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Abstract: We say the k-Fibonacci numbers Fk,i and Fk,j are equidistant if j = n− i and then we
study some properties of these pairs of numbers. As a main result, we look for the formula to find
the generating function of the product of the equidistant numbers, their sums and their binomial
transforms. Next we apply this formula to some simple cases but more common than the general.
In particular, we define the half self-convolution of the k-Fibonacci and k-Lucas sequences.
Finally, we study the sum of these new sequences, their recurrence relations, and their generating
functions.
Keywords: k-Fibonacci and k-Lucas numbers, Binet identity, Generating function, Convolution,
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1 Introduction

For any integer number k ≥ 1, the k-Fibonacci and the k-Lucas sequences are defined recurrently
by Fk,n+1 = k Fk,n + Fk,n−1 and Lk,n+1 = k Lk,n + Lk,n−1, with initial conditions Fk,0 = 0,

Fk,1 = 1 and Lk,0 = 2, Lk,1 = k, respectively.
Generating function of the k-Fibonacci numbers is f(k, x) = x

1− k x− x2
and for the k-Lucas

numbers l(k, x) =
2− k x

1− k x− x2
. Binet identity is Fk,n =

σn
1 − σn

2

σ1 − σ2
being σ1,2 =

k ±
√
k2 + 4

2
and

Lk,n = σn
1 + σn

2 , respecitvely. Moreover Fk,−n = (−1)n+1Fk,n and Lk,−n = (−1)nLk,n. Finally,
these k-numbers are related by the relations Lk,n = Fk,n−1 + Fk,n+1 and Fk,n =

Lk,n−1 + Lk,n+1√
k2 + 4

.

For more properties, see [4, 5] and [1].
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In [2, 4] the following formulas are proven:

m∑
i=0

Lk,ri+p =
Lk,r(m+1)+p − (−1)rLk,rm+p + (−1)pLk,r−p − Lk,p

Lk,r − (−1)r − 1
(1)

m∑
i=0

(−1)iLk,ri+p =
(−1)mLk,r(m+1)+p + (−1)r+mLk,rm+p + (−1)mLk,r−p + Lk,p

Lk,r + (−1)r + 1

→
n∑

j=0

Lk,j =
1

k
(Lk,n+1 + Lk,n + k − 2) (2)

Fk,pFk,q =
1

k2 + 4
(Lk,p+q − (−1)qLk,p−q) (3)

q = 1→ Fk,p =
1

k2 + 4
(Lk,p+1 + Lk,p−1) (4)

Lk,pLk,q = Lk,p+q + (−1)qLk,p−q (5)
n∑

j=0

(−1)jLk,n−2jx
j =

Lk,n + Lk,n+2x

1 + (k2 + 2)x+ x2
(Generating function) (6)

2 On the equidistant k-Fibonacci and k-Lucas numbers

Let r ∈ N−{0} be. Given the finite sequence {a0, a1, . . . an}, we say the elements ar i and an−r i
are equidistant.

Let us consider the finite sequence En = {Fk,jFk,n−j} for j = 1, 2, . . . , n/2.

Theorem 2.1. Sequence En increases and decreases term to term until Fk,(n−1)/2Fk,(n+1)/2 or
F 2
k,n/2 according to n is odd or even, respectively.

Proof. If in the formula (3) it is p = i and q = n−i, Fk,iFk,n−i =
1

k2 + 4
(Lk,n − (−1)n−iLk,2i−n),

that is
Fk,iFk,n−i =

1

k2 + 4

(
Lk,n − (−1)iLk,n−2i

)
(7)

because Lk.−r = (−1)rLk,r. So,

Fk,2jFk,n−2j =
1

k2 + 4
(Lk,n − Lk,n−4j)

Fk,2j+1Fk,n−2j−1 =
1

k2 + 4
(Lk,n + Lk,n−4j−2)

Fk,2j−1Fk,n−2j+1 =
1

k2 + 4
(Lk,n + Lk,n−4j+2)

→ Fk,2jFk,n−2j < Fk,2j+1Fk,n−2j−1

Lk,n−4j+2 > Lk,n−4j−2 → Fk,2j+1Fk,n−2j−1 < Fk,2j−1Fk,n−2j+1

→ Fk,2jFk,n−2j < Fk,2j+1Fk,n−2j−1 < Fk,2j−1Fk,n−2j+1.
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• If we apply the formula (6) to the equation (7), the generating function eq(k, x) of the
sequence of the products of the equidistant k-Fibonacci numbers {Fk,iFk,n−i} is

eq(k, x) =
1

k2 + 4
(Lk,n − pa(k, x))

=
1

k2 + 4

(
Lk,n −

Lk,n + Lk,n+2x

1 + (k2 + 2)x+ x2

)
=

1

k2 + 4

Lk,n−2x+ Lk,nx
2

1 + (k2 + 2)x+ x2
.

Remark. To find the elements {Fk,iFk,n−i}0≤i≤n for n = 10 and k = 1, 2, 3 with Mathematica R© ,
first we must divide and then take into account D

d
= q+

r

d
. Next, we can use the following little

program:
f [k , n ] := Fibonacci[n, k]
l[k , n ] := LucasL[n, k]
n = 10

Table[Table[f [k, i] ∗ f [k, n− i], {i, 0, n}], {k, 3}]

pe[k , x ] :=
l[k, n] + l[k, n+ 2]x

1 + (k2 + 2)x+ x2

Table[
1

k2 + 4
(l[k, n]− CoefficientList[Series[pe[k, x], {x, 0, n}], x]) , {k, 3}]

• From the formula (5), the product of the equidistant k-Lucas numbers is Lk,iLk,n−i =

Lk,n + (−1)iLk,n−2i. So, its generating function is

eql(k, x) = Lk,n +
Lk,n + Lk,n+2x

1 + (k2 + 2)x+ x2
.

3 Self-convolution of k-Fibonacci and k-Lucas sequences

In this section we will study the sum of the equidistant k-Fibonacci and k-Lucas numbers. First
we will proof the k-Lucas numbers verify the following lemmas.

Lemma 3.1. Lk,a n+2r − (−1)rLk,a n = (k2 + 4)Fk,rFk,a n+r.

Proof. Taking into account the Binet identity and σ1σ2 = −1,

Lk,a n+2r − (−1)rLk,a n = σan+2r
1 + σan+2r

2 − (σ1σ2)
r (σan

1 + σan
2 )

= σan+r
1 (σr

1 − σr
2) + σan+r

2 (σr
2 − σr

1) = (σr
1 − σr

2)
(
σan+r
1 − σan+r

2

)
= (σ1 − σ2)2Fk,rFk,a n+r = (k2 + 4)Fk,rFk,a n+r.

Lemma 3.2. Lk,2r − 2(−1)r = (k2 + 4)F 2
k,r.

Proof.

Lk,2r − 2(−1)r = σ2r
1 + σ2r

2 − 2(σ1σ2)
r = σr

1(σ
r
1 − σr

2) + σr
2(σ

r
2 − σr

1)

= (σr
1 − σr

2)
2 = (k2 + 4)F 2

k,r.
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Then, we can prove next theorem.

Theorem 3.3 (Sum of the products Lk,r iLk,n−r i). Let us consider the finite sequence
{Lk,0, Lk,1, Lk,2, . . . Lk,n−1, Lk,n}. The sum of the equidistant k-Fibonacci numbers is

n∑
j=0

Lk,rjLk,n−rj = (n+ 1)Lk,n +
(−1)n(r+1)Fk,(2r−1)n+r + Fk,n+r

Fk,r

. (8)

Proof. If p = n− r and q = r in the formula (5), then
Lk,rLk,n−r = Lk,n + (−1)rLk,n−2r. So,

n∑
j=0

Lk,rjLk,n−rj =
n∑

j=0

(
Lk,n + (−1)rjLk,n−2rj

)
= (n+ 1)Lk,n +

n∑
j=0

(−1)rjLk,n−2rj.

Next we will apply the formulas (1) and (2) with m = −2r and p = n, and Lk,−a = (−1)aLk,a.
If r is even:

n∑
j=0

(−1)rjLk,n−2rj =
n∑

j=0

Lk,n−2rj

=
Lk,n−2r(n+1) − Lk,n−2rn + Lk,n+2r − Lk,n

Lk,2r − 2

=
(−1)nLk,(2r−1)n+2r − (−1)nLk,(2r−1)n + Lk,n+2r − Lk,n

Lk,2r − 2

If r is odd:
n∑

j=0

(−1)rjLk,n−2rj =
n∑

j=0

(−1)jLk,n−2rj

=
(−1)nLk,n−2r(n+1) + (−1)nLk,n−2rn + Lk,n+2r + Lk,n

Lk,2r + 2

=
Lk,(2r−1)n+2r + Lk,(2r−1)n + Lk,n+2r + Lk,n

Lk,2r + 2

We can join these last two formulas and Lk,−r = (−1)rLk,r, to obtain
n∑

j=0

Lk,rjLk,n−rj =

(n+ 1)Lk,n +
(−1)n(r+1)Lk,(2r−1)n+2r − (−1)n(r+1)+rLk,(2r−1)n + Lk,n+2r − (−1)rLk,n

Lk,2r − 2(−1)r
.

Now, if we will apply Lemma 1 and Lemma 2,

Lk,(2r−1)n+2r − (−1)rLk,(2r−1)n = (k2 + 4)Fk,rFk,(2r−1)n+r

Lk,n+2r − (−1)rLk,2n = (k2 + 4)Fk,rFk,n+r

Lk,2r − 2(−1)r = (k2 + 4)F 2
k,r

So,
n∑

j=0

Lk,rjLk,n−rj = (n+ 1)Lk,n +
(−1)n(r+1)Fk,(2r−1)n+r + Fk,n+r

Fk,r

.
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In particular, if r = 1, Tn =
n∑

j=0

Lk,jLk,n−j = (n+ 1)Lk,n + 2Fk,n+1.

A sequence of sums
n∑

j=0

Lk,jLk,n−j is called the self-convolution of the sequence {Lk,n}n∈N .

For k = 1, 2, 3, the first few terms of these sequences are:

• {4, 4, 13, 22, 45, 82, 152, 274, 491, 870 . . .} is the sequence A099924 in OEIS [6];

• {4, 8, 28, 80, 228, 632, 1724, 4640, 12356, 32616 . . .};

• {4, 12, 53, 210, 813, 3078, 11464, 42150, 153371 . . .}.

3.1 Generating function and recurrence relation for the self-convolution
of the k-Lucas sequence

• Taking into account l(k, x) =
2− k x

1− k x− x2
is the generating function of the k-Lucas num-

bers, l(k, x)2 is the generating function of the self-convolution of {Lk,n}, [7, Rule 3].

• The denominator of the generating function of the self-convolution Lk ⊗ Lk is
(1 − k x − x2)2 = 1 − 2k x + (k2 − 2)x2 + 2k x3 + x4 so the recurrence relation for
this sequence is Tn = 2k Tn−1 − (k2 − 2)Tn−2 − 2k Tn−3 − Tn−4 for n ≥ 4, with initial
conditions T0 = 4, T1 = 4k, T2 = 5k2 + 8, and T3 = 6k3 + 16k.

3.2 Half self-convolution of the k-Lucas sequence

In the sequence {Lk,jLk,n−j}, only the first bn+ 1

2
c terms are different. The sum of these numbers

is called the half self-convolution of the k-Lucas numbers: Tn/2 =
n/2∑
j=0

Lk,jLk,n−j .

Then Tn/2 =
Tn
2

if n is odd, n = 2p+1, and Tn/2 =
Tn + L2

k,p

2
if n = 2p, because there are 2p+2

products {Lk,iLk,n−i} but only p + 1 different products of equidistant k-Lucas numbers if n is

odd and 2p products equal two to two plus only one L2
k,p if n is even. So, if η(n) = (−1)n + 1

2
.

n/2∑
j=1

Lk,jLk,n−j =
1

2

(
(n+ 1)Lk,n + 2Fk,n+1 + η(n)L2

k,n/2

)
(9)

Theorem 3.4. Sum of the products Fk,r iFk,n−r i in the finite sequence
{Fk,0, Fk,1, Fk,2, . . . , Fk,n−2, Fk,n−1, Fk,n} is

n∑
j=0

Fk,rjFk,n−rj =
1

k2 + 4

(
(n+ 1)Lk,n −

(−1)n(r+1)Fk,(2r−1)n+r + Fk,n+r

Fk,r

)
.

Taking into account Fk,rjFk,n−rj =
Lk,n − (−1)n−rjLk,2rj−n

k2 + 4
, we can prove this theorem in a

similar form to the used for the k-Lucas numbers.
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Moreover, if r = 1, as Lk,n = Fk,n+1 + Fk,n−1,

Ek,n =
1

k2 + 4
((n+ 1)Fk,n−1 + (n− 1)Fk,n+1) (10)

The sequence of sums
n∑

j=0

Fk,jFk,n−j is called self-convolution of the k-Fibonacci sequence.

Next we show the first terms of these sequences for k = 1, 2, 3:

• {0, 1, 2, 5, 10, 20, 38, 71, 130, 235 . . .}, A001629;

• {0, 1, 4, 14, 44, 131, 376, 1052, 2888 . . .}, A006645;

• {0, 1, 6, 29, 126, 516, 2034, 7807, 29382 . . .}.

3.3 Recurrence relation on the sequence {Ek,n} =

{
n∑
j=0

Fk,jFk,n−j

}
From equation (10)

(k2 + 4)Ek,n+1 = (k2n+ 2n+ 2)Fk,n + k nFk,n−1

(k2 + 4)Ek,n = k(n− 1)Fk,n + 2nFk,n−1

(k2 + 4)Ek,n−1 = 2(n− 1)Fk,n − k nFk,n−1

This linear system has a single unique solution if and only if the augmented determinant is null:∣∣∣∣∣∣∣
k2n+ 2n+ 2 k n (k2 + 4)Ek,n+1

k(n− 1) 2n (k2 + 4)Ek,n

2(n− 1) −k n (k2 + 4)Ek,n−1

∣∣∣∣∣∣∣ = 0

→ (n+ 1)Ek,n+1 + k nEk,n − (n− 1)Ek,n−1 = 0.

So, the terms of the sequence {Ek,n} =

{
n∑

j=0

Fk,jFk,n−j

}
verify the recurrence relation

Ek,n+1 =
1

n− 1
(knEk,n + (n+ 1)Ek,n−1) for n ≥ 2 with initial conditionsEk,1 = 0 andEk,2 = 1.

3.4 Sum of the equidistant k-Fibonacci numbers

By the same reason that in Theorem 3.2, in the sequence {Fk,jFk,n−j}, only the first bn+ 1

2
c terms

are different. The sum of these numbers is called the half self-convolution of the k-Fibonacci

numbers so the sum of the products of the equidistant k-Fibonacci numbers
n/2∑
j=0

Fk,jFk,n−j in the

finite sequence {Fk,j}0≤j≤n is Tk,n =
Ek,n

2
for n odd and Tk,n =

Ek,n + F 2
k,n/2

2
for n even. Then,

both equations can be join in the next:

n/2∑
j=0

Fk,jFk,n−j =
1

2

(
(n+ 1)Fk,n−1 + (n− 1)Fk,n+1

k2 + 4
+ η(n)F 2

k,n/2

)
(11)
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Consequently, Tk for n = 1, 2, 3 . . . is the half–convolution of the k-Fibonacci sequence
Fk − {0} with itself or the half self-convolution of the k-Fibonacci sequence. First elements of
these sequences, for k = 1, 2, 3 are:

• T1 = {0, 1, 1, 3, 5, 12, 19, 40, . . .}: A024458;

• T2 = {0, 1, 2, 9, 22, 78, 188, 598, . . .};

• T3 = {0, 1, 3, 19, 63, 308, 1017, 4448, . . .}.

3.5 Generating function of the half self-convolution of the sequence {Fk,n}

In this section, we must take into account the formula (11).

• Generating function of the k-Fibonacci sequence Fk is fk(x) =
x

1− k x− x2
[5]. So,

uk(x) =
1

1− k x− x2
is the generating function of the sequence Fk −{0} and then (uk(x))

2

is the generating function of the convolution of the sequence Fk − {0} with itself:

1. U1 = {1, 2, 5, 10, 20, 38 . . .}: A001629 in OEIS.

2. U2 = {1, 4, 14, 44, 1331, 376 . . .}: A006645 in OEIS.

3. U3 = {1, 6, 29, 126, 516, 2034 . . .}

• Generating function of the sequence of squares of the k-Fibonacci numbers is
vk(x) =

x(1− x)
1− (k2 + 1)(x+ x2) + x3

[3]. Then, the function vk(x
2) is the generating func-

tion of the sequence whose even terms are the squares of the k-Fibonacci numbers and the
odd terms are null: {0, 1, 0, k2, 0, (k2 + 1)2, 0, (k3 + 2k)2, 0, . . .}

• Consequently, and according to the formula (11), tk(x) = 1
2

(
(uk(x))

2 + vk(x
2)
)

is the
generating function of the sequences of sums of the products of the equidistant k-Fibonacci
numbers Tk = {Tk,n}.

3.6 Generating function of the half self-convolution of the sequence {Lk,n}

We will follow the same process as in the previous paragraph.

• Uk(x) =
2− k x

1− k x− x2
is the generating function of the k-Lucas sequence Lk = {Lk,n}. So,

(Uk(x))
2 is the generating function of the self-convolution of Lk. Only the self-convolution

L1 ⊗ L1 = {4, 4, 13, 22, 45, 82, 152, 274, . . .} is in OEIS (A099924).

• The k-Lucas numbers verify the relation L2
k,n = (k2 + 1)(L2

k,n−1 + L2
k,n−2) − L2

k,n−3 (the
same as the k-Fibonacci numbers).

Then, the denominator of its generating function is 1 − (k2 + 1)(x + x2) + x3, being the
numerator L2

k,0 +
(
L2
k,1 − (k2 + 1)L2

k,0

)
x+

(
L2
k,2 − (k2 + 1)(L2

k,1 + L2
k,0)
)
x2.
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So, Vk(x) =
4− (3k2 + 4)− k2x2

1− (k2 + 1)(x+ x2) + x3
is the generating function of the squares of the

k-Lucas numbers and (Vk(x))
2 is the generating function of sequence whose even terms

are the squares of the k-Lucas numbers and the odd terms are null.

• ThenWk(x) =
1

2
((Uk(x))

2 + Vk(x
2)) is the generating function of the half self-convolution

of the k-Lucas sequence.

4 Binomial transform of the products of equidistant
k-Fibonacci and k-Lucas numbers

Next we will study the binomial transform of the products of equidistant k-Fibonacci and k-Lucas
numbers.

Theorem 4.1. Binomial transform of the finite sequence of products Lk,rjLk,n−rj is

n∑
j=0

(
n

j

)
Lk,rjLk,n−rj = 2nLk,n + Ln

k,rLk,n−rn

Proof.

n∑
j=0

(
n

j

)
Lk,rjLk,n−rj =

n∑
j=0

(
n

j

)
(σrj

1 + σrj
2 )(σn−rj

1 + σn−rj
2 )

=
n∑

j=0

(
n

j

)(
σn
1 + σn

2 + σn
1

(
σ2
σ1

)rj

+ σn
2

(
σ1
σ2

)rj
)

=
n∑

j=0

(
n

j

)
Lk,n + σn

1

n∑
j=0

(
n

j

)(
σ2
σ1

)rj

+ σn
2

n∑
j=0

(
n

j

)(
σ1
σ2

)rj

= Lk,n

n∑
j=0

(
n

j

)
+ σn

1

(
1 +

(
σ2
σ1

)r)n

+ σn
2

(
1 +

(
σ1
σ2

)r)n

= 2nLk,n + σn
1

(
σr
1 + σr

2

σr
1

)n

+ σn
2

(
σr
1 + σr

2

σr
2

)n

= 2nLk,n + (σr
1 + σr

2)
n (σn−rn

1 + σn−rn
2

)
= 2nLk,n + Ln

k,rLk,n−rn.

In particular,

• if r = 1, it is Cp =
n∑

j=0

(
n

j

)
Lk,jLk,n−j = 2nLk,n + 2kn;

• if r = 2, it is
n∑

j=0

(
n

j

)
Lk,2jLk,n−2j =

(
2n + (−1)n(k2 + 2)n

)
Lk,n.
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We must take into account the formula (9), so the binomial transform of the products of

equidistant k-Lucas numbers in the sequence {Lk,n} isCe = 2n−1Lk,n+k
n+

η

2

(
n

n/2

)
L2
k,n/2 with

η =
(−1)n + 1

2
.

Taking into account this theorem and the Binet Identity, it is easy to prove the following
theorem for the k-Fibonacci numbers.

Theorem 4.2. The binomial transform of the products {Fk,rjFk,n−rj} is

n∑
j=0

(
n

j

)
Fk,rjFk,n−rj =

2nLk,n − Ln
k,rLk,n−rn

k2 + 4
.

In particular, if r = 1, binomial transform of these products is

Dn =
n∑

j=0

(
n

j

)
Fk,jFk,n−j =

2nLk,n − 2kn

k2 + 4
(12)

For k = 1, 2, 3, the sequences obtained are:

• {0, 2, 6, 22, 70, 230, 742, 2406, 7782, 25190, 81510, . . .}: A014334 in OEIS;

• {0, 2, 12, 64, 320, 1568, 7616, 36864, 178176, 860672, 4156416, . . .};

• {0, 2, 18, 134, 930, 6278, 41874, 277814, 1838754, 12156902, 80335794, . . .}.

Finally, binomial transform of the products of the equidistant k-Fibonacci numbers is

V (n) =

n/2∑
j=0

(
n

j

)
Fk,jFk,n−j =

2n−1Lk,n − kn

k2 + 4
+

1

2
η(n)

(
n

n/2

)
F 2
k,n/2

This binomial transform is also known as exponential half-convolution of a k-Fibonacci sequence
with itself.

For k = 1, 2, 3, the first few terms of the correspondent sequences are:

• k = 1→ {0, 2, 3, 14, 35, 155, 371, . . .}: A203578 in OEIS;

• k = 2→ {0, 2, 6, 44, 160, 1034, 3808, . . .};

• k = 3→ {0, 2, 9, 94, 465, 4139, 20397, . . .}.

4.1 Generating function of exponential self-convolution
of the sequence {Fk,n}

Remember that the generating function of the k-Lucas numbers is l(x) =
2− k x

1− k x− x2
and that

of {kn} is 1

1− k x
. Formula (12) is

n∑
k=1

(
n

j

)
Fk,jFk,n−j =

2nLk,n − 2kn

k2 + 4
. Then, the generating

function of
n∑

k=1

(
n

j

)
Fk,jFk,n−j is
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bf(x) =
1

k2 + 4

(
l(k x)− 2

1− k x

)
=

2x2

1− 3k x+ 2(k2 − 2)x2 + 4k x3
(13)

Consequently, the generating function of the binomial transform of the equidistant k-Fibonacci
numbers is

ss(x) =
x2

1− 3k x+ 2(k2 − 2)x2 + 4k x3
+

1

2
η(n)

(
n

n/2

)
F 2
k,n/2

with η(n) = (−1)n + 1

2
.

4.2 Recurrence relation of exponential self-convolution
of the sequence {Fk,n}

Let

{Ek,n} =

{
n∑

j=0

(
n

j

)
Fk,jFk,n−j

}
.

The denominator of the formula (13) shows that the recurrence relation for this sequence is

Ek,n = 3k Ek,n−1 − 2(k2 − 2)Ek,n−2 − 4k Ek,n−3 (14)

with initial conditions Ek,1 = 0, Ek,2 = 2; Ek,3 = 6k.

4.3 On the sequences Mk,n =
n∑
j=0

(
n

j

)
Lk,nLk,n−j

For k = 1, 2, 3, the sequences Mk are:

• {4, 4, 14, 34, 114, 354, . . .}: 2*A203579 in OEIS;

• {4, 8, 32, 128, 576, 2688, . . .}: 4*A084137 in OEIS;

• {4, 12, 62, 342, 2066, 13062, . . .}.

Taking into account the k-Fibonacci and the k-Lucas numbers have the same recurrence
relation and only differ in the initial conditions, the equations for ones and others must have a
similar form.

1. Recurrence relation. From the formula (14), the recurrence relation for these numbers is
Mk,n = 3kMk,n−1 − 2(k2 − 2)Mk,n−2 − 4kMk,n−3 with initial conditions Mk,0 = 2,

Mk,1 = 4k, Mk,2 = 6k2 + 8.

2. Generating function. Let m(k, x) be the generating function of these sequences. The
preceding formula shows the way forward to find the generating function.
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m(k, x) =Mk,0 +Mk,1x+Mk,2x
2 +Mk,3x

3 + · · ·
3k xm(k, x) = 3kMk,0x+ 3kMk,1x

2 + 3kMk,2x
3 + · · ·

2(k2 − 2)x2m(k, x) = 2(k2 − 2)Mk,0x
2 + 2(k2 − 2)Mk,1x

3 + · · ·
4k x3m(k, x) = 4kMk,0x

3 + · · ·(
1− 3k x+ 2(k2 − 2)x2 + 4k x3

)
m(k, x) =

=Mk,0 + (Mk,1 − 2kMk,0)x+ (Mk,2 − 3kMk,1 + (2k2 − 4)Mk,0)x
2

→ m(k, x) =
4− 8k x+ (2k2 − 8)x2

1− 3k x+ 2(k2 − 2)x2 + 4k x3

5 Conclusions

We have found formulas to the sum of the products of k-Fibonacci and k-Lucas numbers as
well its binomial transform. Next, we shown the sums of equidistant k-Fibonacci and k-Lucas
numbers. And finally, we give the formulas of their generating functions and binomial transforms.
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