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1 Introduction

The study of the arithmetical properties of the Riemann zeta function at integer arguments

ζ (k) :=
∑
n≥1

1

nk
=

(−1)k−1

(k − 1)!

∫ 1

0

logk−1 x

1− x
dx, k = 1, 2, . . . ,
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as well as the results related to its series representations, has fascinated quite a number of
mathematicians since the first half of the XVII century [57, 58], both for its theoretical
implications and practical applications [32, 67]. Indeed, everything began when in 1644 the
Italian mathematician Pietro Mengoli proposed the famous Basel problem in mathematical
analysis, which also has relevance to number theory. Nine decades later, this problem was solved
by Leonhard Euler. In his famous book on Differential Calculus of 1755 he gave the general
case [11, 35]

ζ (2k) = (−1)k−1
(2π)2k B2k

2 (2k)!
, k = 1, 2, . . . ,

which is Euler’s celebrated formula, where B2k are the so-called Bernoulli numbers [5, 21], with
B2k ∈ Q for all k ∈ N. The generalization of the so-called Basel problem by Euler was a very
important step in number theory. Later on Euler proposed the following conjecture for the odd
case,

ζ (2k + 1) =
pk
qk
π2k+1,

where pk and qk are integer numbers. However, Euler’s efforts to validate his conjecture did not
work out [57], and meanwhile the conjecture itself has been refuted [39].

Regardless of Euler’s frustrated attempts, he was able to derive the following series
representation

ζ (3) = lim
n→∞

ζEn (3) , (1)

where

ζEn (3) = −4π2

7

n∑
k=0

ζ (2k)

(2k + 1) (2k + 2) 22k
. (2)

This representation has inspired a large number of mathematicians and has been recently
discovered by several authors in many different ways [18, 63, 64].

After these first investigations by Euler, nothing was known on the arithmetical nature of the
Riemann zeta function for odd arguments, until, on a Thursday afternoon in June 1978, at 2 pm,
at the Journés Arithmetiques held at Marseille–Luminy, Roger Apéry surprised the mathematical
community with a talk about the irrationality of ζ (3), see for instance [9, 20, 50, 57]. In this talk
he claimed to have proofs that both ζ (2) and ζ (3) were irrational.

The rational approximants of Apéry pn/qn, which are also named Apéry’s Diophantine
approximations, approach ζ(3) as n increases, i.e. converge for sufficiently large n as

lim
n→∞

∣∣∣ζ(3)− pn
qn

∣∣∣ = 0.

One of the most crucial ingredients in Apéry’s proof is the existence of the recurrence relation
[23, 50, 57]

(n+ 2)3yn+2 − (2n+ 3)(17n2 + 51n+ 39)yn+1 + (n+ 1)3 yn = 0, n ≥ 0, (3)

which is satisfied simultaneously by both the numerators pn and denominators qn of the
Diophantine approximations pn/qn to ζ (3) with the respective initial condition

p0 = 0, p1 = 6, q0 = 1, q1 = 5.
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The rational approximants pn and qn are also given by the explicit representation of the sequences
in question [9, 20, 50]

qn :=
∑

0≤k≤n

(
n+ k

k

)2(
n

k

)2

and pn :=
∑

0≤k≤n

(
n+ k

k

)2(
n

k

)2

γn,k, (4)

where

γn,k =
∑

1≤j≤n

1

j3
+
∑

1≤j≤k

(−1)j−1

2j3

(
n+ j

j

)−1(
n

j

)−1
.

Observe that, from (3) we can deduce that

det

(
pn qn
pn−1 qn−1

)
=

6

n3 , (5)

see [20, 50] for more details.
In order to reformulate the recurrence relations in terms of a continued fraction representation

let us recall its definition and a basic lemma. We say that a number α can be written as an infinite
irregular continued fraction expansion, if it admits the following representation

α = a0 +
b1 |
| a1

+
b2 |
| a2

+ · · ·+ bn |
| an

+ · · · = a0 +
b1

a1 +
b2

a2 +
b3

a3+. . .
an−1 +

bn
an+. . .

Lemma 1.1. [31, p. 31] Let (pn)n≥−1 and (qn)n≥−1 be two sequences of numbers such that
q−1 = 0, p−1 = q0 = 1 and pnqn−1 − pn−1qn 6= 0 for n = 0, 1, 2, . . .. Then there exists a unique
irregular continued fraction

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

+ · · · , (6)

whose n-th numerator is pn and n-th denominator is qn, for each n ≥ 0. More precisely,

a0 = p0, a1 = q1, b1 = p1 − p0q1,

an =
pnqn−2 − pn−2qn

pn−1qn−2 − pn−2qn−1
, bn =

pn−1qn − pnqn−1
pn−1qn−2 − pn−2qn−1

, n = 0, 1, 2, . . .

Using Lemma 1.1, from (5) we obtain

ζ (3) =
6 |
| 5
− 1 |
| 117

− 64 |
| 535

− · · · − n6 |
| (2n+ 1)

(
17n2 + 17n+ 5

) − · · · .

Then, recognizing that ζ (3)− p0/q0 = ζ (3), it can be induced that (see [20,50] for more details)∣∣∣∣ζ (3)− pn
qn

∣∣∣∣ =
∑
k≥n+1

6

k3qk−1qk
= O

(
q−2n
)
.
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Observe that, by the recurrence relation (3) and Poincaré’s theorem [44, 49] that qn = O ($4n),
where $ =

√
2 + 1 is the silver ratio. Moreover, by the prime number theorem, it can be shown

that

Ln :=
∏
p≤n

p

 log n

log p


≤
∏
p≤n

n = O
(
e(1+ε)n

)
, ∀ ε > 0, (7)

where the product is over the prime numbers p below or equal to n. Therefore, setting
vn = 2pnL3

n ∈ Z and un = 2qnL3
n ∈ Z, we obtain un = O ($4ne3n) and∣∣∣∣ζ (3)− vn

un

∣∣∣∣ = O
(
u−(1+δ)n

)
,

where
δ =

logα− 3

logα + 3
= 0.080529 . . . > 0.

This proves Apéry’s theorem by virtue of the criterion for irrationality.

Theorem 1.2. If there is a δ > 0 and a sequence (vn/un)n≥0 of rational numbers such that
vn/un 6= x and ∣∣∣∣x− vn

un

∣∣∣∣ < 1

u1+δn

, n = 0, 1, . . . ,

then x is irrational.

Apéry’s irrationality proof of ζ (3) operates with the series representation

ζ (3) =
5

2

∑
n≥1

(−1)n−1

n3

(
2n

n

) ,
which converges faster than (1), see [63, 64] for more details. The same was first obtained by A.
A. Markov in 1890 [38]. In addition, Apéry’s recurrence relation (3) leads to the characteristic
equation λ2 − 34λ+ 1 = 0, which is associated to the irrationality measure µ = 13.4178202 . . .,
see [68] for more details.

Although initially somewhat controversial, the aforementioned result inspired several
mathematicians to construct different methods to explain the irrationality of ζ (3) [10, 16, 40, 51,
60,61,66] as well as to obtain other results related with ζ(2k+1), k ≥ 1, [6,19,24,30,34,36,59].
Apéry’s phenomenon consists of the observation that some of these alternative methods leads to
the same sequence of Diophantine approximations (4) to ζ (3), and therefore, to the same char-
acteristic equation λ2 − 34λ + 1 = 0, corresponding to the recurrence relation (3), which is
associated to the irrationality measure [68] obtained from Apéry’s results [9, 10, 20].

In Section 2 variants of Apéry’s phenomenon are recalled in order to put the new contribution
into context. Though the irrationality of ζ(3) has been shown with different approaches, always
the same rational approximants of Apérys are obtained.

In Section 3, we follow the aforementioned approaches of Rhin and Viola [52,53], and present
a series representation for ζ (3), which only depends on one single integer parameter. As a
modification of the approach of Nesterenko (1996) we propose to replace (11) by (18). This
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modification has a fundamental impact for the deduction of rational approximants to ζ (3) that
leads to a series representation for Apéry’s constant, which converges faster than some series
proposed by several other authors. In order to complete this, we will deduce a Hermite–Padé
approximation problem using Sorokin’s ideas [60, 65]. By this approach we obtain new rational
approximants to ζ (3) that prove its irrationality, but where Apéry’s phenomenon does not appear.

In Section 4 we deduce a new recurrence relation as well as a new continued fraction
expansion connected to ζ (3). Finally, in Section 5 the convergence rate of several series
representations of ζ (3) are compared.

2 Apéry’s phenomenon

During several years Apéry’s phenomenon was interpreted by prestigious mathematicians from
the point of view of different analytic methods. In 1979, a few months after the appearance
of Apéry’s celebrated proof of the irrationality of ζ (3), the Dutch mathematician Frits Beukers
(1979) interpreted Apéry’s phenomenon expressing the sequence of rational approximations to
ζ (3) in terms of a triple integral [13, 14, 41]

qnζ (3)− pn = −
∫ 1

0

∫ 1

0

log xy

1− xy
Ln (x)Ln (y) dxdy (8)

=

∫ 1

0

∫ 1

0

∫ 1

0

(xyz (1− x) (1− y) (1− z))n

(1− (1− xy) z)n+1 dxdydz, (9)

where n ∈ N and

Ln (x) ≡ 1

n!

dn

dxn
xn (1− x)n =

∑
0≤k≤n

(−1)k
(
n+ k

k

)(
n

k

)
xk,

it is the Legendre-type polynomial, orthogonal with respect to the Lebesgue measure on (0, 1).
Moreover, Beukers (1979) showed that (8) behaves as O ($−4n), which proves Apéry’s

theorem. It is important to emphasize that this proof of irrationality of ζ (3) published by Beukers
(1979) is much simpler and more comprehensible compared to the original proof given by Apéry.
This approach was continued in later works [22, 27–29, 53, 72].

Indeed, for ζ(2) Rhin and Viola (1996) consider for ζ(3) a generalization of∫ 1

0

∫ 1

0

(xy (1− x) (1− y))n

(1− xy)n+1 dxdy ∈ Q− Zζ (2) ,

given by ∫ 1

0

∫ 1

0

xh (1− x)i yj (1− y)k

(1− xy)i+j−l+1
dxdy ∈ Q− Zζ (2) ,

which depends on the five non-negative parameters h, i, j, k and l, see [52] for more details.
Later, the same authors (2001) consider a family of integrals generalizing (9) by∫ 1

0

∫ 1

0

∫ 1

0

xh (1− x)l yk (1− y)s zj (1− z)q

(1− (1− xy) z)q+h−r+1
dxdydz ∈ Q−2Zζ (3) ,
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which depends on eight non-negative parameters h, j, k, l, m, q, r and s, subject to the conditions
j + q = l+ s, and m = k+ r− h, see [53] for more details. Indeed, these results combined with
the group method improve the irrationality measures [71] for ζ (2) and ζ (3).

Two years after Apéry’s result, Beukers (1981) considered the following rational approxima-
tion problem in an attempt to formulate Apéry’s proof in a more natural way. It consisted in
finding the polynomials An (z) , Bn (z), Cn (z) and Dn (z) of degree n such that

An (z) Li1 (z) +Bn (z) Li2 (z) + Cn (z) = O
(
z2n+1

)
,

An (z) Li2 (z) + 2Bn (z) Li3 (z) +Dn (z) = O
(
z2n+1

)
,

where

Lin (z) :=
∑
k≥1

zk

kn
,

denotes the polylogarithm of order n. Thereafter, Beukers introduced the rational function

Bn (z) :=
(n− z + 1)2n

(−z)2n+1

, (10)

from which he deduced Apéry’s rational approximants (4) by computing a partial fraction
expansion, see [15] for more details. Here, (·)n denotes the Pochhammer symbol defined by

(z)k :=
∏

0≤j≤k−1

(z + j) , k ≥ 1,

(z)0 = 1, (−z)k = 0, if z < k,

which is also called the shifted factorial and in terms of the gamma function given by

(z)k =
Γ (z + k)

Γ (z)
, k = 0, 1, 2, . . .

On the other hand, in 1983, Apéry’s phenomenon was interpreted by Gutnik (1983) in terms of
Meijer’s G-functions [37], i.e.,

qnζ (3)− pn = G4,2
4,4

 −n,−n, n+ 1, n+ 1

1

0, 0, 0, 0

 .

This approach allowed him to prove several partial results on the irrationality of certain quantities
involving ζ (2) and ζ (3), see [26] for more details.

Later, Sorokin (1993) obtained Apéry’s rational approximants (4) in a similar way as Beukers
(1979), by considering the approximation problem

An (z) f1 (z) +Bn (z) f2 (z)− Cn (z) = O
(
z−n−1

)
,

An (z) f2 (z) + 2Bn (z) f3 (z)−Dn (z) = O
(
z−n−1

)
,

where An (z) and Bn (z) are polynomials of degree n and

f1 (z) =

∫ 1

0

dx

z − x
dx, f2 (z) = −

∫ 1

0

log x

z − x
dx, f3 (z) =

1

2

∫ 1

0

log2 x

z − x
dx.
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Thus, he proved that the solution of this problem is given by the orthogonality relations∫ 1

0

(An (x)−Bn (x) log x)xk dx = 0,

k = 0, . . . , n− 1,∫ 1

0

((An (x)−Bn (x) log x) log x)xk dx = 0,

together with the additional conditionAn (1) = 0. Then, using the Mellin convolution [56,65,66]
he obtains

qnζ (3)− pn =

∫ 1

0

(An (x)−Bn (x) log x) log x

1− x
dx

= −
∫ 1

0

∫ 1

0

log xy

1− xy
Ln (x)Ln (y) dxdy,

which implies the irrationality of ζ (3) according to Beukers’ estimation given by (8), see for
instance [13, 60, 65].

After this, inspired by Gutnik (1983), Nesterenko (1996) proposed a new proof of Apéry’s
theorem. For this purpose, he considered the modification

Nn (z) := Bn (z + n+ 1) =
(−z)2n

(z + 1)2n+1

, (11)

of Beukers’ rational function (10) and proved the expression

qnζ (3)− pn = −
∑
k≥0

d

dk
Nn (k) =

1

2πi

∫
L

Nn (ν)
( π

sin πν

)2
dν, (12)

for the error-term sequence, where L is the vertical line Re z = C, 0 < C < n+ 1, oriented from
top to bottom and

d

dz
Nn (z) = 2Nn (z)

( ∑
0≤k≤n−1

1

t− k
−

∑
1≤k≤n+1

1

t+ k

)
.

Indeed, the use of Laplace’s method allowed him to estimate the above contour integral (12)

yielding the behavior O ($−4n), see [41] for more details. Moreover, he discovered a new con-
tinued fraction expansion for ζ (3) using the so-called Meijer functions [37], which have the form

2ζ (3) = 2 +
1 |
| 2

+
2 |
| 4

+
1 |
| 3

+
4 |
| 2

+
2 |
| 4

+
6 |
| 6

+
4 |
| 5

+ · · · ,

where the numerators an, n ≥ 2, and denominators bn, n ≥ 1, are defined by

b4k+1 = 2k + 2, a4k+1 = k (k + 1) ,

b4k+2 = 2k + 4, a4k+2 = (k + 1) (k + 2) ,

b4k+3 = 2k + 3, a4k+3 = (k + 1)2 ,

b4k = 2k, a4k = (k + 1)2 .
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In the same year, Prévost (1996) published a new way of interpreting Apéry’s phenomenon by
recovering Apéry’s sequences using Padé approximations to the asymptotic expansion of the
partial sum of ζ (3) and proving that

|qnζ (3)− pn| ≤
4π2

(2n+ 1)2

(
n+ k

k

)−2(
n

k

)−2
.

Based on the hypergeometric ideas of Nesterenko [40], Rivoal and Ball [12, 54], and on
Zeilberger’s algorithm of creative telescoping [45], Zudilin (2002) connected Apéry’s rational
aproximants with the following ‘very-well-posed hypergeometric series’ [25, 72]

qnζ (3)− pn =
n!7 (3n+ 2)!

(2n+ 1)!5

× 7F6


3n+ 2,

3n

2
+ 2, n+ 1, . . . , n+ 1

1
3n

2
+ 1, 2n+ 2, . . . , 2n+ 2

 < 20 (n+ 1)4$−4n,

which allowed him to prove the irrationality of ζ (3), see [70] for more details. Here, rFs denotes
the ordinary hypergeometric series [25, 33, 43] at the variable z defined by

rFs

 a1, . . . , ar
z

b1, . . . , bs

 :=
∑
k≥0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
. (13)

Apéry’s phenomenon is not a necessary feature in alternative proofs of Apéry’s theorem. There
are also proofs of Apéry’s theorem, where Apéry’s phenomenon does not appear.

Zudilin (2002) deduced a new sequence of rational approximants {p̃n/q̃n} to ζ (3), whose
numerator p̃n and denominator q̃n satisfy the recurrence relation

(n+ 1)4 ϕ0 (n) yn+1 − ϕ1 (n) yn + 4 (2n− 1)ϕ2 (n) yn−1

− 4 (n− 1)2 (2n− 1) (2n− 3)ϕ0 (n+ 1) yn−2 = 0, (14)

with initial conditions

p̃0 = 0, p̃1 = 17, p̃2 =
9405

8
, q̃0 = 1, q̃1 = 14, q̃2 = 978,

where
ϕ0 (n) = 946n2 − 731n+ 153,

ϕ1 (n) = 2
(
104060n6 + 127710n5 + 12788n4 − 34525n3 − 8482n2 + 3298n+ 1071

)
,

and
ϕ2 (n) = 3784n5 − 1032n4 − 1925n3 + 853n2 + 328n− 184.

Here, the approach does not show Apéry’s phenomenon, since the characteristic equation of (14)

does not coincide with that one obtained by Apéry and the rational approximants do not prove the
irrationality ζ (3), see [69] for more details.
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In addition, Nesterenko (2009) published a new proof of the irrationality of ζ (3). In this
work, he proved that

(−1)n L3
n

∑
k≥1

∂

∂k

k−2 [(n−1)/2]∏
j=1

k − j
k + j

[n/2]∏
j=1

k − j
k + j

 =

(−1)n−1 L3
n (2Dnζ (3)− Jn) < (4/5)n ,

where Dn and Jn are defined in [42, eq. 5]. From this statement, the irrationality of ζ (3) can be
proven. Here, Apéry’s phenomenon does not appear, since neither the rational approximants nor
the irrationality measure coincide with Apéry’s results [42].

Most recently [58], from a modification of the rational functionNn (z), Soria-Lorente (2014)
deduced the recurrence relation

(n+ 2)4
(
24n3 + 30n2 + 16n+ 3

)
yn+2

− 4(n+ 1)(204n6 + 1173n5 + 2668n4 + 3065n3

+ 1905n2 + 634n+ 86)yn+1

+ n4
(
24n3 + 102n2 + 148n+ 73

)
yn = 0, n ≥ 1, (15)

which is satisfied by the numerators p̂n and denominators q̂n of the Diophantine approximations
to ζ (3) given by

q̂n =
∑

0≤k≤n

d
(n)
k and p̂n =

∑
1≤k≤n

d
(n)
k H

(3)
k + 2−1

∑
1≤k≤n

c
(n)
k H

(2)
k , (16)

where

d
(n)
k = n−1

(
n+ k − 1

k

)2(
n

k

)2

+ n−1
(
n+ k − 1

k

)2(
n− 1

k − 1

)(
n

k

)
,

c
(n)
k = 2d

(n)
k

[
2Hk −Hn+k−1 −Hn−k − 2−1 (n+ k)−1

]
, k = 0, . . . , n,

and H(r)
k denotes the harmonic number k of order r defined by

H
(r)
k =

∑
1≤j≤k

1

jr
. (17)

Hence, the irregular continued fraction expansion

ζ (3) =
7 |
| 6

+
−146 |
| 827

+
−38864 |
| Q3

+
P4 |
| Q4

+ · · ·+ Pn |
| Qn

+ · · · ,

could be derived, where

Pn = −(n− 2)4(n− 1)4
(
24n3 − 186n2 + 484n− 423

) (
24n3 − 42n2 + 28n− 7

)
,

and

Qn = 4(n− 1)
(
204n6 − 1275n5 + 3178n4 − 3999n3 + 2667n2 − 910n+ 126

)
,
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as well as the following series expansion

ζ (3) =
7

6
+
∑
n≥1

24n3 + 30n2 + 16n+ 3

2n3 (n+ 1)3 ΘnΘn+1

,

with

Θn = 4F3

 −n,−n, n, n+ 1

1

1, 1, 1

 .

Observe that the characteristic equation of (3) coincides with that of (15), which is λ2−34λ+1 =

0, and its zeros are λ1 = $4n and λ2 = $−4n respectively. Hence, from Poincaré’s theorem [44,
49] it has the behavior q̂n = O ($4n) and q̂nζ (3)− p̂n = O ($−4n), as n goes to infinity, which
proves Apéry’s theorem. Moreover, in such an instance, the corresponding irrationality measure
also coincides with the one obtained by Apéry, see also [10]. However, Apéry’s phenomenon
does not appear in this case, since the rational approximants (16) to ζ (3) do not coincide with
(4).

3 Hermite–Padé approximation problem connected to ζ(3)

Our interest in this Section is to get an Hermite–Padé approximation problem connected to ζ (3),
from which in the following section we deduce a new continued fraction expansion as well as a
new series representation to ζ (3). For this purpose, inspired by the results obtained by Sorokin
(1998) ( [60], see also [52, 53, 58, 65]), we introduce the following modification of the rational
function Nn (z) defined by

F (ρ)
n,1 (z) := Nn (z)

(
z − ρn
z − n+ 1

)
=

(−z)2n−1 (z − n+ 1) (z − ρn)

(z + 1)2n+1

, (18)

which consists in changing the simple zero z = n− 1 of the rational functionNn (z), (11) by the
zero z = ρn, with ρ ∈ N. Because of its specific form, we refer to F (ρ)

n,1 as the Nesterenko-like
rational function. For abbreviation we denote

F (ρ)
n,2 (z) =

d

dz
F (ρ)
n,1 (z) .

Lemma 3.1. Let ρ be an integer number. Then, the following relation

F (ρ)
n,i (z) =

∫ 1

0

ψ
(ρ)
n,i (x)xz dx, i = 1, 2, (19)

holds, where

ψ
(ρ)
n,1 (x) := A(ρ)

n (x)−B(ρ)
n (x) log x and ψ

(ρ)
n,2 (x) := ψ

(ρ)
n,1 (x) log x, (20)

being A(ρ)
n (x) and B(ρ)

n (x) polynomials of degree exactly n defined by

A(ρ)
n (x) :=

∑
0≤k≤n

a
(ρ)
k,nx

k and B(ρ)
n (x) :=

∑
0≤k≤n

b
(ρ)
k,nx

k, (21)
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with

a
(ρ)
k,n = 2b

(ρ)
k,n

[
2Hk −Hn+k−1 −Hn−k +

(ρ+ 1)n+ 2k + 1

2 (k + ρn+ 1) (n+ k)

]
,

b
(ρ)
k,n =

(
n+ k

k

)2(
n

k

)2

(k + ρn+ 1) (n+ k)−1 , k = 0, . . . , n,

(22)

where H(r)
k denotes the harmonic number k of order r given by (17).

Though the expression of the orthonogonality relation (19) resembles that of Sorokin (1993)
the the approximants of Sorokin coincide with Apérys approximants, whereas the new
approximants (21) do not.

Proof. In fact, let us expand the functions F (ρ)
n,1 (z) and F (ρ)

n,2 (z) on the sum of partial fractions

F (ρ)
n,i (z) = (−1)δi,2

∑
0≤k≤n

(
ã
(ρ)
k,n

(z + k + 1)1+δi,2
+

2δi,2 b̃
(ρ)
k,n

(z + k + 1)δi,2+2

)
, (23)

with i = 1, 2. Clearly

b̃
(ρ)
k,n = (z + k + 1)2F (ρ)

n,1 (z)
∣∣∣
z=−k−1

and ã
(ρ)
k,n = Res

z=−k−1
F (ρ)
n,1 (z) ,

which coincide with (22). Here, Res
z=z0

f (z) denotes the residue of f (z) at z = z0. In addition,

applying the identity
(−1)j j!

(i+ 1)j+1 =

∫ 1

0

xi logj x dx, (24)

to (23) we have for i = 1, 2

F (ρ)
n,i (z) =

∑
0≤k≤n

∫ 1

0

(
a
(ρ)
k,nx

z+k logδi,2 x− b(ρ)k,nx
z+k log1+δi,2 x

)
dx.

Hence

F (ρ)
n,i (z) =

∫ 1

0

( ∑
0≤k≤n

a
(ρ)
k,nx

k − log x
∑

0≤k≤n

b
(ρ)
k,nx

k

)
xz logδi,2 x dx,

which completes the proof.

For abbreviation we denote

R(ρ)
n,i (z) =

(
−1

2

)δi,2∑
j≥0

z−j−1F (ρ)
n,i (j) .

Lemma 3.2. Let Pn be the (n + 1)-dimensional subspace of the linear space P of polynomials
with complex coefficients. Then, the following relations hold

R(ρ)
n,i (z) = (−1)1+δi,2 B(ρ)

n (z) fδi,2+2 (z)

+
(
−2−1

)δi,2 A(ρ)
n (z) f1+δi,2 (z)− C(ρ)

n,i (z)

=
(
−2−1

)δi,2 ∫ 1

0

ψ
(ρ)
n,i (x)

z − x
dx, i = 1, 2, n = 0, 1, . . . ,
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where

fj (z) =
1

(j − 1)!

∫ 1

0

logj−1 x

z − x
dx, j ∈ N, (25)

as well as

C
(ρ)
n,i (z) =

(
−2−1

)δi,2 ∫ 1

0

ψ
(ρ)
n,i (z)− ψ(ρ)

n,i (x)

z − x
dx, C

(ρ)
n,i (z) ∈ Pn. (26)

By δi,j we denote the Kronecker delta function.

Proof. In fact, from (23) we get

R(ρ)
n,i (z) =

∑
j≥0

z−j−1
∑

0≤k≤n

b
(ρ)
k,n

(j + k + 1)δi,2+2
+ 2−δi,2

∑
j≥0

z−j−1
∑

0≤k≤n

a
(ρ)
k,n

(j + k + 1)1+δi,2
.

Next, interchanging the sums we have

R(ρ)
n,i (z) =

∑
0≤k≤n

b
(ρ)
k,nz

k
∑
j≥0

z−(j+k+1)

(j + k + 1)2+δi,2

+2−δi,2
∑

0≤k≤n

a
(ρ)
k,nz

k
∑
j≥0

z−(j+k+1)

(j + k + 1)1+δi,2

=
∑

0≤k≤n

b
(ρ)
k,nz

k
∑
l≥k+1

z−l

l2+δi,2
+ 2−δi,2

∑
0≤k≤n

a
(ρ)
k,nz

k
∑
l≥k+1

z−l

l1+δi,2
.

Splitting the sum over l as∑
l≥k+1

f (l) =
∑
l≥1

f (l)−
∑
1≤l≤k

f (l) =

(∑
l≥1

−
∑
1≤l≤k

)
f (l) ,

we deduce

R(ρ)
n,i (z) =

∑
0≤k≤n

b
(ρ)
k,nz

k

(∑
l≥1

−
∑
1≤l≤k

)
z−l

l2+δi,2
+ 2−δi,2

∑
0≤k≤n

a
(ρ)
k,nz

k

(∑
l≥1

−
∑
1≤l≤k

)
z−l

l1+δi,2
.

Evidently

R(ρ)
n (z) =

∑
0≤k≤n

b
(ρ)
k,nz

k
∑
l≥1

z−l

l2+δi,2
+ 2−δi,2

∑
0≤k≤n

a
(ρ)
k,nz

k
∑
l≥1

z−l

l1+δi,2

−
∑

1≤k≤n

b
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l2+δi,2
− 2−δi,2

∑
1≤k≤n

a
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l1+δi,2
.

Clearly, from ∑
n≥1

z−n

nj
= (−1)j−1 fj (z) ,

we have

R(ρ)
n,i (z) = (−1)1+δi,2 B(ρ)

n (z) f2+δi,2 (z) +
(
−2−1

)δi,2 A(ρ)
n (z) f1+δi,2 (z)

−
∑

1≤k≤n

b
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l2+δi,2
− 2−δi,2

∑
1≤k≤n

a
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l1+δi,2
. (27)
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Then, using (24) as well as∫ 1

0

A(ρ)
n (z)− A(ρ)

n (x)

z − x
logδi,2 x dx =

∑
0≤k≤n

0≤j≤k−1

a
(ρ)
k,nz

k−j−1
∫ 1

0

xj logδi,2 x dx,

and ∫ 1

0

B(ρ)
n (z)−B(ρ)

n (x)

z − x
log1+δi,2 x dx =

∑
0≤k≤n

0≤j≤k−1

b
(ρ)
k,nz

k−j−1
∫ 1

0

xj log1+δi,2 x dx,

we deduce

−
∑

1≤k≤n

b
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l2+δi,2
− 2−δi,2

∑
1≤k≤n

a
(ρ)
k,nz

k
∑
1≤l≤k

z−l

l1+δi,2

=
(
−2−1

)δi,2 ∫ 1

0

ψ
(ρ)
n,i (x)− ψ(ρ)

n,i (z)

z − x
dx. (28)

Therefore, substituting the above in (27) we arrived at the first equality. Next, let us prove the
second equality. According to (20) and (25) we have

− 2−1
∫ 1

0

ψ
(ρ)
n,2 (x)

z − x
dx = 2−1

∫ 1

0

A(ρ)
n (z)− A(ρ)

n (x)

z − x
log x dx

− 2−1
∫ 1

0

B(ρ)
n (z)−B(ρ)

n (x)

z − x
log2 x dx

− 2−1A(ρ)
n (z) f2 (z) +B(ρ)

n (z) f3 (z)

= 2−1
∫ 1

0

ψ
(ρ)
n,2 (z)− ψ(ρ)

n,2 (x)

z − x
dx− 2−1A(ρ)

n (z) f2 (z) +B(ρ)
n (z) f3 (z) ,

and∫ 1

0

ψ
(ρ)
n,1 (x)

z − x
dx = −

∫ 1

0

A(ρ)
n (z)− A(ρ)

n (x)

z − x
dx

+

∫ 1

0

B(ρ)
n (z)−B(ρ)

n (x)

z − x
log x dx

+ A(ρ)
n (z) f1 (z)−B(ρ)

n (z) f2 (z)

=

∫ 1

0

ψ
(ρ)
n,1 (x)− ψ(ρ)

n,1 (z)

z − x
dx+ A(ρ)

n (z) f1 (z)−B(ρ)
n (z) f2 (z) .

Thus, taking (27) and (28) into account, we obtain the desired result.

Notice that, using the identity

1

z − x
=

∑
0≤j≤n−1−δi,2

xj

zj+1 +
xn−δi,2

zn−δi,2
1

z − x
, i = 1, 2,
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as well as the previous lemma we have for i = 1, 2 the following

(−2)δi,2R(ρ)
n,i (z)

=
∑

0≤j≤n−1−δi,2

1

zk+1

∫ 1

0

ψ
(ρ)
n,i (x)xj dx+

1

zn−δi,2

∫ 1

0

xn−δi,2ψ
(ρ)
n,i (x)

z − x
dx

=
∑

0≤k≤n−1−δi,2

1

zj+1

∫ 1

0

ψ
(ρ)
n,i (x)xj dx+O

(
z−n−δi,1

)
.

Next, taking Lemma 3.1 into account, as well as the zeros of the rational function (18), we infer
the following orthogonal conditions for i = 1, 2,∫ 1

0

ψ
(ρ)
n,i (x)xj dx = 0, j = 0, . . . , n− δi,2 − 1, (29)

from which we see thatR(ρ)
n,i (z) = O

(
z−n−δi,1

)
for i = 1, 2. Moreover, since F (ρ)

n,1 (z) = O (z−2)

as z →∞, we deduce

A(ρ)
n (1) =

∑
0≤k≤n

Res
z=−k−1

F (ρ)
n,1 (z) = −Res

z=∞
F (ρ)
n,1 (z) = 0. (30)

Having in mind all the above results, we observe that the functions (19) and the polynomials (21)

and (26) are connected to the following Hermite–Padé approximation problem

B̃(ρ,i)
n (z) fδi,2+2 (z) + Ã(ρ,i)

n (z) f1+δi,2 (z)− C(ρ)
n,i (z) = O

(
z−n−δi,1

)
,

A(ρ)
n (1) = 0,

where i = 1, 2, B̃(ρ,i)
n (z) = (−1)1+δi,2 B

(ρ)
n (z) and Ã(ρ,i)

n (z) = (−2−1)
δi,2 A

(ρ)
n (z).

From the Hermite–Padé approximation problem of the Lemma 3.2 we can deduce Corollary
3.2.1.

Corollary 3.2.1. Let n ≥ 1, then the following relation

R(ρ)
n,2 (1) = B(ρ)

n (1) ζ (3)− C(ρ)
n,2 (1) = −2−1

∫ 1

0

ψ
(ρ)
n,2 (x)

1− x
dx, (31)

holds, where
C

(ρ)
n,2 (1) =

∑
1≤k≤n

(
b
(ρ)
k,nH

3
k + 2−1a

(ρ)
k,nH

2
k

)
.

This corollary is a specific case of the Hermite–Padé problem where z = 1, whereB(ρ)
n (1) and

−C(ρ)
n,2 (1) are the denominators and numerators of the rational approximants of ζ(3), respectively,

and theR(ρ)
n,2 (1) are the residuals.
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4 Main results

In this Section the main results of this contribution are stated. We present a new recurrence
relation as well as a new continued fraction expansion and a new series expansions for ζ (3),
which depends on one single integer parameter.

With the abbreviations(
r
(ρ)
n

)
n≥1

=
{
R(ρ)
n,2 (1)

}
n≥1

,
(
q
(ρ)
n

)
n≥1

=
{
B

(ρ)
n (1)

}
n≥1

,

and
(
p
(ρ)
n

)
n≥1

=
{
C

(ρ)
n,2 (1)

}
n≥1

,

(32)

equation (31) can be rewritten as

r(ρ)n = q(ρ)n ζ (3)− p(ρ)n . (33)

According to (33) we deduce that

p(ρ)n q
(ρ)
n+1 − p

(ρ)
n+1q

(ρ)
n = q(ρ)n r

(ρ)
n+1 − q

(ρ)
n+1r

(ρ)
n . (34)

Notice that, as a consequence of Lemma 3.2 and the orthogonality conditions (29) we have∫ 1

0

Pn−1 (x)ψ
(ρ)
n,1 (x)

1− x
dx = Pn−1 (1)

∫ 1

0

ψ
(ρ)
n,1 (x)

1− x
dx,

Pn−1 (1) r(ρ)n = −2−1
∫ 1

0

Pn−1 (x)ψ
(ρ)
n,2 (x)

1− x
dx,

(35)

where Pn−1 (x) is an arbitrary polynomial of degree at most n− 1.

Lemma 4.1. Let F (ρ)
n,1 (z) be the rational function defined by (18). Then, the following relations

hold

F (ρ)
n,2 (n− 1) =

(ρn− n+ 1) (n− 1)!4

(2n)!2
,

F (ρ)
n,2 (n) = −2n (ρ− 1)n!2

(n+ 1)2n+1

(
2Hn −H2n+1 −

ρn− n+ 1

2n (ρ− 1)

)
,

and

F (ρ)
n,1 (n) = −n (ρ− 1)n!2

(n+ 1)2n+1

,

Proof. To prove the Lemma it is enough to evaluate F (ρ)
n,2 (n) at n− 1 and n. Indeed, the desired

result follows from a tedious but straightforward verification.

Lemma 4.2. The sequences
(
p
(ρ)
n

)
n≥1

and
(
q
(ρ)
n

)
n≥1

defined by (32) satisfy the following

relation

det

(
p
(ρ)
n q

(ρ)
n

p
(ρ)
n+1 q

(ρ)
n+1

)
= − Φ(ρ)

n

2n4 (n+ 1)4
, ρ ∈ N, n ≥ 1, (36)
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where

Φ(ρ)
n = 24n5ρ2 − 12n5 + 54n4ρ2 + 39n4ρ− 33n4 + 46n3ρ2 + 70n3ρ

+ 19n2ρ2 + 56n2ρ+ 33n2 + 3nρ2 + 21nρ+ 24n+ 3ρ+ 5. (37)

Proof. In fact, using (30) as well as (35) we get

q(ρ)n r
(ρ)
n+1 = 2−1A(ρ)

n (1)

∫ 1

0

ψ
(ρ)
n+1,1 (x)

1− x
dx− 2−1

∫ 1

0

B(ρ)
n (x)ψ

(ρ)
n+1,2 (x)

1− x
dx

= 2−1
∫ 1

0

ψ
(ρ)
n,1 (x)ψ

(ρ)
n+1,1 (x)

1− x
dx.

In addition

2−1
∫ 1

0

ψ
(ρ)
n,1 (x)ψ

(ρ)
n+1,1 (x)

1− x
dx = 2−1

∫ 1

0

A
(ρ)
n+1 (x)ψ

(ρ)
n,1 (x)

1− x
dx

− 2−1
∫ 1

0

B
(ρ)
n+1 (x)ψ

(ρ)
n,2 (x)

1− x
dx,

where∫ 1

0

A
(ρ)
n+1 (x)ψ

(ρ)
n,1 (x)

1− x
dx = −

∑
0≤k≤n+1

a
(ρ)
k,n+1

∑
1≤j≤k

∫ 1

0

xj−1ψ
(ρ)
n,1 (x) dx

= −a(ρ)n+1,n+1F
(ρ)
n,1 (n) ,

and

−2−1
∫ 1

0

B
(ρ)
n+1 (x)ψ

(ρ)
n,2 (x)

1− x
dx = 2−1

∑
0≤k≤n+1

b
(ρ)
k,n+1

∑
1≤j≤k

∫ 1

0

xj−1ψ
(ρ)
n,2 (x) dx+ q

(ρ)
n+1r

(ρ)
n .

Thus, taking the relations (19) and (34) into account, as well as the orthogonality conditions (29),
we deduce

p(ρ)n q
(ρ)
n+1 − p

(ρ)
n+1q

(ρ)
n = 2−1b

(ρ)
n,n+1F

(ρ)
n,2 (n− 1) + 2−1b

(ρ)
n+1,n+1F

(ρ)
n,2 (n− 1)

+ 2−1b
(ρ)
n+1,n+1F

(ρ)
n,2 (n)− 2−1a

(ρ)
n+1,n+1F

(ρ)
n,1 (n) . (38)

By considering Lemma 4.1 we conclude that (38) coincides with (36), which is the desired
conclusion.

Next, we apply the so-called algorithm of creative telescoping due to Gosper and Zeilberger
[1–4, 45], from which we deduce the first part of the proof. For cross-validation we
implemented this algorithm in different computer algebra systems, in particular, in Maple, in
Python and Mathematica.
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Theorem 4.3. Let
(
p
(ρ)
n

)
n≥1

,
(
q
(ρ)
n

)
n≥1

and
(
r
(ρ)
n

)
n≥1

be the sequences defined by (32), where(
p
(ρ)
n

)
n≥1

and
(
q
(ρ)
n

)
n≥1

satisfy the relation (36). Then the following recurrence relation

(n+ 2)4Φ(ρ)
n yn+2 + β(ρ)

n yn+1 + n4Φ
(ρ)
n+1yn = 0, n ≥ 1, ρ ∈ N, (39)

holds, where

β(ρ)
n = −2(n+ 1)(408n8ρ2 − 204n8 + 3162n7ρ2 + 663n7ρ

− 1683n7 + 10028n6ρ2 + 4433n6ρ− 4899n6 + 16802n5ρ2

+ 12409n5ρ− 5487n5 + 16070n4ρ2 + 18955n4ρ

+ 735n4 + 8888n3ρ2 + 17212n3ρ+ 7366n3

+ 2708n2ρ2 + 9340n2ρ+ 6870n2 + 344nρ2

+ 2776nρ+ 2748n+ 344ρ+ 412), (40)

and Φ
(ρ)
n is given in (37).

This recurrence relation has the special property that it depends only on ρ as parameter.

Proof. The proof will be divided into three steps. In fact, firstly let us prove that the sequence(
q
(ρ)
n

)
n≥1

satisfies the recurrence relation (39). For such purpose, let us suppose that there exist

other constants α(ρ)
n , β̂(ρ)

n and γ(ρ)n , which are not all equal to zero, such that

α(ρ)
n q

(ρ)
n+2 + β̂(ρ)

n q
(ρ)
n+1 + γ(ρ)n q(ρ)n = 0, n ≥ 0.

This is equivalent to ∑
0≤k≤n+2

(
α(ρ)
n b

(ρ)
k,n+2 + β̂(ρ)

n b
(ρ)
k,n+1 + γ(ρ)n b

(ρ)
k,n

)
= 0,

since b(ρ)j,k = 0, for j > k. (Compare with (22) for the definition of the b(ρ)k,n terms.) Therefore

α(ρ)
n b

(ρ)
k,n+2 + β̂(ρ)

n b
(ρ)
k,n+1 + γ(ρ)n b

(ρ)
k,n = fn (k + 1)− fn (k) , (41)

such that fn (0) = fn (n+ 3) = 0. According to the method of Zeilberger we can define

fn (k) =

k4π3,n (k)

(
n+ k

k

)2(
n

k

)2

(n− k + 1)2 (n− k + 2)2 (n+ k)
, (42)

where π3,n (k) is a polynomial of degree 3 in k, with coefficients depending on n. From (41) and
(42) the following equation

α(ρ)
n (n+ k) (n+ k + 1)2 (n+ k + 2) (k + ρn+ 2ρ+ 1)

+ β̂(ρ)
n (n− k + 2)2 (n+ k) (n+ k + 1) (k + ρn+ ρ+ 1)

+ γ(ρ)n (n− k + 1)2 (n− k + 2)2 (k + ρn+ 1)

= (n− k + 2)2 (n+ k) (n+ k + 1) π3,n (k + 1)− k4π3,n (k) ,
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holds. The above leads to a 6-equation linear system with 7-unknowns. A particular solution
to this system can be obtained by computer algebra and is given by α(ρ)

n = (n + 2)4Φ
(ρ)
n , γ(ρ)n =

n4Φ
(ρ)
n+1 and β̂(ρ)

n = β
(ρ)
n , which proves that the sequence

(
q
(ρ)
n

)
n≥1

satisfies the recurrence relation

(39).
Our next goal is to prove that the sequence

(
r
(ρ)
n

)
n≥1

satisfies the recurrence relation (39).

For this purpose let us use the Lemma 4.2, from which we have

q(ρ)n r
(ρ)
n+1 = q

(ρ)
n+1r

(ρ)
n −

Φ(ρ)
n

2n4 (n+ 1)4
,

q
(ρ)
n+1r

(ρ)
n+2 = q

(ρ)
n+2r

(ρ)
n+1 −

Φ
(ρ)
n+1

2 (n+ 1)4 (n+ 2)4
,

which is equivalent to

q(ρ)n

q
(ρ)
n+1

r
(ρ)
n+1 = r(ρ)n −

Φ(ρ)
n

2n4 (n+ 1)4 q
(ρ)
n+1

,

r
(ρ)
n+2 =

q
(ρ)
n+2

q
(ρ)
n+1

r
(ρ)
n+1 −

Φ
(ρ)
n+1

2 (n+ 1)4 (n+ 2)4 q
(ρ)
n+1

.

Thus, multiplying the first equation by −n4Φ
(ρ)
n+1, the second one by (n + 2)4Φ

(ρ)
n , and adding

both equations we deduce

(n+ 2)4Φ(ρ)
n r

(ρ)
n+2 + β̃(ρ)

n r
(ρ)
n+1 + n4Φ

(ρ)
n+1r

(ρ)
n = 0,

where

β̃(ρ)
n = −

n4Φ
(ρ)
n+1q

(ρ)
n

q
(ρ)
n+1

−
(n+ 2)4Φ(ρ)

n q
(ρ)
n+2

q
(ρ)
n+1

,

which coincides with (40) since the sequence
(
q
(ρ)
n

)
n≥1

satisfies the recurrence relation (39).

Therefore, we conclude that
(
r
(ρ)
n

)
n≥1

also satisfies (39).

Finally, the sequence (p
(ρ)
n = q

(ρ)
n ζ (3) − r

(ρ)
n )n≥0 satisfies the recurrence relation (39) as a

linear combination of the sequences
(
q
(ρ)
n

)
n≥0

and
(
r
(ρ)
n

)
n≥0

. This completes the proof.

Using the expressions

q(ρ)n =
∑

1≤k≤n

b
(ρ)
k,n and p(ρ)n =

∑
1≤k≤n

(
b
(ρ)
k,nH

3
k + 2−1a

(ρ)
k,nH

2
k

)
,

where Hr
k is the harmonic number k of order r as defined in (17), as well as nb(ρ)k,n ∈ Z,

nLna(ρ)k,n ∈ Z, and taking into account that LjnH
(j)
k ∈ Z for k = 0, 1, . . . , n, with j ∈ Z+,

we deduce that nq(ρ)n ∈ Z and 2nL3
np

(ρ)
n ∈ Z. Thus, from Theorem 4.3 we have that the char-

acteristic equation for (39) is t2 − 34t + 1 = 0 and its zeros are t1 = $4 and t2 = $−4

respectively. From Poincaré’s theorem [44,49] the characteristic equation has the behavior q(ρ)n =

O ($4n) and r(ρ)n = O ($−4n), as n goes to infinity, for the two linearly independent solutions,
respectively. Then, assuming that ζ (3) = p/q, where p, q ∈ Z+, we have that 2qnL3

nr
(ρ)
n =
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2pnL3
nq

(ρ)
n − 2qnL3

np
(ρ)
n , is an integer different from zero. Therefore, as a consequence of the

prime numbers theorem we deduce that 1 ≤ 2qnL3
n

∣∣∣r(ρ)n

∣∣∣ = O (L3
n$
−4n), which is a contradic-

tion, and moreover e3$−4 = 0, 591263 . . . < 1. Clearly, the above proves Apéry’s theorem.
Note that the characteristic equation t2 − 34t + 1 = 0 of (39) can be determined by the

following steps: The coefficients of equation (39) are polynomials of order the same order, namely
order 9. Moreover, the polynomials have the same leading coefficients. Therefore it is sufficient
to divide all the equation by any of these polynomial coefficients and then apply the limit n→∞,
which gives the characteristic equation.

An important consequence of the Theorem 4.3 is the continued fraction representation of the
number ζ (3). Below we present a new continued fraction expansion for ζ (3) from our results.

Theorem 4.4. [31, p. 31] Two irregular continued fractions

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

+ · · · , a′0 +
b′1 |
| a′1

+
b′2 |
| a′2

+
b′3 |
| a′3

+ · · ·+ b′n |
| a′n

+ · · · ,

are equivalent if and only if there exists a sequence of non-zero (cn)n≥0 with c0 = 1 such that

a′n = cnan, n = 0, 1, 2, . . . , b′n = cncn−1bn, n = 1, 2, . . . (43)

Using the previous theorems we deduce the following results.

Corollary 4.4.1. Let ρ ∈ N, then the following irregular continued fraction expansion for ζ (3)

ζ (3) =
7ρ+ 12 |
| 6ρ+ 10

+
2
(
146ρ2 + 189ρ+ 17

)
|

| 1654ρ+ 1981

+
−16(7ρ+ 12)

(
2082ρ2 + 1453ρ− 727

)
|

| Q(ρ)
3

+
P(ρ)

4 |
| Q(ρ)

4

+ · · ·+ P
(ρ)
n |
| Q(ρ)

n

+ · · · ,

holds, where

P(ρ)
n = −(n− 2)4(n− 1)4(24n5ρ2 − 12n5 − 306n4ρ2 + 39n4ρ+ 147n4

+ 1558n3ρ2 − 398n3ρ− 684n3 − 3959n2ρ2 + 1532n2ρ

+ 1491n2 + 5019nρ2 − 2637nρ− 1470n− 2538ρ2 + 1713ρ

+ 473)(24n5ρ2 − 12n5 − 66n4ρ2 + 39n4ρ+ 27n4 + 70n3ρ2

− 86n3ρ+ 12n3 − 35n2ρ2 + 80n2ρ− 45n2 + 7nρ2

− 37nρ+ 30n+ 7ρ− 7),

and

Q(ρ)
n = 2(n− 1)(408n8ρ2 − 204n8 − 3366n7ρ2 + 663n7ρ+ 1581n7

+ 11456n6ρ2 − 4849n6ρ− 4185n6 − 20710n5ρ2 + 14905n5ρ

+ 3321n5 + 21330n4ρ2 − 24795n4ρ+ 4425n4 − 12488n3ρ2

+ 23932n3ρ− 11066n3 + 3892n2ρ2 − 13348n2ρ+ 8922n2

− 504nρ2 + 4008nρ− 3300n− 504ρ+ 476).
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Theorem 4.5. Let ρ ∈ N, then the following relation

ζ (3) =
7ρ+ 12

6ρ+ 10
+
∑
n≥1

Φ(ρ)
n

2n4 (n+ 1)4 Θ(ρ)
n Θ

(ρ)
n+1

, (44)

holds, where

Θ(ρ)
n =

ρn+ 1

n
5F4

 n+ 1, n,−n,−n, ρn+ 2

1

1, 1, 1, ρn+ 1

 , (45)

and Φ
(ρ)
n is given in (37).

Proof. In fact, from (22) and (32) we deduce

q(ρ)n =
ρn+ 1

n

∑
0≤k≤n

(n+ 1)k (n)k (−n)2k (ρn+ 2)k
(1)2k (1)k (ρn+ 1)k

1

k!
,

which corresponds with (45) according to (13). In Addition, having in account

p(ρ)n
q(ρ)n

=
p
(ρ)
1

q
(ρ)
1

−
∑

1≤k≤n−1

(
p
(ρ)
k

q
(ρ)
k

−
p
(ρ)
k+1

q
(ρ)
k+1

)
,

and using (36) conjointly with

ζ (3) = lim
n→∞

p(ρ)n
q(ρ)n

=
p
(ρ)
1

q
(ρ)
1

−
∑
n≥1

(
p(ρ)n q

(ρ)
n+1 − p

(ρ)
n+1q

(ρ)
n

q(ρ)n q
(ρ)
n+1

)
,

we deduce (44). This completes the proof.

5 Convergence

5.1 Series representations

In this paragraph several series representations of ζ(3) are recalled. Many years after Euler’s
results, Chen and Srivastava (1998) obtained several series representations for ζ (3), which
converge faster than (2), including

ζ (3) = lim
n→∞

ζCSn (3) ,

where

ζCSn (3) = −8π2

5

n∑
k=0

ζ (2k)

(2k + 1) (2k + 2) (2k + 3) 22k
.

Then, Srivastava (2000) [62] deduced the following result

ζ (3) = lim
n→∞

ζSn (3) ,

where

ζSn (3) = −6π2

23

n∑
k=0

(98k + 121)ζ (2k)

(2k + 1) (2k + 2) (2k + 3) (2k + 4)(2k + 5)22k
.
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In addition, Borwein et al. (2000) [17] derived the following series representation

ζ (3) = lim
n→∞

ζBn (3) ,

where

ζBn (3) =
2π2

7

[
log 2− 1

2
+

n∑
k=1

ζ (2k)

4k (k + 1)

]
.

Later, Pilehrood and Pilehrood (2008) [46] deduced the expression

ζ (3) = lim
n→∞

ζAn (3) ,

where

ζAn (3) =
1

4

∑
k≥1

(−1)k−1
56k2 − 32k + 5

k3 (2k − 1)2
(

2k

k

)(
3k

k

) ,
which is known as Amdeberhan’s formula for ζ (3), see [7] for more details. Then, Pilehrood and
Pilehrood (2010) [47] arrived at the following expression

ζ (3) = lim
n→∞

ζPP08
n (3) ,

where

ζPP08
n (3) =

n∑
k=0

(−1)k
k!10

(
205k2 + 250k + 77

)
64 (2k + 1)!5

,

obtained initially by Amdeberhan and Zeilberger (1997), see [8] for more details. Analogously,
Pilehrood and Pilehrood (2010) [48] deduced the following formula

ζ (3) = lim
n→∞

ζPP10
n (3) ,

where

ζPP10
n (3) =

1

2

∑
k≥1

(−1)k−1
205k2 − 160k + 32

k5
(

2k

k

)5 .

More recently, Scheufens (2013) [55] obtained

ζ (3) = lim
n→∞

ζSchn (3) ,

where

ζSchn (3) = −2π2

7

n∑
k=0

ζ (2k)

4k (k + 1) (2k + 1)
,

and Soria-Lorente (2014) [58] deduced

ζ (3) = lim
n→∞

ζSLn (3) ,

where

ζSLn (3) =
7

6
+

n∑
k=0

24n3 + 30n2 + 16n+ 3

2n3 (n+ 1)3 ΘnΘn+1

.

Clearly, there are other series representations for ζ (3), and there are ongoing investigations in
this direction. It is important to point out that the main result obtained in this work improves the
convergence in comparison with the aforementioned results.
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5.2 Convergence rates

If ζn(3) is the approximation at the n-th iteration and ζ(3) the exact value then the absolute error
can be defined as

εn = |ζn(3)− ζ(3)|. (46)

In Figure 1, the absolute error εn is visualized as a function of the index n for several iteration
methods. Here, 20 iterations are realized in the index span from n = 51 to n = 70.

ζSL ζCS ζSr ζB ζPP08 ζA ζPP10 ζSch

6,00E-159 8,56E-37 6,15E-38 3,48E-33 1,70E-77 6,98E-158 7,22E-155 3,29E-35
5,20E-162 2,02E-37 1,43E-38 8,53E-34 6,07E-79 6,75E-161 6,98E-158 7,93E-36
4,50E-165 4,79E-38 3,32E-39 2,09E-34 2,16E-80 6,54E-164 6,75E-161 1,91E-36
3,90E-168 1,14E-38 7,74E-40 5,14E-35 7,72E-82 6,32E-167 6,54E-164 4,61E-37
3,38E-171 2,69E-39 1,80E-40 1,26E-35 2,76E-83 6,12E-170 6,32E-167 1,11E-37
2,93E-174 6,39E-40 4,21E-41 3,10E-36 9,86E-85 5,93E-173 6,12E-170 2,68E-38
2,54E-177 1,52E-40 9,85E-42 7,63E-37 3,53E-86 5,74E-176 5,93E-173 6,48E-39
2,20E-180 3,61E-41 2,30E-42 1,88E-37 1,26E-87 5,56E-179 5,74E-176 1,57E-39
1,90E-183 8,59E-42 5,40E-43 4,61E-38 4,52E-89 5,38E-182 5,56E-179 3,79E-40
1,65E-186 2,05E-42 1,26E-43 1,13E-38 1,62E-90 5,22E-185 5,38E-182 9,18E-41
1,43E-189 4,87E-43 2,97E-44 2,79E-39 5,80E-92 5,05E-188 5,22E-185 2,22E-41
1,24E-192 1,16E-43 6,98E-45 6,87E-40 2,08E-93 4,90E-191 5,05E-188 5,38E-42
1,07E-195 2,78E-44 1,64E-45 1,69E-40 7,47E-95 4,74E-194 4,90E-191 1,30E-42
9,30E-199 6,63E-45 3,86E-46 4,16E-41 2,68E-96 4,60E-197 4,74E-194 3,16E-43
8,06E-202 1,58E-45 9,10E-47 1,03E-41 9,63E-98 4,46E-200 4,60E-197 7,68E-44
6,98E-205 3,79E-46 2,14E-47 2,53E-42 3,46E-99 4,32E-203 4,46E-200 1,86E-44
6,05E-208 9,07E-47 5,06E-48 6,23E-43 1,24E-100 4,19E-206 4,32E-203 4,52E-45
5,24E-211 2,17E-47 1,20E-48 1,53E-43 4,47E-102 4,06E-209 4,19E-206 1,10E-45
4,54E-214 5,21E-48 2,83E-49 3,78E-44 1,61E-103 3,94E-212 4,06E-209 2,67E-46
3,93E-217 1,25E-48 6,68E-50 9,32E-45 5,79E-105 3,82E-215 3,94E-212 6,49E-47

Table 1. Convergence of several iterations.

Table 1 shows the convergence of several iteration methods. On a logarithmic y-scale the
error plot is a straight line, allowing a linear curve fit by the exponential model

εn = qeβn. (47)

Taking the logarithm on both sides gives the linear model

ln εn = ln q + βn,

where the parameters from the εn, n = 1, . . . , N can be calculated by solving the overdetermined
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Fig. 1. Error reduction rates

system of linear equations 1 1
...

...
1 N

(ln q

β

)
=

 ε1
...
εN

 ,

by minimal squares. A variant of (47) with arbitrary basis (e.g. b = 1/10 for a decimal number
system) is

ε = q(bn)r. (48)

The parameter r in model (48) can be deduced from model (47) by r = β/ ln b. The basis
b = 1/10 gives the number of digits obtained by one iteration; increasing the index by one
corresponds to reducing the error by the factor (1/10)r. In Table 2 the convergence parameters
according to several authors are compared.

ζSL ζCS ζSr ζB ζPP08 ζA ζPP10 ζSch

ln q -357.27 -81.64 -84.26 -73.35 -173.46 -354.93 -347.99 -78.00
β -7.05 -1.43 -1.45 -1.40 -3.33 -6.94 -6.94 -1.42
q 6.9e-156 3.5e-36 2.5e-37 1.4e-32 4.7e-76 7.2e-155 7.4e-152 1.3e-34

r (b = 2) 10.17 2.07 2.09 2.02 4.80 10.01 10.01 2.05
r (b = 10) 3.06 0.62 0.63 0.61 1.45 3.01 3.01 0.62

Table 2. Convergence parameters.
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One can distinguish three groups of method that can be classified by their convergence rate,
namely Soria (2014), Amdeberhan (1996) and Pilehrood and Pilehrood (2010) with a convergence
rate of r ≈ 3, Pilehrood and Pilehrood (2008) with r ≈ 1.45 and the others with r ≈ 0.6.

The rate between two subsequent errors can be calculated from

εn+1

εn
= br,

as
r =

1

ln b
ln
(εn+1

εn

)
.

For the basis b = 2 there is the general tendency that the rates decrease, i.e., move towards
the integer values (2, 10), but move away from 5.

The methods of Amdeberhan (1996) and Pilehrood and Pilehrood (2010) have exactly the
same error rate, which are only shifted by one index value. The reason is that one is derived from
the other such that both use the same generation mechanism.
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[10] Arvesú, J., & Soria-Lorente, A. (2012). On new rational approximants to ζ(3). arXiv
preprint arXiv:1204.6712.

[11] Balanzario, E. (2001). Método elemental para la evaluación de la función zeta de Riemann
en los enteros pares. Miscelánea Mat, 33, 31–41.

[12] Ball, K., & Rivoal, T. (2001). Irrationalité d’une infinité de valeurs de la fonction zêta aux
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[45] Petkovšek, M., Wilf, H. S., & Zeilberger, D. (1996). A = B . A. K. Peters, Ltd., Wellesley,
M.A. 30.

[46] Pilehrood, K. H., & Pilehrood, T. H. (2008). Generating function identities for ζ(2n + 2),
ζ(2n+ 3) via the WZ method. Electron. J. Comb. 15 (1), 35–43.

[47] Pilehrood, K. H., & Pilehrood, T. H. (2008). Simultaneous generation for zeta values by the
Markov-WZ method. Electron. J. Comb., 10 (3), 115–124.

[48] Pilehrood, K. H., & Pilehrood, T.H. (2010). Series acceleration formulae for beta values.
Discrete Math. Theoret. Comput. Sci., 12 (2), 223–236.
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