
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 26, 2020, No. 3, 135–148
DOI: 10.7546/nntdm.2020.26.3.135-148

A generalization to almost balancing
and cobalancing numbers using triangular numbers

S. G. Rayaguru1 and G. K. Panda2

1 Department of Mathematics, National Institute of Technology
Rourkela, India

e-mail: saigopalrs@gmail.com
2 Department of Mathematics, National Institute of Technology

Rourkela, India
e-mail: gkpanda_nit@rediffmail.com

Received: 15 July 2019 Revised: 20 May 2020 Accepted: 24 June 2020

Abstract: A generalization of almost balancing numbers is studied using triangular numbers
as the difference between the left and right hand sides of the defining equation of balancing
numbers. In case of almost balancing numbers, this difference is kept 1, which is the first
triangular number. Some specific representations of these numbers in terms of balancing and
balancing related numbers are established and few more results with triangular, square triangu-
lar, balancing and balancing related numbers are also studied so as to generalize the identities
obtained by A. Tekcan.
Keywords: Balancing numbers, Cobalancing numbers, Almost balancing numbers, Lucas-
balancing numbers, Lucas-cobalancing numbers, Triangular numbers.
2010 Mathematics Subject Classification: 11B39, 11B38.

1 Introduction

A natural number n is called a balancing number [1] or cobalancing number [14] accordingly, as

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

or
1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r)
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holds for some natural number r. This r is called a balancer associated with n in case the
former equation holds and is called a cobalancer associated with n if the later equation holds. One
can check that 6, 35, 204 are balancing numbers with corresponding balancers 2, 14, 84 while,
2, 14, 84 are cobalancing numbers with cobalancers 1, 6, 35 respectively. If n is a balancing
number, then 8n2 + 1 is a perfect square [1] and if n is a cobalancing number, then 8n2 + 8n+ 1

is a perfect square [14].
The kth balancing and cobalancing numbers are denoted by Bk and bk respectively.

Furthermore, Ck =
√

8B2
k + 1 and ck =

√
8b2k + 8bk + 1 are called the kth Lucas-balancing and

Lucas-cobalancing numbers respectively (see [12,14]). The balancing numbers can be calculated
recursively as Bn+1 = 6Bn − Bn−1 with initial terms B0 = 0 and B1 = 1. The Lucas-balancing
and Lucas-cobalancing numbers satisfy recurrence relations identical with balancing numbers
with initial terms C0 = 1, C1 = 3, c0 = −1, c1 = 1. However, the cobalancing numbers satisfy
bn+1 = 6bn − bn−1 + 2 with b0 = b1 = 0. The Binet forms of these numbers are given by

Bn =
α2n − β2n

4
√
2

, Cn =
α2n + β2n

2
, bn =

α2n−1 − β2n−1

4
√
2

− 1

2
, cn =

α2n−1 + β2n−1

2
.

where α = 1 +
√
2 and β = 1 −

√
2. These numbers are very much interrelated and appear in

several fascinating identities (see [1, 5, 6, 8, 10, 12, 15, 17, 20]).
If B is a balancing number then B2 is a triangular number and for a cobalancing number b,

b2 + b is a triangular number. The balancers and the cobalancers are also related to the triangular
numbers in numerous ways. It is worth mentioning that the k-th triangular number is denoted by
Tk and is equal to k(k+1)

2
.

Kovács, Liptai and Olajos [7] extended the concept of balancing numbers by defining
(a, b)-balancing numbers. For coprime integers a > 0 and b ≥ 0, they called an + b an
(a, b)-balancing number if the Diophantine equation

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

holds for some positive integer r.
In [2], Dash, Ota and Dash defined the t-balancing numbers n and t-balancers r as solutions

of the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t); t ≥ 2

and some properties of these numbers have been studied in [19].
Rout and Panda [18] generalized the concept of balancing numbers and introduced gap

balancing numbers. If k is odd, they call a natural number n a k-gap balancing number if

1 + 2 + · · ·+
(
n− k + 1

2

)
=
(
n+

k + 1

2

)
+
(
n+

k + 3

2

)
+ · · ·+ (n+ r)

for some natural number r, which they call a k-gap balancer corresponding to n, while for k even,
if

1 + 2 + · · ·+
(
n− k

2

)
=
(
n+

k

2
+ 1
)
+
(
n+

k

2
+ 2
)
+ · · ·+ (n+ r)

for some natural numbers n and r, then they call 2n+ 1 a k-gap balancing number and r a k-gap
balancer.
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Panda and Panda [13] defined almost balancing numbers as the values of n satisfying the
Diophantine equations

|(n+ 1) + (n+ 2) + · · ·+ (n+ r)− [1 + 2 + · · ·+ (n− 1)]| = 1 (1)

for some r, which they called an almost balancer corresponding to n. Furthermore, n is called an
almost cobalancing number with almost cobalancer r, if

|(n+ 1) + (n+ 2) + · · ·+ (n+ r)− [1 + 2 + · · ·+ n]| = 1

(see [16]). Davala and Panda [3, 4] generalized the concept of almost balancing and cobalancing
numbers by defining D-subbalancing and D-supercobalancing numbers n as solutions of the
equations

1 + 2 + · · ·+ (n− 1) +D = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (2)

and
1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) +D (3)

respectively, where D is any fixed positive integer. In (2), r is called a D-subbalancer while
in (3), r is called a D-supercobalancer. They proved the existence of at least two classes of
Bk-supercobalancing and bk-subbalancing numbers. Motivated by this idea, we devote this paper
to explore the existence of subbalancing, superbalancing, subcobalancing and supercobalancing
numbers for D = Tk, where k is any arbitrary positive integer. We also study some identities
involving these numbers.

2 Main results

We start this section by showing that there exist at least two classes of Tk-superbalancing and
Tk-subcobalancing numbers and at least one class of Tk-subbalancing and Tk-supercobalancing
numbers for every positive integer k.

Theorem 2.1. For k ≥ 1, the values of x satisfying the Diophantine equation

1 + 2 + · · ·+ w = (x+ 1) + (x+ 2) + · · ·+ (x+ r) +D, (4)

where D = ±Tk, w ∈ {x − 1, x} may partition in multiple classes and the common classes of
solutions are given by

(a) kCl + (2k − 1)Bl, kCl − (2k − 1)Bl; l > 1 when (w,D) = (x− 1, Tk),

(b) (2k + 1)Bl; l > 1 when (w,D) = (x− 1,−Tk),

(c) (2k + 1)bl + k; l > 1 when (w,D) = (x, Tk),

(d) 1
2
[(4k − 1)Bl +Bl−1 − 1], 1

2
[(4k − 1)Bl +Bl+1 − 1]; l > 1 when (w,D) = (x,−Tk).
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Proof. (a) By virtue of equation (4), 8x2 − 8Tk + 1 is perfect square. The congruence

(2k − 1)2x2 ≡ k2(8x2 − 8Tk + 1) (mod 8Tk − 1)

is equivalent to

(2k − 1)2x2 ≡ k2(8x2 − 4k2 − 4k + 1) (mod 4k2 + 4k − 1)

and is implied by

(2k − 1) x ≡ ± k
√
8x2 − 4k2 − 4k + 1 (mod 4k2 + 4k − 1)

and any solution of the latter congruence is a solution of the former and is a Tk-superbalancing
number. In view of the latter congruence

(2k − 1)x+ k
√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1
or

(2k − 1)x− k
√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1

is a natural number. Since

8

[
(2k − 1)x± k

√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1

]2
+ 1 =

[
8kx± (2k − 1)

√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1

]2
,

it follows that either

8kx+ (2k − 1)
√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1
or

8kx− (2k − 1)
√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1

is a Lucas-balancing number [12]. Letting

C =
8kx± (2k − 1)

√
8x2 − 4k2 − 4k + 1

4k2 + 4k − 1

we get [
8kx− (4k2 + 4k − 1)C

]2
= (2k − 1)2(8x2 − 4k2 − 4k + 1),

which, on rearrangement, results in the quadratic equation

8x2 − 16Ckx+ (4k2 + 4k − 1)C2 + (4k2 + 4k − 1) = 0,

and the solutions are
x = kC ± (2k − 1)B.

We further observe that

8[kC ± (2k − 1)B]2 − 4k2 − 4k + 1 = [(2k − 1)C ± 8Bk]2.

Thus, two classes of Tk-superbalancing numbers are kCl + (2k− 1)Bl and kCl − (2k− 1)Bl for
l > 1.

The proofs of (b), (c) and (d) are similar and we prefer to omit these.
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In the previous theorem, for each positive integer k, we ascertained the existence of at least
one class of Tk-supercobbalancing and Tk-subbalancing numbers and at least two classes of
Tk-superbbalancing and Tk-subcobalancing numbers. In the following theorem, we explore the
exact number of such classes when k and D are suitably restricted.

Theorem 2.2. For k ≥ 1, the classes of solutions of (4) given in Theorem 2.1 are exact, if the
following holds:

(a) 4k2 + 4k − 1 is a prime when (w,D) ∈ {(x− 1, Tk), (x,−Tk)},

(b) p ≡ ±3 (mod 8) for all p|(2k + 1) when (w,D) ∈ {(x− 1,−Tk), (x, Tk)}.

Proof. We prove this theorem only for the case (w,D) = (x − 1, Tk) as the other cases can be
handled in a similar fashion.

If (w,D) = (x − 1, Tk), then it follows from (4) that x is a Tk-superbalancing number and
thus, 8x2 − 8Tk + 1 is a perfect square. Let

y2 = 8x2 − 8Tk + 1 = 8x2 − (4k2 + 4k − 1)

and so
y2 ≡ 8x2 (mod 4k2 + 4k − 1). (5)

Now, (5) is solvable if and only if
(

8x2

4k2+4k−1

)
= 1 (see [9, p. 193]). Since 4k2 +4k− 1 is a prime

congruent to ±1 (mod 8), we have(
8x2

4k2 + 4k − 1

)
=

(
2

4k2 + 4k − 1

)
= 1

(see [9, p. 184]). So (5) is solvable and there are exactly two classes of Tk-superbalancing num-
bers (see [9, p. 156]), which can be derived from Theorem 2.1. Moreover, since
Cn = 3Bn −Bn−1 = Bn+1 − 3Bn, we have

kCl − (2k − 1)Bl = (k + 1)Bl − kBl−1, kCl + (2k − 1)Bl = kBl+1 − (k + 1)Bl.

Further,
8[(k + 1)Bl − kBl−1]

2 − (4k2 + 4k − 1) = [(k + 1)Cl − kCl−1]2

and
8[kBl+1 − (k + 1)Bl]

2 − (4k2 + 4k − 1) = [kCl+1 − (k + 1)Cl]
2

validates the two classes of Tk-superbalancing number.

2.1 Relationships with triangular, square triangular, balancing
and related numbers

Here, we establish some relationship of the common classes of solution corresponding to
Tk-superbalancing, Tk-subbalancing, Tk-supercobalancing and Tk-subcobalancing numbers with
balancing, cobalancing, Lucas-balancing, Lucas-cobalancing, triangular and square triangular
numbers.

For the sake of simplicity, we first denote the common class of solutions corresponding to
these numbers as follows:
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Tk−subbalancing numbers : TkB
∗
n Tk−Lucas− subbalancing numbers : TkC

∗
n

Tk−superbalancing numbers : TkB
∗∗
n Tk−Lucas− superbalancing numbers : TkC

∗∗
n

Tk−subcobalancing numbers : Tkb
∗
n Tk−Lucas− subcobalancing numbers : Tkc

∗
n

Tk−supercobalancing numbers : Tkb
∗∗
n Tk−Lucas− supercobalancing numbers : Tkc

∗∗
n

Further,

TkC
∗
n =

√
8(TkB∗n)

2 + 4k2 + 4k + 1 TkC
∗∗
n =

√
8(TkB∗∗n )2 − 4k2 − 4k + 1

Tkc
∗
n =

√
8(Tkb∗n)

2 + 8 · Tkb∗n + 4k2 + 4k + 1 Tkc
∗∗
n =

√
8(TkB∗∗n )2 + 8 · Tkb∗∗n − 4k2 − 4k + 1

2.2 Relations with balancing and related numbers

In the following three theorems, we represent subbalancing and superbalancing numbers in terms
of balancing, cobalancing, Lucas-balancing and Lucas-cobalancing numbers.

Theorem 2.3. For every positive integer k, we have

(a) TkB∗n = (2k + 1)Bn

(b) TkC∗n = (2k + 1)Cn

(c) Tkb∗∗n = (2k + 1)bn + k

(d) Tkc∗∗n = (2k + 1)cn

Proof. The proofs of (a) and (c) follows from Theorem 2.1 – (b) and (c), respectively. Further,
since TkC∗n =

√
8(TkB∗n)

2 + (2k + 1)2 and Tkc∗∗n =
√

8(Tkb∗∗n )2 + 8Tkb∗∗n − 4k2 − 4k + 1, the
representations in (b) and (d) immediately follows from (a) and (c), respectively.

Theorem 2.4. For every positive integer k, we have

(a) TkB∗∗2n−1 = kBn − (k + 1)Bn−1 = kCn−1 + (2k − 1)Bn−1

(b) TkB∗∗2n = (k + 1)Bn − kBn−1 = kCn − (2k − 1)Bn = (k + 1)Cn−1 + (2k + 3)Bn−1

(c) TkC∗∗2n−1 = kCn− (k+1)Cn−1 = (8k+2)Bn− (2k+1)Cn = (8k)Bn−1 + (2k− 1)Cn−1

(d) TkC∗∗2n = (k + 1)Cn − kCn−1 = 8kBn − (2k − 1)Cn = 8(k + 1)Bn−1 + (2k + 3)Cn−1

Theorem 2.5. For every positive integer k, we have

(a) Tkb∗2n−1 =
1
2
[(4k − 1)Bn +Bn+1 − 1] = kbn+1 − (k + 1)bn − 1

(b) Tkb∗2n = 1
2
[(4k − 1)Bn +Bn−1 − 1] = (k + 1)bn+1 − kbn

(c) Tkc∗2n−1 = (6k − 1)Bn − (2k + 1)Bn−1 = cn+1 − 2cn + 2(k − 1)(bn+1 + bn + 1)

(d) Tkc∗2n = (2k + 1)Bn+1 − (6k − 1)Bn = cn+2 − 4cn+1 + 2(k − 1)(bn+1 + bn + 1)

The proofs of Theorem 2.4 and 2.5 are similar to that of Theorem 2.3. Further, with k = 1,
some of the representations from Theorems 2.3 – 2.5 can be seen in [16].
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Just like cobalancing numbers, the Tk-supercobalancing and Tk-subcobalancing numbers sat-
isfy non-linear recurrence relations, where as the recurrence relation for others are linear.

Theorem 2.6. For every positive integer k,

(i) the recurrence xn+1 = 6xn − xn−1 is satisfied by TkB∗n, TkC∗n and Tkc∗∗n with initial terms
TkB

∗
0 = 0, TkB

∗
1 = TkC

∗
0 = Tkc

∗∗
1 = 2k + 1, TkC

∗
1 = 3(2k + 1), Tkc

∗∗
0 = −(2k + 1),

(ii) the recurrence xn+2 = 6xn− xn−2 is satisfied by TkB∗∗n , TkC∗∗n and Tkc∗n with initial terms
TkB

∗∗
0 = TkB

∗∗
1 = k, TkB

∗∗
2 = k + 1, TkB

∗∗
3 = 5k − 1, TkC

∗∗
0 = −2k + 1, TkC

∗∗
1 =

2k + 1, TkC
∗∗
2 = 2k + 3, TkC

∗∗
3 = 14k − 3, Tkc

∗
0 = 2k + 1, Tkc

∗
1 = 6k − 1, Tkc

∗
2 =

6k + 7, Tkc
∗
3 = 34k − 7,

(iii) Tkb∗n and Tkb∗∗n satisfy the recurrence xn+2 = 6xn − xn−2 + 2 and xn+1 = 6xn − xn−1 + 2

respectively and the initial terms are Tkb∗0 = 0, Tkb
∗
1 = 2k − 1, Tkb

∗
2 = 2k + 2, Tkb

∗
3 =

12k − 3, Tkb
∗∗
0 = Tkb

∗∗
1 = k.

In view of Theorem 2.3, one can easily find the following Binet forms.

TkB
∗
n = (2k + 1)

(
α2n − β2n

4
√
2

)
, TkC

∗
n = (2k + 1)

(
α2n + β2n

2

)
,

Tkb
∗∗
n = (2k + 1)

(
α2n−1 − β2n−1

4
√
2

)
− 1

2
, Tkc

∗∗
n = (2k + 1)

(
α2n−1 + β2n−1

2

)
,

where α = 1 +
√
2 and β = 1−

√
2.

2.3 Relations with triangular and square triangular numbers

Let Sn denote the n-th square triangular number and hence

Sn = s2n =
tn(tn + 1)

2
.

Note that sn = Bn. The Binet formulas of Sn, sn and tn are given by

Sn =
α4n + β4n − 2

32
, sn =

α2n − β2n

4
√
2

, tn =
α2n + β2n − 2

4

for n ≥ 1 and S0 = s0 = t0 = 0 (see [1, 11, 21]).

In [11], Özkoç et al. derived some new results on triangular and square triangular numbers
involving generalized Pell numbers. In this subsection, we present the following theorems which
are similar to Theorems 2.1 to 2.7 in [21].

Theorem 2.7. Let n be any positive integer. Then, for triangular numbers, we have

1. TTkB∗
n+TkB∗

n−1−(2k+1)

4k+2

=
[Tkb

∗
2n−1 − Tkb∗2n−2 − (2k − 1)][Tkb

∗
2n−1 − Tkb∗2n−2 + (2k − 1)]

4(2k − 1)2

2. T 7TkB∗
n−TkB∗

n−1−(2k+1)

4k+2

=
(4k − 2)TkB

∗
2n+1 + (2k + 1)(Tkb

∗
4n+1 − Tkb∗4n)− 3(4k2 − 1)

16(4k2 − 1)
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3. TTkB∗∗
2n+1−TkB∗∗

2n+TkB∗∗
2n−1−TkB∗∗

2n−2−2

4

=
2(2k − 1)2(Tkb

∗∗
n − k)(Tkb∗∗n + k + 1) + k(k − 1)(2k + 1)2

2(2k + 1)2

4. T 7TkB∗∗
2n+1−7TkB∗∗

2n−TkB∗∗
2n−1+TkB∗∗

2n−2−2

4

=
[(4k2 − 1)(TkB

∗∗
4n+3 − TkB∗∗4n+2) + 2(2k − 1)2Tkb

∗∗
2n+1 − (4k − 2)(2k2 − k + 1)− 4]

16(2k + 1)
.

Proof. Using the Binet formulas Bn =
(
α2n−β2n

4
√
2

)
and TkB∗n = (2k + 1)Bn with αβ = −1, we

have

TTkB∗
n+TkB∗

n−1−(2k+1)

4k+2

=

(TkB∗
n+TkB

∗
n−1−(2k+1)

4k+2

)(TkB∗
n+TkB

∗
n−1−(2k+1)

4k+2
+ 1
)

2

=
(TkB

∗
n + TkB

∗
n−1)

2 − (2k + 1)2

8(2k + 1)2

=
(Bn +Bn−1)

2 − 1

8

=
(α2n − β2n + α2n−2 − β2n−2)2 − 32

256

=
[(α2n−1(α + α−1)− β2n−1(β + β−1)]2 − 32

256

=
(α− β)2(α2n−1 + β2n−1)2 − 32

256

=
(α2n−1 + β2n−1)2 − 4

32

=
(α2n−1 − β2n−1)2 − 8

32

=

(
α2n−1 − β2n−1

4
√
2

)2

− 1

4

=

(
α2n−1 − β2n−1

4
√
2

− 1

2

)(
α2n−1 − β2n−1

4
√
2

+
1

2

)
=

(
Tkb

∗
2n−1 − Tkb∗2n−2
4k − 2

− 1

2

)(
Tkb

∗
2n−1 − Tkb∗2n−2
4k − 2

+
1

2

)
=

[Tkb
∗
2n−1 − Tkb∗2n−2 − (2k − 1)][Tkb

∗
2n−1 − Tkb∗2n−2 + (2k − 1)]

4(2k − 1)2
.

This proves 1. The proofs of 2.– 4. follow similarly and hence, they are omitted.

Theorem 2.8. Let n be any positive integer. Then, for triangular numbers, we have

1. TTkB∗
n+TkB∗

n−1−(2k+1)

4k+2

=
(Tkb

∗∗
n − k)(Tkb∗∗n + k + 1)

(2k + 1)2

2. T 7TkB∗
n−TkB∗

n−1−(2k+1)

4k+2

=
TkB

∗
2n+1 + Tkb

∗∗
2n+1 − (3k + 1)

8(2k + 1)

3. TTkB∗∗
2n+1−TkB∗∗

2n+TkB∗∗
2n−1−TkB∗∗

2n−2−2

4

= [2(2k − 1)2(2Tkb
∗
2n−2 − Tkb∗2n−3 + (k − 1)Cn−1 − k)

(2Tkb
∗
2n−2 − Tkb∗2n−3 + (k − 1)Cn−1 + k + 1) + k(k − 1)(2k + 1)2]/[2(2k + 1)2]
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4. T 7TkB∗∗
2n+1−7TkB∗∗

2n−TkB∗∗
2n−1+TkB∗∗

2n−2−2

4

= [3(4k2 − 1)(TkB
∗∗
4n+3 − TkB∗∗4n+2)− 12 + 2(2k − 1)2

[(2k + 1)(2Tkb
∗
4n − Tkb∗4n−1)− (k − 1)(2B2n − 1)]− (12k − 6)(2k2 − k + 1)]/[48(2k + 1)].

Proof. 1. In view of the Theorem 2.7, it is easy to show that

TTkB∗
n+TkB∗

n−1−(2k+1)

4k+2

=

(
α2n−1 − β2n−1

4
√
2

− 1

2

)(
α2n−1 − β2n−1

4
√
2

+
1

2

)

=

[
(2k + 1)

(
α2n−1−β2n−1

4
√
2

)
− 1

2
− k
][

(2k + 1)

(
α2n−1−β2n−1

4
√
2

)
− 1

2
+ (k + 1)

]
(2k + 1)2

=
(Tkb

∗∗
n − k)(Tkb∗∗n + k + 1)

(2k + 1)2
.

The proofs of 2.– 4. follows similarly and hence, they are omitted.

Theorem 2.9. The general terms of Sn, sn and tn for n ≥ 1 are given by

Sn =

(
Tkb

∗
2n+1 − Tkb∗2n − Tkb∗2n−1 + Tkb

∗
2n−2

4(2k − 1)

)2

, sn =
TkB

∗
n

2k + 1
, tn =

TkC
∗
n − (2k + 1)

2(2k + 1)

or

Sn =

(
Tkb

∗∗
n+1 − Tkb∗∗n
2(2k + 1)

)2

, sn =
TkB

∗∗
2n+1 − TkB∗∗2n
2(2k − 1)

, tn =
TkC

∗∗
2n+1 − TkC∗∗2n − 2(2k − 1)

4(2k − 1)
.

Proof. Since Sn = s2n = B2
n and

Bn =
(7k − 3k − 2)(bn+1 − bn)

4(2k − 1)

=
k(bn+2 − bn−1)− (3k + 2)(bn+1 − bn)

4(2k − 1)

=
1

4(2k − 1)

(
[kbn+2 − (k + 1)bn+1 − 1]− [(k + 1)bn+1 − kbn]

− [kbn+1 − (k + 1)bn − 1] + [(k + 1)bn − kbn−1]
)

=
Tkb

∗
2n+1 − Tkb∗2n − Tkb∗2n−1 + Tkb

∗
2n−2

4(2k − 1)
(see Theorem 2.5),

the first identity follows. The second identity can be proved using Theorem 2.3-(a) and the third
identity follows from

tn =
α2n + β2n − 2

4
=
Cn − 1

2
=

(2k + 1)Cn − (2k + 1)

2(2k + 1)
.

Other three identities can be proved in a similar fashion.
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Theorem 2.10. The general terms of Sn for n ≥ 1 is given by

1. Sn =

(
−2TkB∗

n−1+TkC
∗
n−TkC∗

n−1

2(2k+1)

)2

2. Sn =
[2TkB

∗
n−1+TkC

∗
n−1−(2k+1)][4TkB

∗
n+2TkB

∗
n−1+TkC

∗
n−1+(2k+1)]+4(2k+1)TkB

∗
n

4(2k+1)2

3. Sn =

(
−2TkB∗∗

2n−1+2TkB
∗∗
2n−2+TkC

∗∗
2n+1−TkC∗∗

2n−TkC∗∗
2n−1+TkC

∗∗
2n−2

4(2k−1)

)2

4. Sn = [(2TkB
∗∗
2n−1 − 2TkB

∗∗
2n−2 + TkC

∗∗
2n−1 − TkC∗∗2n−2 − 4k + 2)(4TkB

∗∗
2n+1 − 4TkB

∗∗
2n +

2TkB
∗∗
2n−1−2TkB∗∗2n−2+TkC∗∗2n−1−TkC∗∗2n−2+4k−2)+8TkB

∗∗
2n+1−8TkB∗∗2n]/[16(2k−1)2].

Proof. Proof of this theorem is similar to that of Theorem 2.7 and hence, we prefer to omit it.

Theorem 2.11. For n ≥ 1, the general terms of Tk-subbalancing and Tk-subcobalancing num-
bers are

TkB
∗
n = (2k + 1)sn

Tkb
∗
2n = −2sn+1 + (2k − 1)sn + 2tn+1 − tn

Tkb
∗
2n−1 = (2k − 6)sn + sn−1 + 4tn − tn−1 + 1

TkC
∗
n = (2k + 1)(2tn + 1)

Tkc
∗
2n = (2k + 1)sn+1 − (6k − 1)sn

Tkc
∗
2n−1 = (6k − 1)sn − (2k + 1)sn−1

and the general terms of Tk-superbalancing and Tk-supercobalancing numbers are

TkB
∗∗
2n = −(2k − 1)sn + k(2tn + 1)

TkB
∗∗
2n−1 = (2k − 1)sn−1 + k(2tn−1 + 1)

Tkb
∗∗
n = (2k + 1)(tn − sn) + k

TkC
∗∗
2n = 8ksn − (2k − 1)(2tn + 1)

TkC
∗∗
2n−1 = 8ksn−1 + (2k − 1)(2tn + 1)

Tkc
∗∗
n = (2k + 1)(sn + sn−1).

Proof. Proceeding as in Theorem 2.7, it is easy to obtain these representations. Hence, we prefer
to omit the proof.

Theorem 2.12. For any natural number n ≥ 1, the sums of first n-terms of Sn, sn, tn are

n∑
i=1

Si =
33(TkB

∗
n)

2 − (TkB
∗
n−1)

2 − (2k + 1)2(2n− 1)

32(2k + 1)2
,

n∑
i=1

si =
5TkB

∗
n − TkB∗n−1 − (2k + 1)

4(2k + 1)
,

n∑
i=1

ti =
7TkB

∗
n − TkB∗n−1 − (2k + 1)(2n+ 1)

4(2k + 1)
,
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or
n∑
i=1

Si =
824(Tkb

∗∗
n )2 − 328Tkb

∗∗
n Tkb

∗∗
n−1 + 660Tkb

∗∗
n + 132 + 32(Tkb

∗∗
n−1)

2 − 132Tkb
∗∗
n−1 − (2k + 1)2(8n− 4)

128(2k + 1)2
,

n∑
i=1

si =
5(TkB

∗∗
2n+1 − TkB∗∗2n)− (TkB

∗∗
2n−1 − TkB∗∗2n−2)− (4k − 2)

8(2k − 1)
,

n∑
i=1

ti =
7(TkB

∗∗
2n+1 − TkB∗∗2n)− (TkB

∗∗
2n−1 − TkB∗∗2n−2)− (4k − 2)(2n+ 1)

8(2k − 1)
.

Proof. Since Sn = s2n and
n∑
i=1

Si =
33Sn − Sn−1 − 2n+ 1

32
(see [21, p. 116]), using

Theorem 2.3, it is easy to see that

n∑
i=1

Si =
33(2k + 1)2s2n − (2k + 1)2s2n−1 − (2k + 1)2(2n− 1)

32(2k + 1)2

=
33(TkB

∗
n)

2 − (TkB
∗
n−1)

2 − (2k + 1)2(2n− 1)

32(2k + 1)2
.

The other summation results follow similarly. Hence, we omit their proofs.

Theorem 2.13. Let n ≥ 1 be any natural number, then

1. Sn = TTkB∗
n+1−TkB∗

n−1−2(2k+1)

4(2k+1)

2. Sn = T (2k−2)TkB∗
n−1−(2k−4)TkB∗

n+(2k+1)(Tkb∗2n−1−Tkb∗2n−2−1)

2(2k+1)

3. Sn = TTkB∗∗
2n+3−TkB∗∗

2n+2−TkB∗∗
2n−1+TkB∗∗

2n−2−4(2k−1)

8(2k−1)

4. Sn = T (2k+1)(TkB∗∗
2n+1−TkB∗∗

2n)+(4k−2)Tkb∗∗n −2k(2k−1)

2(4k2−1)

.

Proof. In view of Theorem 2.3, we have

TTkB∗
n+1−TkB∗

n−1−2(2k+1)

4(2k+1)

=
(TkB

∗
n+1 − TkB∗n−1)2 − 4(2k + 1)2

32(2k + 1)2

=
(Bn+1 −Bn−1)

2 − 4

32

=

(
α2n+2−β2n+2

4
√
2

− α2n−2−β2n−2

4
√
2

)2 − 4

32

=
[α2n(α2 − α−2)− β2n(β2 − β−2)]2 − 128

1024

=
(α2 − β2)2(α2n + β2n)2 − 128

1024

=
α4n + β4n − 2

32
= Sn.

This completes the proof 1. The proofs of 2.–4. are similar to that of 1. and hence, we omit
them.
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Theorem 2.14. For any natural number n ≥ 1, we have

1.
√

8(sn−1 + tn−1)2 + 8(sn−1 + tn−1) + 1

=
TkB

∗
n + TkB

∗
n−1

(2k + 1)
or
TkB

∗∗
2n+1 − TkB∗∗2n + TkB

∗∗
2n−1 − TkB∗∗2n−2

2(2k − 1)

2.
√
Sn − tn − 2sn(sn−1 + tn−1)

=
Tkb

∗∗
n − k

2k + 1
or
Tkb

∗∗
2n−1 − Tkb∗∗2n−2 − (2k − 1)

2(2k − 1)

3.
√

(sn−1 + tn−1)2 + tn + 2sn(sn−1 + tn−1)

=
(2k − 1)TkC

∗
n − (2k + 1)(Tkb

∗
2n−1 − Tkb∗2n−2)

2(4k2 − 1)

or
(2k + 1)(TkC

∗
2n+1 − TkC∗2n)− 4(2k − 1)Tkb

∗∗
n − (4k − 2)

2(4k2 − 1)

or
(4k + 2)(TkC

∗
2n+1 − TkC∗2n)− (2k − 1)(Tkc

∗∗
n+1 − 3Tkc

∗∗
n )

4(4k2 − 1)

4.

√
s2n + s2n−1 + t2n−1

2
=

2TkB
∗
n

2k + 1
or
TkB

∗∗
2n+1 − TkB∗∗2n
2k − 1

5.
√
t2n−1 =

Tkc
∗∗
n

2k + 1
or

(2k + 1)(Tkc
∗
2n−1 − Tkc∗2n−2)− (2k − 2)Tkb

∗∗
n+1 + 2k(k − 1)

2(2k + 1)

or
4(2k + 1)(Tkc

∗
2n−1 − Tkc∗2n−2)− (k − 1)(Tkc

∗∗
n+1 − 3Tkc

∗∗
n ) + 4(k − 1)

8(2k + 1)

and

√
t2n + 1 =

TkC
∗
n

2k + 1
or
TkC

∗∗
2n+1 − TkC∗∗2n
4k − 2

.

Proof. 1. Since
√

8b2n + 8bn + 1 = cn = α2n−1+β2n−1

2
and

sn−1 + tn−1 =
α2n−2 − β2n−2

4
√
2

+
α2n−2 + β2n−2 − 2

4
=
α2n−1 − β2n−1

4
√
2

− 1

2
= bn,

it follows that √
8(sn−1 + tn−1)2 + 8(sn−1 + tn−1) + 1

=
α2n−1 + β2n−1

2

=
α2n−1(α− β) + β2n−1(α− β)

2(α− β)

=
α2n−1(α + α−1) + β2n−1(−β−1 − β)

4
√
2

=
α2n − β2n

4
√
2

+
α2n−2 − β2n−2

4
√
2

=
TkB

∗
n + TkB

∗
n−1

2k + 1
.

The other cases can be proved similarly.
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3 Concluding remark

It can be seen from Theorem 2.2(b) that the Diophantine equations 8x2 + (2k + 1)2 = y2 and
8x2 + 8x− 4k2 − 4k + 1 = y2 results in exactly one class of solution when all the prime factors
of (2k + 1) are congruent to ±3 (mod 8). So, it is reasonable to look for the number of classes
of solutions when 2k + 1 involves prime factors other than ±3 (mod 8). After verifying several
number of special cases we believe that the following conjecture is true.

Conjecture 3.1. For k ≥ 1, let pm1
1 pm2

2 · · · pmr
r qn1

1 q
n2
2 · · · qns

s be a canonical decomposition of
2k + 1 with mi, ni ∈ N, pi and qj be primes, pi ≡ ±3 (mod 8) and qj ≡ ±1 (mod 8) for
1 ≤ i ≤ r, 1 ≤ j ≤ s. Then the solutions of the Diophantine equations 8x2 + (2k + 1)2 = y2

and 8x2 + 8x− 4k2 − 4k + 1 = y2 partition in M =
∏s

j=1(2nj + 1) classes each.
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