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Abstract: The generalized Lucas sequence {Un}n≥0 is defined by Un+1 = rUn + sUn−1; n ≥ 0

with U0 = 0, U1 = 1 of which the Fibonacci sequence (Fn) is the particular case r = s = 1. In
2018, F. Luca and A. Srinivasan searched for the solutions x, y, z ∈ Fn of the Markov equation
x2 +y2 +z2 = 3xyz and proved that (F1, F2n−1, F2n+1); n ≥ 1 is the only solution. In this paper,
we extend this work from the Fibonacci sequence to any generalized Lucas sequence Un for the
case s = ±1.
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1 Introduction

The Fibonacci and Pell sequences are most famous examples of linear recursive sequences.
Further, the generalized Lucas sequence {Un}n≥0 and its companion sequence {Vn}n≥0 are
defined by

Un+1 = rUn + sUn−1 and Vn+1 = rVn + sVn−1
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for all n ≥ 0 with initial terms U0 = 0, U1 = 1, V0 = 2, V1 = r, where r and s are integers such
that r2 + 4s > 0. The Binet formula for these sequences are given by

Un =
αn − βn

α− β
and Vn = αn + βn, (1)

where α =
r +
√
r2 + 4s

2
and β =

r −
√
r2 + 4s

2
are roots of their characteristic equation

x2 − rx− s = 0. Clearly, α− β =
√
r2 + 4s, α + β = r and αβ = −s.

With (r, s) = (1, 1) we obtain the Fibonacci (Fn) sequence and the Lucas (Ln) sequence
respectively. Similarly, with (r, s) = (2, 1) we obtain the Pell (Pn) and Pell–Lucas (Qn) sequence
respectively. The sequence qn = Qn/2 is known as the associated Pell sequence and is recursively
defined by

q0 = q1 = 1, qn+1 = 2qn + qn−1; n ≥ 0.

Thus, from (1) it is obvious to have the Binet formula

qn =
αn + βn

2
, where α = 1 +

√
2 and β = 1−

√
2. (2)

Behera and Panda [1] defined balancing numbers n as solutions of the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r),

where r is the balancer corresponding to n. Further, the sequence of balancing numbers (Bn)

satisfies the recurrence relation for Un with (r, s) = (6,−1). The sequence of balancing numbers
are closely related to the sequence of Pell and associated Pell numbers. For instance, Bn = Pnqn
and B2n = 2Pn (see [5]).

In the year 1880, A. Markoff [4] studied the Diophantine equation

x2 + y2 + z2 = 3xyz (3)

in positive integers x ≤ y ≤ z and the components of the solution triple (x, y, z) corresponding
to the Markov equation (3) are known as Markov numbers. Further, if (x, y, z) is a Markov triple
then (x, z, 3xz − y) and (y, z, 3yz − x) are also Markov triples. The first few Markov numbers
are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, . . .

(sequence A002559 in [6]), which appears as the coordinates of the Markov triples

(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169),

(5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), . . . .

One can see that, all Markov numbers on the regions adjacent to 2’s region are odd-indexed
Pell numbers whereas all Markov numbers on the regions adjacent to 1’s region are odd-indexed
Fibonacci numbers. Thus, there are infinitely many Markov triples of the form (1, F2n−1, F2n+1)

and (2, P2n−1, P2n+1) for arbitrary positive integers n. In a recent paper [3], F. Luca and A.
Srinivasan proved that there is no Markov triple (Fi, Fj, Fk) other than (F1, F2n−1, F2n+1); n ≥ 1.
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The above studies motivate us to search for the existence of Markov triples (r, Un−1, Un+1)

and (Ui, Uj, Uk).
In this paper, we completely solve (3) with s ∈ {±1} and (x, y, z) = (r, Un−1, Un+1). Further,

we prove that there are only two sets of Markov triple of the form (Ui, Uj, Uk) when s = 1. We
also prove a similar result when s = −1 with certain restrictions over i, j and n. The following
are our main results.

Theorem 1.1. For any positive integer n, if (r, Un−1, Un+1) is a Markov triple corresponding to
(3) with s ∈ {±1}, then

(r, Un−1, Un+1) = (1, F2k−1, F2k+1) and (2, P2k−1, P2k+1) for all integer k ≥ 1.

Theorem 1.2. For positive integers i, j and n, if (x, y, z) = (Ui, Uj, Un) is a Markov triple
corresponding to (3) with s = 1, then

(x, y, z) = (F2, F2k−1, F2k+1) and (P2, P2k−1, P2k+1) for all integer k ≥ 1.

Theorem 1.3. Let i, j and n are positive integers such that i + j ≤ n. Then, the Diophantine
equation (3) has no solution of the form (x, y, z) = (Ui, Uj, Un) when s = −1.

2 Preliminaries

To prove our main findings, we need the following results and definitions, which will be used in
the forthcoming section with or without further reference.

The following Lemma plays an important role for solving the Markov equation.

Lemma 2.1. [3, Lemma 2.1] If (a, b, c) 6= (1, 1, 1) satisfies the Markov equation and a ≤ b ≤ c,
then 3ab < b+ c.

Lemma 2.2. The k-th term of the generalized Lucas sequence {Un} with s ∈ {±1} satisfies the
inequality

αk−2+ε ≤ Uk ≤ αk−1+ε,

where ε satisfies 2ε+ s = 1.

Proof. First consider that s = 1, for which ε = 0 and we need to prove the inequality
αk−2 ≤ Uk ≤ αk−1. Since αβ = −1 in the sequence {Un} corresponding to s = 1, we have

Uk =
αk − (−1)kα−k

α + α−1
<
αk + α−k

α + α−1
= αk−1

1 + 1
α2k

1 + 1
α2

. (4)

Since 1+
1

α2k
< 1+

1

α2
for k ≥ 1, from (4) we conclude that

Uk < αn−1. (5)

Now, we prove the left bound of Uk. In view of Proposition 6 from [2],

αk = αUk + Uk−1
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or
Uk = αk−1 − Uk−1

α
.

Since α satisfies the characteristic equation x2− rx− 1 = 0, we have α2− 1 = rα. Applying (5)
to the above equation, we get

Uk > αk−1 − αk−2

α
= αn−3(α2 − 1) = αn−3(rα) > αn−2.

Next, for s = −1, ε = 1 and thus, we need to show that αk−1 ≤ Uk ≤ αk. So let us now
assume that s = −1. Since, βk

α− β
> 0 for each positive integer k, we have

Uk <
αk

α− β
< αk,

which is the required upper bound. Now, the inequality

Uk
Uk−1

= α

(
1− (β/α)k

1− (β/α)k−1

)
> α

holds for each k ≥ 0 and thus, Uk > αUk−1. Iterating this inequality recursively, we get

Uk > αk−1U1 = αk−1,

which is the desired lower bound. This completes the proof.

Lemma 2.3. For any positive integer j,

(i) 25 + P 2
j + P 2

j+3 = 15PjPj+3 if and only if j = 2,

(ii) 841 + P 2
j + P 2

j+5 = 87PjPj+5 if and only if j = 2.

Proof. (i) When j = 2, we get 25 + P 2
2 + P 2

5 = 870 = 15P2P5. Now, using the Binet formula of
Pell numbers given in (1), we get

25 + P 2
j + P 2

j+3 − 15PjPj+3

=

(
αj − βj

2
√

2

)2

+

(
αj+3 − βj+3

2
√

2

)2

− 15

(
αj − βj

2
√

2

)(
αj+3 − βj+3

2
√

2

)
+ 25

=
1

8

(
(α2j + β2j − 2(−1)j) + (α2j+6 + β2j+6 − 2(−1)j+3)

− 15(α2j+3 + β2j+3 − αjβj+3 − αj+3βj)
)

+ 25

=
1

8
(α2j+3(α3 +

1

α3
) + β2j+3(β3 +

1

β3
)− 15(α2j+3 + β2j+3) + 15(−1)j(α3 + β3)) + 25

=
1

8
((α2j+3 − β2j+3)(α3 − β3)− 15(α2j+3 + β2j+3) + 15(−1)j(α3 + β3)) + 25

= P2j+3P3 −
15

4
q2j+3 +

15

4
(−1)jq3 + 25 (using the Binet formula given in (2))

=
1

4
(20P2j+3 − 15q2j+3 + 105(−1)j + 100)

152



=
1

4
(20P2j+3 − 15(P2j+3 + P2j+2) + 105(−1)j + 100) (since qj = Pj + Pj−1, j ∈ N)

=
1

4
(5P2j+3 − 15P2j+2 + 105(−1)j + 100)

=
5

4
(P2j+3 − 3P2j+2 + 21(−1)j + 20)

=
−5

4
(P2j+2 − P2j+1 − 21(−1)j − 20).

If j is odd, then

25 + P 2
j + P 2

j+3 − 15PjPj+3 =
−5

4
(P2j+2 − P2j+1 + 1) < 0,

since P2j+2 − P2j+1 + 1 > 0 for all j ≥ 1.
If j is even, then

25 + P 2
j + P 2

j+3 − 15PjPj+3 =
−5

4
(P2j+2 − P2j+1 − 41).

But, P2j+2−P2j+1− 41 > 0 for j > 2 and P2j+2−P2j+1− 41 < 0 for j < 2, which implies that
25 + P 2

j + P 2
j+3 6= 15PjPj+3 for all positive integers j 6= 2.

(ii) Proceeding as above it is easy to show that

841 + P 2
j + P 2

j+5 − 87PjPj+5 < 0

for all positive integers j 6= 2. Hence, the proof is complete.

Similarly, we have the following lemmas.

Lemma 2.4. If s = 1, r = 5 and j ∈ N, then 25 + U2
j + U2

j+2 = 15UjUj+2 has no solution.

Proof. Using the Binet formula (1) for the terms of U(5, 1), we get

25 + U2
j + U2

j+2 − 15UjUj+2

=

(
αj − βj√

29

)2

+

(
αj+2 − βj+2

√
29

)2

− 15

(
αj − βj√

29

)(
αj+2 − βj+2

√
29

)
+ 25

=
1

29

(
(α2j + β2j − 2(−1)j) + (α2j+4 + β2j+4 − 2(−1)j+2)

− 15(α2j+2 + β2j+2 − αjβj+2 − αj+2βj)
)

+ 25

=
1

29
((α2j+2 + β2j+2)(α2 + β2 − 15) + (−1)j(15(α2 + β2)− 4)) + 25

=
1

29
((α2j+2 + β2j+2)(27− 15) + (−1)j(15(27)− 4)) + 25

=
1

29
(12V2j+2 + 401(−1)j + 725),

which is positive for all j ≥ 1. This completes the proof.

Lemma 2.5. If s = 1 and r, j ∈ N, then 1 + U2
j + U2

j+1 = 3UjUj+1 if and only if r, j ∈ {1, 2}.
Further, if s = −1 and 2 < r ∈ N, then 1 + U2

j + U2
j+1 = 3UjUj+1 has no solution.
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Proof. Let s = 1, then for r ∈ {1, 2}, j = 1 we have

1 + F 2
1 + F 2

2 = 3 = 3F1F2, 1 + P 2
1 + P 2

2 = 6 = 3P1P2

and when j = 2 we have

1 + F 2
2 + F 2

3 = 6 = 3F2F3, 1 + P 2
2 + P 2

3 = 30 = 3P2P3.

Conversely, when s = 1 and j ∈ {1, 2},

1 + U2
j + U2

j+1 = 3UjUj+1

gives r2 − 3r + 2 = 0 and r4 − 3r3 + 3r2 − 3r + 2 = 0 respectively and hence, r ∈ {1, 2}.
Further, if s = 1, r > 2, j > 2, then

1 + U2
j + U2

j+1 < 3UjUj+1

and if s = −1, r > 2, j ≥ 1, then

1 + U2
j + U2

j+1 > 3UjUj+1.

3 Proof of main results

3.1 Proof of Theorem 1.1

The terms of the generalized Lucas sequence satisfy the Cassini identity

Un+1Un−1 − U2
n = (−1)nsn−1. (6)

The right-hand side of (6) is a perfect square only if s = 1 and n is even. Thus, using the
recurrence relation for s = 1 and considering the even parity of n, i.e., taking n = 2k, we get

r2 + U2
2k−1 + U2

2k+1 = (r2 + 2)U2k−1 + U2k+1.

Therefore, if (r, Un−1, Un+1) is a Markov triple corresponding to the Markov equation (3), then
r2 + 2 = 3r yielding r = 1, 2. This completes the proof.

3.2 Proof of Theorem 1.2 and 1.3

Let Uk be the k-th term of the generalized Lucas sequence with s ∈ {±1}. Further, let
∆ =

√
r2 + 4s and 2ε+ s = 1. Now, assume that (Ui, Uj, Un) satisfy (3) with Ui ≤ Uj ≤ Un.

When r = s = 1, the Markov triple (Ui, Uj, Un) has only solution (Fi, F2k−1, F2k+1) for
i ∈ {1, 2} (see [3]). Without loss of generality we assume that r > 1 and since U1 = 1, we have
1 ≤ i ≤ j ≤ n. Thus, (Ui, Uj, Un) satisfy

Un − 3UiUj = −
U2
i + U2

j

Un
. (7)
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Using (1) to the left-hand side of (7), we get

αn

∆
− 3αi+j

∆2
= −

U2
i + U2

j

Un
+
βn

∆
− 3

∆2
(αiβj + αjβi − βi+j). (8)

In view of Lemma 2.2, we have

U2
i + U2

j

Un
≤

2U2
j

Un
≤ 2α2j−n+ε ≤ 2αj+ε,∣∣∣∣βn∆

∣∣∣∣ ≤ α−j

∆
<
αj

∆2
,

and ∣∣∣∣ 3

∆2
(αiβj + αjβi − βi+j)

∣∣∣∣ ≤ 3

∆2
(2αj + 1) ≤ 9αj

∆2
.

Using these values in (8), we get∣∣∣∣αn∆
− 3αi+j

∆2

∣∣∣∣ ≤ 2αj+ε +
10αj

∆2
≤ αj+ε

(
2 +

10

∆2

)
.

Dividing αi+j

∆
on both sides of the above inequality, we get∣∣∣∣αn−i−j − 3

∆

∣∣∣∣ < 2∆ + 10/∆

αi−ε
.

Since 3

∆
< α, we have

min
k∈Z

∣∣∣∣αk − 3

∆

∣∣∣∣ > 0.01999 (when s = 1) (9)

and

min
k∈W

∣∣∣∣αk − 3

∆

∣∣∣∣ > 0.13397 (when s = −1). (10)

In view of (9) and (10), we have

αi <
2∆2 + 10

0.01999∆
and αi−1 <

2∆2 + 10

0.13397∆

respectively. Hence, the possible values of i and the corresponding values of r are given by

{1 ≤ i ≤ 3, 2 ≤ r ≤ 10} and (i, r) ∈ {(4, 2), (5, 2), (6, 2), (4, 3), (5, 3), (4, 4)} when s = 1

and
{1 ≤ i ≤ 3, 3 ≤ r ≤ 15} and (i, r) ∈ {(4, 3), (5, 3), (4, 4)} when s = −1.

Searching for the Markov numbers with the above possibilities of i, r and s yield

P2 = 2, P3 = 5, P5 = 29, U2(5, 1) = 5, U2(5,−1) = 5, U2(13,−1) = 13

and hence, we have the following result.

Lemma 3.1. If (x, y, z) = (Ui, Uj, Un) satisfies (3) with 2 ≤ i ≤ j ≤ n and r > 1, s = ±1, then
(i, r, s) = (2, 2, 1), (3, 2, 1), (5, 2, 1), (2, 5, 1), (2, 5,−1), (2, 13,−1).
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Lemma 3.2. If s = 1 and (x, y, z) = (Ui, Uj, Un) satisfies (3) with 2 ≤ i ≤ j ≤ n, then r = 2,
j is odd, j = n− 2 and Ui = 2.

Proof. In view of Lemma 3.1, (r, s) = (2, 1) when i ∈ {2, 3, 5} for which the generalized Lucas
sequence is nothing but the Pell sequence.

Assuming i = 5, we have P5 = 29 and hence,

292 + P 2
j + P 2

n = 87PjPn

or
841 + P 2

j = Pn(87Pj − Pn) > 0,

which gives Pn < 87Pj . By virtue of Lemma 2.1, 87Pj < Pj + Pn and so

86Pj < Pn < 87Pj.

The inequalities

Pj+4 = 2Pj+3 + Pj+2 = 5Pj+2 + 2Pj+1 = 12Pj+1 + 5Pj

= 29Pj + 12Pj−1 < 41Pj < 86Pj < Pn

and

Pj+6 = 2Pj+5 + Pj+4 = 5Pj+4 + 2Pj+3 = 12Pj+3 + 5Pj+2

= 29Pj+2 + 12Pj+1 = 70Pj+1 + 29Pj > 87Pj > Pn

implies that the only possibility is n = j + 5 for which the Markov equation is

292 + P 2
j + P 2

j+5 = 87PjPj+5.

Use of Lemma 2.3 gives j = 2, which is a contradiction to our assumption i ≤ j.

Now, assume that i = 3. Hence, P3 = 5 and

25 + P 2
j = Pn(15Pj − Pn),

which gives Pn < 15Pj . By virtue of Lemma 2.1, 15Pj < Pj + Pn and so

14Pj < Pn < 15Pj.

The inequalities
Pj+2 = 2Pj+1 + Pj = 5Pj + 2Pj−1 < 7Pj

and
Pj+4 = 2Pj+3 + Pj+2 = 12Pj+1 + 5Pj > 17Pj

implies that the only possibility is n = j + 3 for which the Markov equation is

52 + P 2
j + P 2

j+3 = 15PjPj+3.

Use of Lemma 2.3 gives j = 2, which is a contradiction to our assumption i ≤ j.
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Similarly, for i = 2, P2 = 2 and

4 + P 2
j + P 2

n = 6PjPn,

which gives 5Pj < Pn < 6Pj by using Lemma 2.1. The inequality

Pj+1 < 3Pj < 5Pj < Pn < 6Pj < 7Pj < Pj+3

implies that n = j + 2. Thus,

4 + P 2
n−2 + P 2

n = 6Pn−2Pn. (11)

Let n be even. Then using the property P2n = 2Bn, we rewrite (11) as

1 +B2
(n−2)/2 +B2

n/2 = 6B(n−2)/2Bn/2. (12)

But, in view of Lemma 2.5, there is no positive integer solution to (12). Therefore, n must be odd
and j = n− 2. Moreover, since the Pell numbers satisfy the Cassini identity

Pn+1Pn−1 − P 2
n = (−1)n,

it is obvoius to have the Markov triples (2, P2n−1, P2n+1) for every positive integer n.
Now, we are left with the case (i, r, s) = (2, 5, 1). For this, we have U5 = 5 and hence,

52 + U2
j + U2

n = 15PjPn

or
25 + U2

j = Un(15Uj − Un) > 0,

which gives Un < 15Uj . By virtue of Lemma 2.1, 15Uj < Uj + Un and so

14Uj < Un < 15Uj.

The inequalities

Uj+1 = 5Uj + Uj−1 < 6Uj < 14Uj < Un

and

Uj+3 = 5Uj+2 + Uj+1 = 26Uj+1 + 5Uj > 29Uj > 15Uj > Un

implies that the only possibility is n = j + 2. Thus, we have the Markov equation

52 + U2
j + U2

j+2 = 15UjUj+2,

which has no solution by Lemma 2.4. This completes the proof.

Now we will prove Theorem 1.2 and 1.3.

Proof of Theorem 1.2. Since the case i = 1, 2 for the Fibonacci sequence (r = s = 1) has already
been studied in [3], without loss of generality we assume that r > 1 and s = 1. Further, we
have already discussed the case i ≥ 2 and r > 1 in Lemma 3.2. Thus, we are left with the case
i = 1, r > 1 and s = 1.
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Hence,
1 + U2

j + U2
n = 3UjUn

or
1 + U2

j = Un(3Uj − Un),

which gives Un < 3Uj . From Lemma 2.1, 3Uj < Uj + Un and so

2Uj < Un < 3Uj.

The inequality
Uj < 2Uj < Un < 3Uj < Uj+2

implies that the only possibility is n = j + 1 for which the Markov equation is

1 + U2
j + U2

j+1 = 3UjUj+1. (13)

In view of Lemma 2.5, the only solution to (13) are (1, 1, 1), (1, 1, 2), (1, 2, 5) of which the
first one is trivial and the other two can be viewed as the Markov triple (F2, F2k−1, F2k+1) and
(P2, P2k−1, P2k+1) for k = 1 as stated in Theorem 1.2. Now, when r = 1 the case i = 2 yields
the same result as the case i = 1 because F1 = F2 = 1. Thus, we are left with the case i ≥ 2 and
r > 1, which has already been discussed in Lemma 3.2. This completes the proof.

Proof of Theorem 1.3. In view of Lemma 3.1, (r, s) = (5,−1), (13,−1) when i = 2 and i = 1

for all r > 2 and s = −1.
Assuming i = 2, we have U2(5,−1) = 5 and U2(13,−1) = 13. Correspondingly

25 + U2
j (5,−1) + U2

n(5,−1) = 15Uj(5,−1)Un(5,−1)

and
169 + U2

j (13,−1) + U2
n(13,−1) = 39Uj(13,−1)Un(13,−1).

Proceeding as in Lemma 3.2 and using Lemma 2.1, we obtain

14Uj(5,−1) < Un(5,−1) < 15Uj(5,−1) and 38Uj(13,−1) < Un(13,−1) < 39Uj(13,−1).

Further, the inequalities

Uj+1(5,−1) < 14Uj(5,−1) < Un(5,−1) < 15Uj(5,−1) < Uj+2(5,−1)

and

Uj+1(13,−1) < 38Uj(13,−1) < Un(13,−1) < 39Uj(13,−1)) < Uj+2(13,−1)

confirms the non existence of n satisfying (3).

Similarly, for the case i = 1, we have

1 + U2
j + U2

n = 3UjUn and 2Uj < Un < 3Uj.

The inequality
Uj < 2Uj < Un < 3Uj < Uj+2

gives the possibility n = j + 1 for which the Markov equation is
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1 + U2
n−1 + U2

n = 3Un−1Un (14)

and Lemma 2.5 confirms the non existence of n satisfying (14) and hence, there is no solution of
the form (x, y, z) = (Ui, Uj, Un) to (3) for all r > 2, s = −1. This completes the proof. �
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