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1 Introduction

Let Fn and Ln denote the n-th Fibonacci and Lucas numbers, both satisfying the recurrence
wn = wn−1+wn−2 for n ≥ 2, but with the initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1,
respectively (see, e.g., [24]).

In this paper, we find some new Fibonacci–Lucas identities which arise as determinants
of certain families of Hessenberg matrices. Formulas relating determinants to Fibonacci and
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similar numbers have been an object of recent interest. In some cases, these sequences arise as
determinants for certain families of matrices having integer entries, while in other cases these
sequences are the actual entries of the matrix whose determinant is being evaluated. For example,
Janjić [19] considered a particular type of upper Hessenberg matrix and showed its relationship
with a generalization of the Fibonacci numbers (see also related work by Bicknell–Johnson and
Spears [8]). Cereceda [9] provided some determinantal representations of the general terms of
second and third-order linear recurrent sequences with arbitrary initial conditions, and similar
work has been done by Kaygısız and Şahin in [20] for Fibonacci-type numbers in conjunction
with various Hessenberg matrices. In [28], Tangboonduangjit and Thanatipanonda considered
determinants of matrices whose entries are powers of the Fibonacci numbers, while Civciv [11]
studied the determinant of a five-diagonal matrix with Fibonacci entries. For further examples of
combinatorial determinants, we refer the reader to [18, 23].

In [13, 15, 16], the authors considered determinants of some families of Toeplitz–Hessenberg
matrices having the Fibonacci, Lucas or Horadam (generalized Fibonacci) numbers for the
nonzero entries. These determinant formulas may also be rewritten equivalently as identities
involving sum of products of Fibonacci, Lucas or Horadam numbers and multinomial
coefficients. Combinatorial proofs which make use of the algebraic definition of a determinant
and draw upon connections between compositions and linear tilings are provided for several of
the determinant formulas in [15, 16].

Many previous authors have established identities featuring both the Fibonacci and Lucas
numbers (the so-called Fibonacci–Lucas identities). For example, Adegoke [2] derived several
binomial and ordinary summation identities involving, in particular, the Fibonacci and Lucas
numbers. In [10], Čerin established nice summation formulas for Fibonacci and Lucas numbers.
Frontczak [12] derived expressions for sums and alternating sums of powers, up through the
fourth, of Fibonacci and Lucas numbers. In [21], Keskin and Demirtürk characterized the 2 × 2

matrices X satisfying X2 = X + I and obtained interesting identities concerning Fibonacci and
Lucas numbers. In [27], Shattuck provided tiling proofs for some Fibonacci–Lucas relations,
as requested by Benjamin and Quinn in their text [6]. Further examples of Fibonacci–Lucas
identities can be found in [1, 3, 17, 22, 24, 29, 30], among others.

The organization of this paper is as follows. In the next section, we review some basic
properties of Hessenberg matrices. In the third section, we establish the determinants of several
families of Hessenberg matrices having Fibonacci entries by an inductive approach. Applying
the generalized Trudi formula, new identities are obtained in the fourth section which express the
Lucas in terms of the Fibonacci numbers and multinomial coefficients. In the final section, we
provide combinatorial proofs of several of our determinant formulas via a unified approach based
on the algebraic definition of the determinant. We remark that some of the results of the third and
fourth sections were announced without proofs in [14].

2 Hessenberg matrices and determinants

A lower Hessenberg matrix Hn = (hij) is an n×n matrix whose entries above the superdiagonal
are all zero, i.e.,
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Hn =



h11 h12 0 · · · 0 0

h21 h22 h23 · · · 0 0

h31 h32 h33 · · · 0 0
...

...
... . . . ...

...
hn−1,1 hn−1,2 hn−1,3 · · · hn−1,n−1 hn−1,n
hn1 hn2 hn3 · · · hn,n−1 hnn


.

Here, we consider n× n Hessenberg matrices of the form

Mn(a0; a1, a2, . . . , an) =


k1a1 a0 0 · · · 0 0

k2a2 a1 a0 · · · 0 0
...

...
... . . . ...

...
kn−1an−1 an−2 an−3 · · · a1 a0
knan an−1 an−2 · · · a2 a1

 , (1)

where a0 6= 0 and ai 6= 0 for at least one i > 0. Such matrices have been studied, for example, in
[25, 32].

Expanding the determinant of (1), which we will denote by det(Mn), repeatedly along the
last column, we obtain the recurrence

det(Mn) = (−a0)n−1knan +
n−1∑
i=1

(−a0)i−1ai det(Mn−i), n ≥ 1. (2)

In subsequent sections, we will investigate particular cases of the matrix (1) in which ki = i

for all i and the superdiagonal element a0 is equal ±1. To simplify our notation, we write
det(±1; a1, a2, . . . , an) in place of det (Mn(±1; a1, a2, . . . , an)).

3 Some Hessenberg determinants with Fibonacci entries

We have the following explicit formulas for determinants of various Hessenberg matrices where
ki = i for all i and ai is derived from the Fibonacci sequence.

Theorem 3.1. For n ≥ 1, the following formulas hold:

det(1;F0, F1, . . . , Fn−1) = (−1)n−1(Ln − 1), (3)

det(−1;F0, F1, . . . , Fn−1) = 2n − Ln + (−1)n, (4)

det(1;F1, F2, . . . , Fn) = (−1)n−1 (Ln − 1) + 1, (5)

det(1;F2, F3, . . . , Fn+1) = (−1)n−1Ln, (6)

det(1;F3, F4, . . . , Fn+2) = (−1)n−1Ln + 1, (7)

det(−1;F3, F4, . . . , Fn+2) =

(
3 +
√
17

2

)n

+

(
3−
√
17

2

)n

− Ln, (8)

det(1;F4, F5, . . . , Fn+3) = (−1)n−1Ln + 2, (9)
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det(1;F3, F5, . . . , F2n+1) = (−1)n−1(L2n − 1), (10)

det(1;F2, F4, . . . , F2n) = (−1)n−1(L2n − 2), (11)

det(1;F4, F6, . . . , F2n+2) = (−1)n−1L2n. (12)

Proof. We will establish formulas (7) and (12) by induction on n. The other identities may be
shown in a similar manner, and we omit their proofs for the sake of brevity.

Proof of (7). Clearly, the formula holds for n = 1 and n = 2. Suppose it is true in the n− 1 case,
where n ≥ 3. Let Dn = det(1;F3, F4, . . . , Fn+2). By recurrence (2), we then have

Dn =
n−1∑
i=1

(−1)i−1Fi+2Dn−i + (−1)n−1nFn+2

=
n−1∑
i=1

(−1)i−1Fi+1Dn−i +
n−1∑
i=1

(−1)i−1FiDn−i + (−1)n−1nFn+2

=
n−2∑
i=0

(−1)iFi+2Dn−i−1 +
n−3∑
i=−1

(−1)i+1Fi+2Dn−i−2 + (−1)n−1nFn+2

= F2Dn−1 −
n−2∑
i=1

(−1)i−1Fi+2Dn−i−1

+ F1Dn−1 − F2Dn−2 +
n−3∑
i=1

(−1)i−1Fi+2Dn−i−2 + (−1)n−1nFn+2

= Dn−1 −
(
Dn−1 − (−1)n−2(n− 1)Fn+1

)
+Dn−1 −Dn−2 +

(
Dn−2 − (−1)n−3(n− 2)Fn

)
+ (−1)n−1nFn+2

= (−1)n ((n− 1)Fn+1 + (n− 2)Fn − nFn+2) +Dn−1

= (−1)n−1 (Fn+1 + 2Fn) + (−1)n−2Ln−1 + 1

= (−1)n−1Ln+1 + (−1)nLn−1 + 1

= (−1)n−1Ln + 1.

Consequently, formula (7) is true in the n case and thus it holds for all positive integers, by
induction.

Proof of (12). When n = 1 and n = 2, the formula is seen to hold. Suppose (12) is true for
all k ≤ n − 1, where n ≥ 3. Let Dn = det(1;F4, F6, . . . , F2n+2). By (2) and the well-known

formula F2i+1 =
i∑

k=1

F2k + 1, we then have

Dn =
n−1∑
i=1

(−1)i−1F2i+2Dn−i + (−1)n−1nF2n+2

=
n−1∑
i=1

(−1)i−1F2i+1Dn−i +
n−1∑
i=1

(−1)i−1F2iDn−i + (−1)n−1nFn+2 (13)

=
n−1∑
i=1

(−1)i−1
(

i∑
k=1

F2k + 1

)
Dn−i +

n−2∑
i=0

(−1)iF2i+2Dn−i−1 + (−1)n−1nF2n+2
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=
n−1∑
i=1

i∑
k=1

(−1)i−1F2i−2k+2Dn−i +
n−1∑
i=1

(−1)i−1Dn−i

+ F2Dn−1 −
n−2∑
i=1

(−1)i−1F2i+2Dn−i−1 + (−1)n−1nF2n+2

=
n−1∑
k=1

n−k−1∑
i=0

(−1)i+k−1F2i+2Dn−k−i +
n−1∑
i=1

(−1)i−1Dn−i

+Dn−1 −
(
Dn−1 − (−1)n−2(n− 1)F2n

)
+ (−1)n−1nF2n+2

=
n−1∑
k=1

(−1)k
(
−Dn−k +

n−k−1∑
i=1

(−1)i−1F2i+2Dn−k−i

)
+

n−1∑
i=1

(−1)i−1Dn−i

+ (−1)n(n− 1)F2n + (−1)n−1nF2n+2

=
n−1∑
k=1

(−1)k
(
−Dn−k +Dn−k − (−1)n−k−1(n− k)F2(n−k+1)

)
−

n−1∑
i=1

(−1)iDn−i

+ (−1)n−1(nF2n+2 − (n− 1)F2n)

= (−1)n
n−1∑
k=1

(n− k)F2(n−k+1) −
n−1∑
i=1

(−1)iDn−i + (−1)n−1(nF2n+1 + F2n)

= (−1)n
n−1∑
k=1

kF2k+2 −
n−1∑
i=1

(−1)i ·(−1)n−i−1L2(n−i) + (−1)n−1(nF2n+1 + F2n)

= (−1)n
n∑
k=2

(k − 1)F2k + (−1)n
n−1∑
i=1

L2i + (−1)n−1(nF2n+1 + F2n).

Thus,

Dn = (−1)n
(

n∑
k=1

kF2k −
n∑
k=1

F2k +
n−1∑
i=1

L2i − nF2n+1 − F2n

)
. (14)

Since (see, e.g., [24])

n∑
k=1

kF2k = nF2n+1 − F2n,

n∑
k=1

F2k = F2n+1 − 1,

n−1∑
k=1

L2k = L2n−1 − 1, L2n+1 = F2n+1 + 2F2n,

from (14), we have

Dn = (−1)n (nF2n+1 − F2n − F2n+1 + 1 + L2n−1 − 1− nF2n+1 − F2n)

= (−1)n−1(F2n+1 + 2F2n − L2n−1)

= (−1)n−1(L2n+1 − L2n−1) = (−1)n−1L2n,

which completes the induction.

Combinatorial proofs of formulas (3)–(6) and (10)–(11) are provided in the final section.
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4 Applications by the generalized Trudi formula

In this section, we give a multinomial analogue of Theorem 3.1 using the following result.

Theorem 4.1. Let n be a positive integer. Then

det(Mn) =
∑
σn=n

(−a0)n−|sn|

|sn|

(
s1 + · · ·+ sn
s1, . . . , sn

)( n∑
i=1

siki

)
as11 a

s2
2 · · · asnn , (15)

where σn = s1 + 2s2 + · · · + nsn, |sn| = s1 + s2 + · · · + sn and the summation is over all
nonnegative integers si satisfying σn = n.

Remark 4.2. One can find the a0 = −1 case of formula (15) in [25], though expressed in a
slightly different form. Also, formula (3) from [32] is (15) written in terms of triangular matrices
(for further details concerning the calculus of triangular matrices and applications, see, for
example, [31] and references contained therein). Note that taking ki = 1 for all i in (15)
yields what is known as the Trudi formula [26, p. 214]. Thus, equation (15) may be viewed as a
generalized Trudi formula. If, in the matrix (1), one takes ki = i for all i, then (15) becomes

det(Mn) = n ·
∑
σn=n

(−a0)n−|sn|

|sn|

(
s1 + · · ·+ sn
s1, . . . , sn

)
as11 a

s2
2 · · · asnn . (16)

This formula may also be found in [26, p. 228].

Formula (16), taken together with Theorem 3.1 above, yields the following new identities
expressing the Lucas numbers in terms of the Fibonacci numbers and multinomial coefficients.

Corollary 4.2.1. For n ≥ 1, the following formulas hold:

Ln = 1− n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
0 F

s2
1 · · ·F sn

n−1,

Ln = 2n + (−1)n − n
∑
σn=n

mn(s)

|sn|
F s1
0 F

s2
1 · · ·F sn

n−1,

Ln = 1 + (−1)n − n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
1 F

s2
2 · · ·F sn

n ,

Ln = −n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
2 F

s2
3 · · ·F sn

n+1,

Ln = (−1)n − n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
3 F

s2
4 · · ·F sn

n+2,

Ln =

(
3 +
√
17

2

)n

+

(
3−
√
17

2

)n

− n
∑
σn=n

mn(s)

|sn|
F s1
3 F

s2
4 · · ·F sn

n+2,

Ln = (−1)n2− n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
4 F

s2
5 · · ·F sn

n+3,

L2n = 1− n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
3 F

s2
5 · · ·F sn

2n+1,
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L2n = 2− n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
2 F

s2
4 · · ·F sn

2n ,

L2n = −n
∑
σn=n

(−1)|sn|

|sn|
mn(s)F

s1
4 F

s2
6 · · ·F sn

2n+2,

where σn = s1+2s2+ · · ·+nsn, |sn| = s1+ · · ·+sn, mn(s) =
(s1 + · · ·+ sn)!

s1! · · · sn!
and the summation

is over all nonnegative integers si satisfying σn = n.

5 Combinatorial proofs

In this section, we provide combinatorial proofs for several of the formulas in Theorem 3.1 above
making use of the determinant definition

det(A) =
∑
σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n), (17)

where sgn(σ) denotes the sign of the permutation σ. For combinatorial proofs of determinants of
matrices whose entries are derived from various counting sequences, see, e.g., [4, 5, 7]. Observe
that for a Hessenberg matrix A, the only permutations σ that can make a nonzero contribution
to the expansion of det(A) in (17) are those in which every cycle of σ comprises an interval of
positive integers in increasing order (where it is understood that the smallest element is first in
each cycle).

Arranging cycles in increasing order of smallest elements, such σ may be regarded as
compositions of n, upon identifying the various cycle lengths as parts. Suppose that the
Hessenberg matrix Mn defined by (1) above has a0 = 1 and ki = i for all i. Then each part
of size i within the aforementioned compositions, other than one possibly in the initial position,
receives weight ai, with an initial part of size i receiving weight iai. The weight of a composition
is then defined as the product of the weights of its parts, with the sign given by (−1)n−m where
m denotes the number of parts. Thus, one may view the sum in (17) in this case as a (signed)
weighted sum over the set of all compositions of n, where the sign and weight are as defined.

Recall that Fn+1 gives the number of (linear) square-and-domino tilings of length n, where
squares and dominos are 1×1 and 1×2 pieces, respectively, and are considered indistinguishable.
Benjamin and Quinn [6] used this enumerative interpretation of Fn in providing combinatorial
interpretations for many of the identities from Vajda [29]. Let Fn denote the set of square-and-
domino tilings of length n if n ≥ 1, with F0 consisting of the empty tiling. Upon labeling
the positions overlaid by a member of Fn, one may view tilings as coverings of the numbers
1, . . . , n, where a square (denoted by s) covers a single number and a domino (denoted d) covers
two consecutive numbers. We will say that a square (respectively, domino) within a member of
Fn corresponds to a position i, where 1 ≤ i ≤ n, if the square (respectively, right half of the
domino) covers the number i.

Let a be a fixed positive integer. Let Qn be the set of tilings of length an in which tiles
corresponding to positions am for 1 ≤ m ≤ n may be marked and whose final tile is
always marked. Further, if the leftmost marked tile corresponds to position aj for some
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j ∈ [n] = {1, 2, . . . , n}, then one of the positions ai where i ∈ [j] is designated. We will
refer to members of Qn as configurations. Note that only one position within a configuration is
to be designated, despite there being possibly more than one marked tile. Given configuration λ,
one may write λ = λ1 · · ·λr, where each λi ends in a marked tile and contains no other marked
tiles and some position within λ1 is designated as described. We may require further, if desired,
that the marked pieces ending the λi always be of one tile type or the other. Also, one may require
that the piece ending the subtiling λ1 be s, d or either (independently of the other λi), with the
particular choice taken a function of the length of λ1. Note in this case that the first column of
the corresponding matrix would be given more generally by 1Fa+i1 , 2F2a+i2 , . . . , nFna+in , where
i1, i2, . . . , in ∈ {0, 1,−1}.

Given 1 ≤ i ≤ n, let Qn,i denote the subset of Qn whose members contain exactly i marked
tiles. Define the sign of λ ∈ Qn,i by (−1)n−i. If, for example, any subtiling λi may end in either
a square or a domino, then det(1;Fa+1, F2a+1, . . . , Fna+1) is seen to give the sum of the signs
of all members of Qn = ∪ni=1Qn,i, by the definition of the determinant above. If only squares
may be marked, then det(1;Fa, F2a, . . . , Fna) is seen to give this sum of signs. If only dominos
may be marked, then det(1;Fa−1, F2a−1, . . . , Fna−1) gives the sum. In any case, we will refer
to the determinant of order n which arises as the sum of the signs of all members of Qn, and
depends upon the option taken concerning the final piece of the various subtilings, as being the
determinant associated with Qn.

Determinants associated with some set Qn of configurations may be evaluated combinatori-
ally as follows. LetQ∗n = An∪Bn, where An = Qn,1 and Bn denotes the subset ofQn,2 in which
there is no tile that corresponds to a position am for some m ≥ 1 occurring strictly between the
two marked tiles. Let an = |An| and bn = |Bn| for n ≥ 1. Note that b1 = 0 for all possible sets of
configurations since no member ofB1 can contain two marked tiles. Given λ ∈ Qn−Q∗n, identify
the first piece p lying between the leftmost and the second leftmost marked tiles that corresponds
to a position am for some m ≥ 1. Let λ′ be obtained from λ by either marking or removing the
marking from the piece p, whichever is applicable. One may verify that the mapping λ 7→ λ′

defines a sign-changing involution of Qn − Q∗n. Thus, the determinant associated with Qn is
given as the sum of signs of members of Q∗n; that is, it equals

(−1)n−1|An|+ (−1)n−2|Bn| = (−1)n−1(an − bn).

Thus, if a Hessenberg matrix A is such that det(A) is the associated determinant for a setQn,
then the problem of evaluating det(A) is equivalent to determining the counting sequences an and
bn defined above. We now apply this strategy in evaluating formulas (6), (3), (5), (10) and (11)
above, where a = 1 is taken in the framework above to prove the first three formulas and a = 2

for the last two.

5.1 Combinatorial proof of formula (6)

In this case, let a = 1 with all subtilings λi above allowed to either end in a square or a domino.
Then we have det(1;F2, F3, . . . , Fn+1) = (−1)n−1(an− bn), with an = nFn+1 since members of
An in this case correspond to n-tilings in which one of the positions is designated. Considering
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whether or not the last piece within a member of Bn is a square, we have

bn = (n− 1)Fn + (n− 2)Fn−1 = (n− 1)Fn+1 − Fn−1

and thus
an − bn = nFn+1 − ((n− 1)Fn+1 − Fn−1) = Fn+1 + Fn−1 = Ln,

as desired.

5.2 Combinatorial proof of formula (3)

Let Qn here correspond to the case when a = 1 with all marked tiles being dominos. Then since
an = nFn−1 in this case, to complete the proof of (3), we must show

bn = (n− 2)Fn−1 − Fn + 1, n ≥ 1, (18)

where we may assume n ≥ 3. To establish (18), first consider the set Un of all n-tilings ending
in a domino and containing at least two dominos such that one of the first n − 2 positions is
marked. Note that |Un| = (n − 2)(Fn−1 − 1). Let U ′n ⊆ Un consist of those tilings in which the
marked position corresponds to some square lying between the two rightmost dominos. Note that
bn = |Un| − |U ′n|, by the definitions.

Furthermore, members of U ′n are synonymous with ordered pairs ρ = (λ, j), where
λ = λ′dsid ∈ Fn, i ≥ 1 and j ∈ [i]. Let g(ρ) = si−jdλ′dsj−1. Then g is seen to be a bijection
with the set of (n− 1)-tilings that contain at least two dominos, of which there are Fn − (n− 1),
by subtraction. Thus |U ′n| = Fn − (n− 1), which implies (18), as desired.

5.3 Combinatorial proof of formula (5)

Let Qn in this case denote the set of configurations corresponding to a = 1 in which marked
tiles are always squares. Then clearly an = nFn since members of An in this case correspond to
n-tilings ending in a square in which one of the positions is marked. To establish (5), we need to
show

bn = (n− 1)Fn − 2Fn−1 + 1 + (−1)n, n ≥ 1, (19)

for then

det(1;F1, F2, . . . , Fn) = (−1)n−1(an − bn) = (−1)n−1(Fn + 2Fn−1 − 1 + (−1)n−1)
= (−1)n−1(Ln − 1) + 1.

For (19), we consider cases based on the parity of n. If n is even, then we must show
bn = (n − 1)Fn − 2(Fn−1 − 1). We may assume n ≥ 4, since the n = 2 case is clear. To
determine bn, we count equivalently n-tilings ending in a square in which a non-terminal position
is marked, but not one covered by either half of some domino lying between the two rightmost
squares. To enumerate such n-tilings, we subtract from (n − 1)Fn twice kn, where kn counts
the set of “marked” n-tilings ending in a square wherein there is at least one domino occurring
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between the rightmost two squares, with one of these dominos bearing a mark. Note that tilings
counted by kn are synonymous with ordered pairs ρ = (λ, j), where λ = λ′sdis for some i ≥ 1

is a member of Fn and j ∈ [i]. Let f(ρ) = di−jsλ′sdj−1. Then f is seen to be a bijection with
the set Fn−2 − {d(n−2)/2}, whence kn = Fn−1 − 1, as desired.

Now assume n ≥ 3 is odd, and we need to show bn = (n − 1)Fn − 2Fn−1. In this case, first
consider the set of marked n-tilings that end in a square, excluding sn, wherein a non-terminal
position is marked (of which there are (n−1)(Fn−1) possibilities). From this, we subtract those
tilings wherein the mark corresponds to a position covered by some domino occurring between
the rightmost two squares. Applying the bijection f from above, it is seen that half the cardinality
of this subtracted set of tilings equals the number of (n − 2)-tilings that contain more than one
square, which is given by Fn−1−

n− 1

2
. Thus, we get

bn = (n− 1)(Fn − 1)− 2(Fn−1 − (n− 1)/2) = (n− 1)Fn − 2Fn−1,

as desired, which completes the proof.

5.4 Combinatorial proof of formula (10)

In this case, we let a = 2 in the definition of Qn above and allow for marked tiles (which
correspond to even-numbered positions) to either be squares or dominos. Then we have

det(1;F3, F5, . . . , F2n+1) = (−1)n−1(an − bn),

with an = nF2n+1 since members of An correspond to (2n)-tilings wherein some even position
is marked. To determine bn, first let A′n ⊆ An consist of those tilings in which the mark occurs to
the right of the greatest position 2j, 0 ≤ j < n, such that 2j + 1 is either covered by a square or
the left half of a domino. From the definitions, members of Bn are synonymous with members of
An − A′n, whence bn = an − |A′n|. Thus, to prove (10), it suffices to show |A′n| = L2n − 1.

To do so, first note that members of A′n may be viewed as having one of the following three
forms:

(i) a tiling λ = λ′d, where λ′ ∈ F2n−2,

(ii) a tiling λ = λ′ss, where λ′ ∈ F2n−2, or

(iii) an ordered pair (λ, j), where λ = λ′sdis ∈ F2n, i ≥ 1 and j ∈ [i] ∪ {0}.

Let Lm denote the set of tilings of length m in which an initial domino may be marked (denoted
by d∗). Then |Lm| = Lm for m ≥ 1, so to complete the proof, it suffices to define a bijection
from A′n to L2n − {dn}. To do so, if λ ∈ A′n is of the form (i) or (ii) above, then let h(λ) = d∗λ′

or sλ′s, respectively. For members of A′n of form (iii), let h((λ, j)) = di−jsλ′sdj . Note that
case (iii) of h misses members of L2n beginning and ending with s since j and i − j cannot
simultaneously be zero as i ≥ 1, by assumption, which implies h is one-to-one. Furthermore,
the element dn ∈ L2n has no pre-image in A′n under h. Thus, it is seen that h yields the desired
bijection, which completes the proof.
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5.5 Combinatorial proof of formula (11)

In this case, let a = 2 in the definition of Qn above with the marked tiles always being squares.
Then clearly an = nF2n, so to establish (11), we must show

bn = (n− 1)F2n − 2F2n−1 + 2, n ≥ 1, (20)

where n ≥ 3 may be assumed. Let Vn denote the set of marked (2n)-tilings ending in a square
and containing at least three squares altogether wherein some even-numbered position, not the
last, is marked. Note that, by subtraction, |Vn| = (n− 1)(F2n− n). Let V ′n ⊆ Vn consist of those
tilings in which the marked position occurs strictly to the right of the third rightmost square. By
the definitions, members of Bn are synonymous with tilings in Vn−V ′n, whence bn = |Vn|−|V ′n|.
Thus, to complete the proof of (20), we must show |V ′n| = 2F2n−1 − n(n− 1)− 2.

Members of V ′n may be regarded as ordered pairs ρ = (λ, `), where λ = λ′sdjsdi−js ∈ F2n,
i ≥ 1, j ∈ [i] ∪ {0} and ` ∈ ([i] ∪ {0})− {j}. Note that ` here represents the choice of position
to be marked out of the possible non-terminal even positions occurring to the right of the third
rightmost s in λ. Let F ′2n−2 ⊆ F2n−2 consist of those tilings containing at least four squares
altogether. Since there are

(
n
2

)
+ 1 members of F2n−2 containing less than four (i.e., two or zero)

squares, we have |F ′2n−2| = F2n−1 −
(
n
2

)
− 1. Now define h : V ′n → F ′2n−2 as follows. Given

ρ ∈ V ′n as described above, let

h(ρ) =

λ′sd`sdj−`−1sdi−j, if ` < j;

λ′sdjsd`−j−1sdi−`, if ` > j.

One may verify that h is a 2-to-1 correspondence from V ′n onto F ′2n−2, upon interchanging the
roles of ` and j. Thus, we have

|V ′n| = 2|F ′2n−2| = 2F2n−1 − n(n− 1)− 2,

as desired.

If instead a0 = −1 in the matrix Mn given by (1) above, then the product derived from
the superdiagonal entries within each term in the expansion (17) is precisely the sign of the
corresponding permutation σ for all σ. Thus, det(A) in this case gives a positive weighted sum
over the set of compositions of n. In the case of (4), where ai = Fi−1 for all i, to account for each
term in the expansion, one may overlay the corresponding composition with a square-and-domino
tiling wherein the endpoints of the various parts are covered by the right halves of dominos, with
such dominos then being circled. Note that since a1 = F0 = 0, each part must be of size at least
two and hence can accommodate a domino. Furthermore, we designate one of the positions to
the left of the first circled domino to account for the extra weight coming from the first part. We
now provide an enumeration of the set of configurations that result.

5.6 Combinatorial proof of formula (4)

We may assume n ≥ 4 in our proof since the cases of (4) when 1 ≤ n ≤ 3 are easily verified.
Let Kn denote the set of tilings of length n in which dominos may be circled and ending in a
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circled domino, where some position to the left of or including the position corresponding to
the leftmost circled domino is marked. Then det(−1;F0, F1, . . . , Fn−1) is seen to give |Kn|.
Consider transforming members of Kn to binary sequences by replacing each s by 1, d by 01

and circled d by 00, and marking the digit to the left of (possibly part of) the first occurrence
of 00 which corresponds to the marked position within the original member of Kn. By a slight
abuse of notation, the resulting set of (marked) binary words will again be denoted by Kn. We
now consider the structure of these words as follows. By a unit within a binary word, we mean
a subsequence of consecutive 0’s and 1’s ending in 00 such that there are no two adjacent 0’s
occurring prior to the terminal 00. Then members λ of Kn, written as binary words, have the
property that they may be decomposed into one or more units, i.e., each λ is expressible as
λ = u1 · · ·ur for some r ≥ 1 where the ui are units and one of the digits in u1 is marked.

Consider the following six cases regarding how the digit in u1 is marked:

(i) Final 0 is marked,

(ii) Marked digit is a 1,

(iii) Marked digit is a 0, which is followed by a 1,

(iv) Next-to-last 0 is marked, with u1 starting with 1,

(v) Next-to-last 0 is marked, with u1 starting with 01,

(vi) Next-to-last 0 is marked, with u1 = 00.

We first enumerate cases (i)–(iv) above. To aid in doing so, let Jn denote the set of binary words
of length n excluding those w meeting one of the following:

(I) w has no occurrences of 00 and ends in 1,

(II) w has no occurrences of 00, ends in 0 and starts with 1, or

(III) w may be decomposed as a sequence of one or more units, followed by a single 0.

By subtraction, we have

|Jn| = 2n − Fn+1 − Fn−1 − tn−1 = 2n − Ln − tn−1,

where tn denotes the number of binary sequences of length n that may be decomposed into one
or more units.

LetK∗n denote the subset ofKn corresponding to cases (i)–(iv) above. We define φ : K∗n → Jn
as follows. Let λ = u1 · · ·ur ∈ Jn. If (i) holds, then let φ(λ) = u2 · · ·uru1. For the next two
cases, consider decomposing the unit u1 using the position of its marked digit. If (ii) holds,
then u1 = αβ, where α ends in 1 and contains no 00 and β is itself a unit. In this case, let
φ(λ) = u2 · · ·urβα. If (iii) holds, then we may write u1 = α01β, where α is possibly empty
such that α0 contains no 00 and β is a unit. In this case, let φ(λ) = u2 · · ·urβ1α0. Finally, if
(iv) holds, then we have u1 = α00, where α starts with 1 and is such that α0 contains no 00, in
which case we let φ(λ) = u2 · · ·ur0α0. Note that in cases (i)–(iii) above, the binary word φ(λ) is
assured of containing at least one unit, whereas in (iv), it may or may not contain a unit depending
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on whether or not r ≥ 2. Combining the various cases, one may verify that the mapping φ is a
bijection and hence |K∗n| = 2n − Ln − tn−1.

To complete the proof of (4), it remains to show that the cardinality of the setKn−K∗n (whose
members are those accounted for by (v) and (vi) above) is given by tn−1 + (−1)n. Since clearly
|Kn − K∗n| = 2tn−2, by the definitions, we must show tn−1 + (−1)n = 2tn−2. That is, we must
establish the recurrence

tn = 2tn−1 + (−1)n, n ≥ 3. (21)

One may assume n ≥ 5, since clearly t2 = t3 = 1 and t4 = 3. Let Tn denote the set of binary
words that can be decomposed into one or more units and T ′n ⊆ Tn those in which the final unit u
starts with 0 (i.e., u = 00 or u = 01v for a unit v). Upon placing a 1 at the beginning of the final
unit within a member of Tn−1, to establish (21), it suffices to show |T ′n| = tn−1 + (−1)n.

To do so, we will define a near bijection ρ between Tn−1 and T ′n. Let λ = u1 · · ·ur ∈ Tn−1,
where the ui are units. We consider cases based on the final unit ur. If ur starts with 1, then
let ρ(λ) = u1 · · ·ur−10ur. If ur = 00, whence r ≥ 2, then let ρ(λ) = u1 · · ·ur−21ur−100. If
ur = (01)j00 for some j ≥ 1, then let ρ(λ) = u1 · · ·ur−21ur−1(00)j+1 if r ≥ 2 and be undefined
if r = 1 (in which case n would be odd and j = n− 3

2
).

Finally, if ur = (01)j1α, where α is a unit and j ≥ 1, then let ρ(λ) = u1 · · ·ur−101α(00)j . If
n is odd, then one may verify that the mapping ρ : Tn−1 − {(01)(n−3)/200} → T ′n is a bijection,
whence tn−1 − 1 = |T ′n| in this case. If n is even, then ρ is a bijection
between Tn−1 and T ′n − {(00)n/2} as λ = (00)n/2 would have no pre-image under ρ, whence
tn−1 = |T ′n| − 1 in this case. This completes the proof of (21), as desired.
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