ [42]64 ∪ [26]32 ∪ [6]8 ∪ [1]2

We then partition each of these seven subsets into congruence classes (mod 3), to obtain

[0]3 = [0]12 ∪ [18]48 ∪ [138]192 ∪ [42]192 ∪ [90]96 ∪ [6]24 ∪ [3]6

[1]3 = [4]12 ∪ [34]48 ∪ [10]192 ∪ [106]192 ∪ [58]96 ∪ [22]24 ∪ [1]6

[2]3 = [8]12 ∪ [2]48 ∪ [74]192 ∪ [170]192 ∪ [26]96 ∪ [14]24 ∪ [5]6
Theorem 3.3. The function T ∗

R : Z → Z maps the congruence classes of 3 as shown in the
diagram below:

[0]3 = [0]12 ∪ [18]48 ∪ [138]192 ∪ [42]192 ∪ [90]96 ∪ [6]24 ∪ [3]6

[0]9 ∪ [3]9 ∪ [6]9 ∪ [0]3 ∪ [8]9 ∪ [2]9 ∪ [5]9

TR T 2
R T 3

R T 3
R T 3

R T 2
R TR

︸ ︷︷ ︸ ︸ ︷︷ ︸
[0]3 [2]3

(6a)

[1]3 = [4]12 ∪ [34]48 ∪ [10]192 ∪ [106]192 ∪ [58]96 ∪ [22]24 ∪ [1]6

[3]9 ∪ [6]9 ∪ [0]9 ∪ [1]3 ∪ [5]9 ∪ [8]9 ∪ [2]9

TR T 2
R T 3

R T 3
R T 3

R T 2
R TR

︸ ︷︷ ︸ ︸ ︷︷ ︸
[0]3 [2]3

(6b)
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[2]3 = [8]12 ∪ [2]48 ∪ [74]192 ∪ [170]192 ∪ [26]96 ∪ [14]24 ∪ [5]6

[6]9 ∪ [0]9 ∪ [3]9 ∪ [2]3 ∪ [2]9 ∪ [5]9 ∪ [8]9

TR T 2
R T 3

R T 3
R T 3

R T 2
R TR

︸ ︷︷ ︸ ︸ ︷︷ ︸
[0]3 [2]3

(6c)

Proof. The proof follows by verification of the individual mappings using the definition of TR

from Equation (2). As an example, to verify the third entry in (6c), we have

T 3
R(192j + 74) = T 2

R(48j + 18)

= TR(12j + 4)

= 9j + 3.

While we can express T ∗
R as a piecewise function1, the relationships displayed in (6a)–(6c) re-

veal interesting symmetries that are not apparent from a formula. For example, the mapping sends
the first three subsets of each partition to the three sets [0]9 , [3]9 , and [6]9, permuted cyclically.
A similar pattern appears for the last three subsets in each group.

Mappings (6a) and (6c) also reflect a striking symmetry between the sets [0]3 and [2]3 that
does not involve the set [1]3. In fact, the next theorem shows that numbers congruent to 1 (mod 3)
are transient in T ∗

R-trajectories in the same way that numbers congruent to 0 (mod 3) are transient
in T -trajectories, as expressed in Proposition 2.1.

Theorem 3.4. Every T ∗
R-trajectory consists of finitely many numbers congruent to 1 (mod 3)

followed only by numbers congruent to either 0 or 2 (mod 3).

Proof. By (6a) and (6c), T ∗
R maps a number in [0]3 or [2]3 to a number in one of those same

two sets. So we need only show that every number in [1]3 eventually iterates out of [1]3. From
(6b), if n ∈ [1]3 and T ∗

R(n) ∈ [1]3, then n = 192j + 106 for some integer j. In that case,
T ∗
R(n) = T 3

R(n) = (n− 42)/64, from which |T ∗
R(n)| ≤ |43n64 | < |n|. Any sequence of T ∗

R-iterates
contained in [1]3 therefore has decreasing magnitudes and so must have an element m of least
absolute value. Then T ∗

R(m) is in [0]3 or [2]3.

4 Reversion to T -trajectories

We have shown that the refined 3x + 1 conjecture (Conjecture 2.5) and the special properties of
TR reveal patterns that are not easily discerned from the standard formulation of the conjecture.
While the fundamental dynamics are more clearly revealed by TR instead of T , it may also be of
interest to transform results about TR-trajectories back into the original setting of T -trajectories.
We do so in this section, beginning with a new characterization of T -trajectories.

1T ∗
R(n) = (3n + 1)/2 if n ≡ 1 (mod 2), 3n/4 if n ≡ 0 (mod 4), (3n − 2)/8, if n ≡ 6 (mod 8), (3n − 6)/16 if

n ≡ 2 (mod 16), (3n− 14)/32 if n ≡ 26 (mod 32), (3n− 30)/64 if n ≡ 10 (mod 64), (n− 42)/64 if n ≡ 42 (mod
64).
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Theorem 4.1. The T -trajectory of every nonzero integer n has the following structure: finitely
many numbers congruent to 0 (mod 3), followed by numbers congruent to 2 or 8 (mod 9) except
for isolated numbers (i.e., no two in succession) that are congruent to 1 (mod 3) or isolated
numbers congruent to 5 (mod 9).

Proof. From Proposition 2.1, numbers congruent to 0 (mod 3) occur in the T -trajectory of a
nonzero integer only as initial values, and there are finitely many such numbers. From
Proposition 2.2, numbers congruent to 1 (mod 3) are isolated in the subsequent portion of the
trajectory. The remaining numbers are those congruent to 2 (mod 3). We then need only show
that numbers congruent to 5 (mod 9) are isolated within that set. But by Proposition 3.1, numbers
of the form 3j + 1 never appear consecutively in a TR-trajectory, which implies that numbers of
the form S(3j+1) = 9j+5 never appear consecutively in a T -trajectory. This says that numbers
congruent to 5 (mod 9) are isolated in the T -trajectory.

Example 4.2. The structure described in Theorem 4.1 is illustrated in Figure 3, for the
trajectory of 156.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

[0]
3
 (transient)

[1]
3
 (isolated)

[2]
9

[5]
9
 (isolated)

[8]
9

Fig. 3. The T -trajectory of 156, showing the properties stated in Theorem 4.1.

We can demonstrate even more clearly the distinctive role in T -trajectories of numbers con-
gruent to 2 or 8 (mod 9) by the following result for an accelerated iteration whose long-term
behavior involves only those numbers. As in Equation (5), we use a special partition, this time
for the set [2]3. We also express this partition with residues of least absolute value in order to
more clearly show the pattern.

[2]3 = [5]6 ∪ [2]6

= [5]6 ∪ [2]12 ∪ [8]12

= [5]6 ∪ [2]12 ∪ [20]24 ∪ [8]24

= [5]6 ∪ [2]12 ∪ [20]24 ∪ [8]48 ∪ [32]48

= [5]6 ∪ [2]12 ∪ [20]24 ∪ [8]48 ∪ [80]96 ∪ [32]96

= [5]6 ∪ [2]12 ∪ [20]24 ∪ [8]48 ∪ [80]96 ∪ [32]192 ∪ [128]192

= [−1]6 ∪ [2]12 ∪ [−4]24 ∪ [8]48 ∪ [−16]96 ∪ [32]192 ∪ [−64]192
242



Theorem 4.3. Define T ∗ : [2]3 → Z by

T ∗(n) =



T (n) = (3n+ 1)/2, if n ≡ −1 (mod 6)

T 2(n) = (3n+ 2)/4, if n ≡ 2 (mod 12)

T 3(n) = (3n+ 4)/8, if n ≡ −4 (mod 24)

T 4(n) = (3n+ 8)/16, if n ≡ 8 (mod 48)

T 5(n) = (3n+ 16)/32, if n ≡ −16 (mod 96)

T 6(n) = (3n+ 32)/64, if n ≡ 32 (mod 192)

T 6(n) = n/64, if n ≡ −64 (mod 192).

Then

(i) the range of T ∗ is [2]3,

(ii) every T ∗-trajectory consists of finitely many numbers congruent to 5 (mod 9) followed only
by numbers congruent to either 2 or 8 (mod 9).

Proof. By applying S(x) = 3x + 2 to the sets shown in (6a)–(6c) and making use of Equations
(3) and (1), we obtain the following mapping of numbers congruent to 2 (mod 3), listed by
congruence class (mod 9). The mappings shown in (7a)–(7c) coincide with the definition of T ∗,
as may be verified directly from the definition of T . Result (i) is then a consequence of (7a)–(7c),
and (ii) follows by applying S to the numbers described in Theorem 3.4.

[2]9 = [2]36 ∪ [56]144 ∪ [416]576 ∪ [128]576 ∪ [272]288 ∪ [20]72 ∪ [11]18

[2]27 ∪ [11]27 ∪ [20]27 ∪ [2]9 ∪ [26]27 ∪ [8]27 ∪ [17]27

T 2 T 4 T 6 T 6 T 5 T 3 T

︸ ︷︷ ︸ ︸ ︷︷ ︸
[2]9 [8]9

(7a)

[5]9 = [14]36 ∪ [104]144 ∪ [32]576 ∪ [320]576 ∪ [176]288 ∪ [68]72 ∪ [5]18

[11]27 ∪ [20]27 ∪ [2]27 ∪ [5]9 ∪ [17]27 ∪ [26]27 ∪ [8]27

T 2 T 4 T 6 T 6 T 5 T 3 T

︸ ︷︷ ︸ ︸ ︷︷ ︸
[2]9 [8]9

(7b)

[8]9 = [26]36 ∪ [8]144 ∪ [224]576 ∪ [512]576 ∪ [80]288 ∪ [44]72 ∪ [17]18

[20]27 ∪ [2]27 ∪ [11]27 ∪ [8]9 ∪ [8]27 ∪ [17]27 ∪ [26]27

T 2 T 4 T 6 T 6 T 5 T 3 T

︸ ︷︷ ︸ ︸ ︷︷ ︸
[2]9 [8]9

(7c)
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Example 4.4. To illustrate Theorem (4.3), we consider again the T -trajectory of 156, which was
shown in Figure 3. That trajectory is

(156, 78, 39, 59, 89, 134, 67, 101, 152, 76, 38, 19, 29, 44, 22, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, . . .) .

The first three terms are elements of the transient set [0]3, so the T ∗-trajectory begins with 59 and
is as follows:

(59, 89, 134, 101, 152, 29, 44, 17, 26, 20, 8, 2, . . .) .

Note that the first term is congruent to 5 (mod 9) and all subsequent terms are congruent to
either 2 or 8 (mod 9). However, not all terms of a T -trajectory that are congruent to 2 or 8

(mod 9) appear in the accelerated T ∗-trajectory. In this example, 38 and 11 are two such numbers
that are bypassed in the iteration by T ∗.

5 Summary

The classical formulation of the 3x + 1 problem states that the trajectory of any positive integer
under iteration by a particular function T eventually reaches the limit cycle (2, 1). We have
constructed a streamlined version of the conjecture that involves only numbers congruent to 2

(mod 3). This eliminates many extraneous features of trajectories. We have then recast the 3x+1

problem as a conjecture involving a modified function TR for which the trajectory of any positive
integer converges to 0 instead of to a limit cycle. By iterating the action of TR and expressing the
result back in terms of T , we have shown that the essential dynamics of the 3x + 1 problem can
effectively be reduced to a process involving only numbers congruent to 2 or 8 (mod 9).
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