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1 Introduction

The Mersenne sequence is discussed in [1] and [3]. We consider the following set indicating some
of these values (0, 1, 3, 7, 15, 31, 63, 127, 255, . . . ,Mn, . . .). The Mersenne numbers are defined
recurrently by the inhomogeneous equation Mn+1 = 2Mn + 1. On the other hand, we can write
Mn+2 = 2Mn+1 + 1. From these two equations, we can get a homogeneous equation. In fact, we
can write Mn+2−Mn+1 = (2Mn+1+1)− (2Mn+1) = 2Mn+1−Mn ∴ Mn+2 = 3Mn+1−2Mn.

Definition 1.1. The Mersenne sequence is defined by the recurrence relation:

Mn+2 = 3Mn+1 − 2Mn,

with initial conditions M0 = 0,M1 = 1, n > 0.

From the work [1] we know that the roots of the respective characteristic equation
r2 − 3r + 2 = 0 are r1 = 2 and r2 = 1 and we easily get the Binet formula Mn = 2n − 1.
In the next section, we define the bivariate Mersenne polynomials. Then, after discussing certain
properties of matrices, we will present the notion of bivariate quaternions of Mersenne. Other
properties of generalized bivariate Fibonacci polynomials and matrices can be found in the work
indicated in [2].
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2 Bivariate Mersenne polynomials

We will introduce a new mathematical notion.

Definition 2.1. The bivariate Mersenne polynomials are defined by the recurrence relation:

Mn+2(x, y) = 3yMn+1(x, y)− 2xMn(x, y),

with initial conditions M0(x, y) = 0,M1(x, y) = 1, n > 0.

From Definition 2.1, for the particular case, we can verify that M0(1, 1) = M0 and
M1(1, 1) = M1. We can determine some particular elements of this polynomial sequence from
the Definition 2.1:

M2(x, y) = 3y,

M3(x, y) = 9y2 − 2x,

M4(x, y) = 27y3 − 12xy,

M5(x, y) = 81y4 − 54xy2 + 4x2,

M6(x, y) = 243y5 − 216xy3 + 36x2y,

M7(x, y) = 729y6 − 810xy4 + 216x2y2 − 8x3,

M8(x, y) = 2187y7 − 2916xy5 + 1080x2y3 − 96x3y,

M9(x, y) = 6561y8 − 10206xy6 + 4860x2y4 − 720x3y2 + 16x4,

M10(x, y) = 19683y9 − 34992xy7 + 20412x2y5 − 4320x3y3 + 240x4y,

etc. In the following theorem we will see the Binet formula for the bivariate Mersenne
polynomials.

Theorem 2.2. The Binet’s formula for the bivariate Mersenne polynomials is defined by:

Mn(x, y) =
r1(x, y)

n − r2(x, y)
n

r1(x, y)− r1(x, y)n
,

where r1(x, y) =
3y +

√
9y2 − 8x

2
, r2(x, y) =

3y −
√
9y2 − 8x

2
are the roots of the characteristic

equation t2 − 3yt+ 2x = 0.

Proof. Let us consider the fundamental recurrence relation:

Mn+2(x, y) = 3yMn+1(x, y)− 2xMn(x, y).

We can see that, in the particular case, the roots r1(x, y) =
3y+
√

9y2−8x
2

, r2(x, y) =
3y−
√

9y2−8x
2

and the characteristc equation t2 − 3yt + 2x = 0, under the condition 9y2 − 8x > 0 result in
the original Mersenne sequence. If we take the particular values x = y = 1, we will find that
r1(1, 1) = 3+

√
1

2
= r1, r2(1, 1) = 3−

√
1

2
= r2 and retrieve the initial characteristic equation of

the Mersenne sequence, indicated by t2 − 3t + 2 = 0. So, in the particular case, we can write
Mn(1, 1) =

r1(1,1)n−r2(1,1)n
r1(1,1)−r2(1,1) = 2n−1n

2−1 = 2n − 1 = Mn, for every positive integer n > 0.
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Note that using the well-known results involving recursive sequences, the characteristic
equation, associated with the recurrence is given by t2 − 3yt + 2x = 0, where the roots are

r1(x, y) =
3y+
√

9y2−8x
2

, r2(x, y) =
3y−
√

9y2−8x
2

, r1(x, y) + r2(x, y) = 3y, r1(x, y)r2(x, y) = 2x

or 1
r1(x,y)

= r2(x,y)
2x

.
Moreover, we can easily observe that r1(x, y)2 = (3yr1(x, y) − 2x.1) = M2(x, y)r1(x, y) −

2xM1(x, y). By mathematical induction, we will consider that r1(x, y)n = Mn(x, y)r1(x, y) −
2xMn−1(x, y), for n > 0. Just note that:

r1(x, y)
n+1 = r1(x, y)

nr1(x, y) = r1(x, y)(Mn(x, y)r1(x, y)− 2xMn−1(x, y))

= r1(x, y)
2Mn(x, y)− 2xMn−1(x, y)r1(x, y)

= (3yr1(x, y)− 2x)Mn(x, y)− 2xMn−1(x, y)r1(x, y)

= 3yr1(x, y)Mn(x, y)− 2xMn(x, y)− 2xMn−1(x, y)r1(x, y)

= (3yMn(x, y)− 2xMn−1(x, y))r1(x, y)− 2xMn(x, y)

= Mn+1(x, y)r1(x, y)− 2xMn(x, y) = Mn+2(x, y).

In general, for n > 0, we can see that r1(x, y)n = Mn(x, y)r1(x, y) − 2xMn−1(x, y) and
r2(x, y)

n = Mn(x, y)r2(x, y)− 2xMn−1(x, y). Easily, we will find that (r1(x, y)n− r2(x, y)
n) =

Mn(x, y)r1(x, y)−Mn(x, y)r2(x, y) = Mn(x, y)(r1(x, y)− r2(x, y)).

For the particular case, we can verify that M0(1, 1) = M0 and M1(1, 1) = M1. From the
recurrence indicated in the Definition 2.1, we can still determine that

M−1(x, y) = −
1

2x
= − 1

(2x)1
M1(x, y)

M−2(x, y) = −
3x

4x2
= − 1

(4x2)
(3y) = − 1

(2x)2
M2(x, y)

M−3(x, y) = −
9y2

8x3
+

1

4x2
= − 1

8x3
(9y2 − 2x) = − 1

(2x)3
= M3(x, y)

M−4(x, y) = −
27y3

16x4
+

3y

4x3
= − 1

16x4
(27y3 − 12xy) = − 1

(2x)4
M4(x, y)

M−5(x, y) = −
81y4

32x5
+

27y2

16x4
− 1

8x3
= − 1

32x5
(81y4 − 54xy2 + 4x2) = − 1

(2x)5
M5(x, y)

M−6(x, y) = −
243y5

64x6
+

27y3

8x5
− 9y

16x4
= − 1

64x6
(243y5 − 216xy3 + 36x2y) = − 1

(2x)6
M6(x, y)

M−7(x, y) = −
729y6

128x7
+

405y4

64x6
− 27y2

16x5
+

1

16x4
= − 1

128x7
(729y6 − 810xy4 + 216x2y2 − 8x3)

= − 1

(2x)7
M7(x, y),

etc. From these preliminary examples, we demonstrate the next theorem.
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Theorem 2.3. The Binet’s formula for the bivariate Mersenne polynomials is defined by:

M−n(x, y) = −
1

(2x)n
Mn(x, y),

for every positive integer n > 0.

Proof. Since we know that Mn(x, y) =
r1(x, y)

n − r2(x, y)
n

r1(x, y)− r2(x, y)
and, we replace the convenient index

and take:

M−n(x, y) =
r1(x, y)

−n − r2(x, y)
−n

r1(x, y)− r2(x, y)
=

( 1
r1(x,y)

)n − ( 1
r2(x,y)

)n

r1(x, y)− r2(x, y)
=

(
r2(x,y)

2x

)n
−
(

r1(x,y)
2x

)n
r1(x, y)− r2(x, y)

=
1

(2x)n

(
(r2(x, y))

n − (r1(x, y))
n

r1(x, y)− r2(x, y)

)
= − 1

(2x)n

(
(r1(x, y))

n − (r2(x, y))
n

r1(x, y)− r2(x, y)

)
= − 1

(2x)n
Mn(x, y).

Theorem 2.4. The generating function for the Bivariate Mersenne polynomials is:

GM(t) =
M0(x, y) + (M1(x, y)− 3yM0(x, y))t

1− 3yt+ 2xt2
=

t

1− 3yt+ 2xt2
.

Proof. We consider the formal series indicated by GM(t) =
∑∞

i=0Mi(x, y)t
i, where the

coefficients are exactly the bivariate Mersenne polynomials. We recall, however, the following
relationship and we replace the convenient index and take

Mn+2(x, y)− 3yMn+1(x, y) + 2xMn(x, y) = 0,∀n > 0.

In this way, we will consider the following expressions constituted as infinite sums:

1GM(t) = M0(x, y)t
0 +M1(x, y)t+M2(x, y)t

2 + . . .+Mn(x, y)t
n + . . .

(−3y)GM(t)t = −3yM0(x, y)t− 3yM1(x, y)t
2 − 3yM2(x, y)t

3 − . . .− 3yMn−1(x, y)t
n − . . .

(2x)GM(t)t2 = 2xM0(x, y)t
2 + 2xM1(x, y)t

3 + 2xM2(x, y)t
4 + . . .+ 2xMn−2(x, y)t

n + . . .

Then, we group the expression:

GM(t)− 3yGM(t)t+ 2xGM(t)t2

= GM(t)(1− 3yt+ 2xt2)

= M0(x, y) + (M1(x, y)− 3yM0(x, y))t+ (M2(x, y)− 3yM1(x, y) + 2xM0(x, y))t
2

+ 0t3 + 0t4 + . . .+ (Mn(x, y)− 3yMn−1(x, y) + 2xMn−2(x, y))t
n + . . . .

Finally, we will find that

GM(t)(1− 3yt+ 2xt2) = M0(x, y) + (M1(x, y)− 3yM0(x, y))t

or, we can write the generating function

GM(t) =
M0(x, y) + (M1(x, y)− 3yM0(x, y)t

1− 3yt+ 2xt2
=

t

1− 3yt+ 2xt2
.
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Let us now look at some classic identities.

Theorem 2.5. (Catalan’s identity) For n > r, we have:

(i) Mn−r(x, y)Mn+r(x, y)−Mn(x, y)
2 = (2x)n

(
2− r1(x, y)

−rr2(x, y)
r − r2(x, y)

−rr1(x, y)
r

r1(x, y)− r2(x, y)

)
;

(ii) (Cassini’s identity) Mn−1(x, y)Mn+1(x, y)−Mn(x, y)
2 = (2x)n−1

(
4x− r2(x, y)

2 − r1(x, y)
2

r1(x, y)− r2(x, y)

)
.

Proof. Immediately, we consider the expression:

Mn−r(x, y)Mn+r(x, y)−Mn(x, y)
2

=

(
r1(x, y)

n−r − r2(x, y)
n−r

r1(x, y)− r2(x, y)

)(
r1(x, y)

n+r − r2(x, y)
n+r

r1(x, y)− r2(x, y)

)
−
(
r1(x, y)

n − r2(x, y)
n

r1(x, y)− r2(x, y)

)(
r1(x, y)

n − r2(x, y)
n

r1(x, y)− r2(x, y)

)
=

(
r1(x, y)

n−rr1(x, y)
n+r − r1(x, y)

n−rr2(x, y)
n+r − r2(x, y)

n−rr1(x, y)
n+r + r2(x, y)

n−rr2(x, y)
n+r

r1(x, y)− r2(x, y)

)
− (r1(x, y)

n − r2(x, y)
n)2

r1(x, y)− r2(x, y)

=
r1(x, y)

2n + r2(x, y)
2n − (r1(x, y)r2(x, y))

nr1(x, y)
−rr2(x, y)

r − (r2(x, y)r1(x, y))
nr2(x, y)

−rr1(x, y)
r

r1(x, y)− r2(x, y)

− (r1(x, y))
n − r2(x, y)

n)2

r1(x, y)− r2(x, y)

=
r1(x, y)

2n + r2(x, y)
2n − (2x)nr1(x, y)

−1 − (2x)nr2(x, y)
−rr1(x, y)− (r1(x, y)

n − r2(x, y)
n)2

r1(x, y)− r2(x, y)

=
r1(x, y)

2n + r2(x, y)
2n − (2x)nr1(x, y)

−rr2(x, y)
r − (2x)nr2(x, y)

−rr1(x, y)
r − r1(x, y)

2n − r2(x, y)
2n

r1(x, y)− r2(x, y)

+
2r1(x, y)

nr2(x, y)
n

r1(x, y)− r2(x, y)

=
2(2x)n − (2x)nr1(x, y)

−rr2(x, y)
r − (2x)nr2(x, y)

−rr1(x, y)
r

r1(x, y)− r2(x, y)

= (2x)n
(
2− r1(x, y)

−rr2(x, y)
r − r2(x, y)

−rr1(x, y)
r

r1(x, y)− r2(x, y)

)
.

For the particular case, if we take r = 1 we will find that:

M−1(x, y)Mn+1(x, y)−Mn(x, y)
2 = (2x)n

(
2− r1(x, y)

−1r2(x, y)− r2(x, y)
−1r1(x, y)

r1(x, y)− r2(x, y)

)

= (2x)n

(
2− r2(x,y)

r1(x,y)
− r1(x,y)

r2(x,y)

r1(x, y)− r2(x, y)

)

= (2x)n
(
2(r1(x, y)r2(x, y))− r2(x, y)

2 − r1(x, y)
2

(r1(x, y)r2(x, y))(r1(x, y)− r2(x, y))

)
= (2x)n

(
4x− r2(x, y)

2 − r1(x, y)
2

2x(r1(x, y)− r2(x, y))

)
= (2x)n−1

(
4x− r2(x, y)

2 − r1(x, y)
2

r1(x, y)− r2(x, y)

)
,

follows the result in the second item.
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In the following section, we will introduce some matrix properties related to the bivariate
Mersenne polynomials and their generating matrix.

3 Some matrix properties of the Mersenne polynomials

In this section we will study the properties of the powers of the following matrices defined by

B(x, y) =

(
0 1

−2x.1 3y

)
and B(x, y)−1 =

(
3y
2x
− 1

2x
1

1 0

)
.

Let us start by analyzing the behavior of the following matrix powers

B(x, y)n =

(
0 1

−2x.1 3y

)n

for n > 1:

B(x, y) =

(
0 1

−2x.1 3y

)
=

(
−2xM0(x, y) M1(x, y)

−2xM1(x, y) M2(x, y)

)
,

B(x, y)2 =

(
−2x 3y

−2x(3y) 9y2 − 2x

)
=

(
−2xM1(x, y) M2(x, y)

−2xM2(x, y) M3(x, y)

)
,

B(x, y)3 =

(
−2x(3y) 9y2 − 2x

−2x(9y2 − 2x) 27y3 − 12xy

)
=

(
−2xM2(x, y) M3(x, y)

−2xM3(x, y) M4(x, y)

)
,

B(x, y)4 =

(
−2x(9y2 − 2x) 27y3 − 12xy

−2x(27y3 − 12xy) 81y4 − 54xy2 + 4x2

)
=

(
−2xM3(x, y) M4(x, y)

−2xM4(x, y) M5(x, y)

)
,

B(x, y)5 =

(
−2x(27y3 − 12xy) 81y4 − 54xy2 + 4x2

−2x(81y4 − 54xy2 + 4x2) 243y5 − 216xy3 + 24x2y

)

=

(
−2xM4(x, y) M5(x, y)

−2xM5(x, y) M6(x, y)

)
,

B(x, y)6 =

(
−2x(81y4 − 54xy2 + 4x2) 243y5 − 216xy3 + 36x2y

−2x(243y5 − 216xy3 + 362y) 729y6 − 810xy4 + 216x2y2 − 8x3

)

=

(
−2xM5(x, y) M6(x, y)

−2xM6(x, y) M7(x, y)

)
.

From these particular examples, let us define the following matrix:

Bn(x, y) =

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)
,

for every integer n > 0.
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Theorem 3.1. For every integers n,m > 0, we have:

(i) B(x, y)n =

(
0 1

−2x.1 3y

)
=

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)
= Bn(x, y);

(ii) det(B(x, y)) = det(B(x, y)n) = det

(
0 1

−2x 3y

)n

= 2nxn;

(iii) Mn−1(x, y)Mn+1(x, y)−Mn(x, y)
2 = −2xn−1xn−1;

(iv) Bn+m(x, y) = Bn(x, y)Bm(x, y) = Bm(x, y)Bn(x, y).

Proof. By mathematical induction, for n,m > 0, we will consider the power:

B(x, y)n =

(
0 1

−2x.1 3y

)n

=

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)
.

At the next step, we take:

B(x, y)n+1 = B(x, y)nB(x, y) =

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)(
0 1

−2x.1 3y

)

=

(
−2xMn(x, y) 3yMn(x, y)− 2xMn−1(x, y)

−2xMn+1(x, y) 3yMn+1(x, y)− 2xMn(x, y)

)

=

(
−2xMn(x, y) Mn+1(x, y)

−2xMn+1(x, y) Mn+2(x, y)

)
= Bn+1(x, y),

for every integer n > 0. From this, we can determine that

det(Bn(x, y)) = det(B(x, y)n) = det

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)

= det

(
0 1

−2x.1 3y

)n

= (2x)n.

However, we can verify that (−2x)(Mn−1(x, y)Mn+1(x, y)−Mn(x, y)
2) = 2nxn.

Thus, we can find that (−2x).(Mn−1(x, y)Mn+1(x, y)−Mn(x, y)
2) = 2nxn for every integer

n > 0.
Finally, we verify that Bn+m(x, y) = B(x, y)n+m = B(x, y)nB(x, y)m = B(x, y)mB(x, y)n

= Bm+n(x, y), for every positive integers n,m.

Let us define the following matrix

B−n(x, y) =

(
−2xM−n−1(x, y) M−n(x, y)

−2xM−n(x, y) M−n+1(x, y)

)
for n > 1.

We will now check some properties of the matrix powers

(
0 1

−2x.1 3y

)−n
.
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Theorem 3.2. For every integers n > 0,m > 0, we have:

(i) B−n(x, y) =

(
−2xM−(n+1)(x, y) M−(n)(x, y)

−2xM−(n)(x, y) M−(n−1)(x, y)

)
= (Bn(x, y)

−1) =

(
0 1

−2x.1 3y

)−n
;

(ii) det(B−n(x, y)) = det(Bn(x, y)
−1) =

1

(2x)n
;

(iii) B−(n+m)(x, y) = B−n(x, y)B−m(x, y) = B−m(x, y)B−n(x, y).

Proof. From Theorem 2.2 we know that M−n(x, y) = − 1

(2x)n
Mn(x, y). Now, we consider the

matrix:

B−n(x, y) =

(
−2xM−n−1(x, y) M−n(x, y)

−2xM−n(x, y) M−n+1(x, y)

)
=

(
−2xM−(n+1)(x, y) M−n(x, y)

−2xM−n(x, y) M−(n−1)(x, y)

)

=

−2x(− 1
(2x)n+1Mn+1(x, y)

)
− 1

(2x)n
Mn(x, y)

−2x
(
− 1

(2x)n
Mn(x, y)

)
− 1

(2x)n−1Mn−1(x, y)


=

(
1

(2x)n
Mn+1(x, y) − 1

(2x)n
Mn(x, y)

2x
(
− 1

(2x)n
Mn(x, y)

)
− 2x

(2x)n
Mn−1(x, y)

)

=
1

(2x)n

(
Mn+1(x, y) −Mn(x, y)

2xMn(x, y) −2xMn−1(x, y)

)

= (Bn(x, y))
−1.

Immediately, from the equality established in the previous item, it follows that

det(B−n(x, y)) = det(Bn(x, y))
−1 =

1

(2x)n
,

for every integer n > 0. Moreover, repeating the above arguments, we can determine that:

B−(n+m)(x, y) = (B(x, y))−(n+m) = (B(x, y))−n(B(x, y))−m

= B−n(x, y)B−m(x, y) = B−m(x, y)B−n(x, y).

We can observe some particular cases for B(x, y)−n, as follows.

B(x, y)−1 =

(
3y
2x
− 1

2x
1

1 0

)
=

(
−2x

(
− 3y

2x2

)
− 1

2x
1

−2x 0

)
=

(
−2xM−2(x, y) M−1(x, y)

−2xM−1(x, y) M0(x, y)

)
,

B(x, y)−2 =

(
9y2−2x
4x2 − 3y

4x2

3y
2x

− 1
2x

)
=

(
−2x

(
−−9y2+2x

8x3

)
− 3y

4x2

3y
2x

− 1
2x

)
=

(
−2xM−3(x, y) M−2(x, y)

−2xM−2(x, y) M−1(x, y)

)
,

B(x, y)−3 =

(
9y2−2x
4x2 −1

8
(9y2−2x)

x3

1
4
(9y2−2x)

x2 − 3y
4x2

)
=

(
−2xM−4(x, y) M−3(x, y)

−2xM−3(x, y) M−2(x, y)

)
,

B(x, y)−4 =

(
81y4

16x4 − 27y2

8x3 + 1
4x2 − 27y3

16x4 +
3y
4x3

−2x
(
− 27y3

16x4 +
3y
4x3

)
− 9y2

8x3 +
1

4x2

)
=

(
−2xM−5(x, y) M−4(x, y)

−2xM−4(x, y) M−3(x, y)

)
,
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B(x, y)−5 =

(
243y5

32x5 − 27y3

4x4 + 9y
8x3 − 81y4

32x4 +
27y2

16x4 − 1
8x3

−2x
(
− 81y4

32x4 +
27y2

16x4

)
− 1

8x3 − 9y2

8x3 +
1

4x2

)

=

(
−2xM−6(x, y) M−5(x, y)

−2xM−5(x, y) M−4(x, y)

)
.

In the last section we present the notion of Merssene’s bivariate quaternions. Here we verify the
behavior of particular cases that prove the Theorem 3.2.

4 Quaternion Bivariate of Mersenne

In this section we will define the Mersenne quaternion polynomials. The general case is discussed
in the work [3].

Definition 4.1. The nth Mersenne quaternion bivariate polynomial is defined by QMn(x, y) =

Mn(x, y)+Mn+1(x, y)i+Mn+2(x, y)j+Mn+3(x, y)k, where the canonical basis {1,
−→
i ,
−→
j ,
−→
k }.

The quaternion multiplication is defined by the following formal rules i2 = j2 = k2 = ijk = −1.

We can verify some examples:

QM−1(x, y) = −
1

2x
+ 0i+ 1j + 3yk,

QM0(x, y) = 0 + i+ 3yj + (9y2 − 2x)k,

QM1(x, y) = 1 + 3yi+ (9y2 − 2x)j + (27y3 − 12xy)k,

etc. Let us look at some preliminary properties.
Moreover, we can take the

QM−n(x, y) = M−n(x, y) +M−n+1(x, y)i+Mn+2(x, y)j +M−n+3(x, y)k

and, since we know evaluate the terms M−n(x, y) = −
1

(2x)n
Mn(x, y), we can determine:

QM−1(x, y) = M−1(x, y) +M0(x, y)i+M1(x, y)j +M2(x, y)k

QM−2(x, y) = M−2(x, y) +M−1(x, y)i+M0(x, y)j +M1(x, y)k

QM−3(x, y) = M−3(x, y) +M−2(x, y)i+M−1(x, y)j +M0(x, y)k,

etc.

Theorem 4.2. For every integer n > 0, we have:

(i) QMn+2(x, y) = 3yQMn+1(x, y)− 2xQMn(x, y);

(ii) QMn(x, y) =
p(x, y)r1(x, y)

n − q(x, y)r2(x, y)
n

r1(x, y)− r2(x, y)
,

p(x, y) = 1 + r1(x, y)i+ r1(x, y)
2j + r1(x, y)

3k,

q(x, y) = 1 + r2(x, y)i+ r2(x, y)
2j + r2(x, y)

3k;
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(iii) QM−n(x, y) =
1

(2x)n
p(x, y)r2(x, y)− q(x, y)r1(x, y)

n

r1(x, y)− r2(x, y)
.

Proof. We can observe directly, developing the following expression:

3yQMn+1(x, y)− 2xQMn(x, y) = (3yMn+1(x, y) + 3yMn+2(x, y)i+ 3yMn+3(x, y)j + 3yMn+4(x, y)k)

− 2xMn(x, y)− 2xMn+1(x, y)i− 2xMn+2(x, y)j − 2xMn+3(x, y)k

= (3yMn+1(x, y)− 2xMn(x, y)) + (3yMn+2(x, y)− 2xMn+1(x, y))i

+ (3yMn+3(x, y)− 2xMn+2(x, y))j + (3yMn+4(x, y)− 2xMn+3(x, y))k

= Mn+2(x, y) +Mn+3(x, y)i+Mn+4(x, y)j +Mn+5(x, y)k

= QMn+2(x, y).

From the previous definition, since we know the Binet’s formula, we write:

QMn(x, y) =
r1(x, y)

n − r2(x, y)
n

r1(x, y)− r2(x, y)
+

r1(x, y)
n+1 − r2(x, y)

n+1

r1(x, y)− r2(x, y)
i+

r1(x, y)
n+2 − r2(x, y)

n+2

r1(x, y)− r2(x, y)
j

+
r1(x, y)

n+3 − r2(x, y)
n+3

r1(x, y)− r2(x, y)
k

=
(r1(x, y)

n + r1(x, y)
n+1i+ r1(x, y)

n+2j + r1(x, y)
n+3k)− (r2(x, y)

n + r2(x, y)
n+1i+ r2(x, y)

n+2j)

r1(x, y)− r2(x, y)

+
(r1(x, y)

n+3k)− (r2(x, y)
n + r2(x, y)

n+1i+ r2(x, y)
n+2j + r2(x, y)

n+3k)

r1(x, y)− r2(x, y)

=
r1(x, y)

n(1 + r1(x, y)i+ r1(x, y)
2j + r1(x, y)

3k)− r2(x, y)
n(1 + r2(x, y)i+ r2(x, y)

2j + r2(x, y)
3k)

r1(x, y)− r2(x, y)

=
p(x, y)r1(x, y)

n − q(x, y)r2(x, y)
n

r1(x, y)− r2(x, y)
,

where
p(x, y) = 1 + r1(x, y)i+ r1(x, y)

2j + r1(x, y)
3k

and
q(x, y) = 1 + r2(x, y)i+ r2(x, y)

2j + r2(x, y)
3k.

Finally, we will replace the convenient index

QM−n(x, y) =
p(x, y)r1(x, y)

−n − q(x, y)r2(x, y)
−n

r1(x, y)− r2(x, y)

=
p(x, y)

(
1

r1(x,y)

)n
− q(x, y)

(
1

r2(x,y)

)n
r1(x, y)− r2(x, y)

=
p(x, y)

(
r2(x,y)

2x

)n
− q(x, y)

(
r1(x,y)

2x

)n
r1(x, y)− r2(x, y)

=
1

(2x)n

(
p(x, y)r2(x, y)− q(x, y)r1(x, y)

n

r1(x, y)− r2(x, y)

)
.

We will define the following matrix QBn(x, y) =

(
−2xQMn−1(x, y) QMn(x, y)

−2xQMn(x, y) QMn+1(x, y)

)
.

Next, we show that it can be generated by the product of matrices such as:(
0 1

−2x.1 3y

)n(
−2xQM−1(x, y) QM0(x, y)

−2xQM0(x, y) QM1(x, y)

)
,

for every integer n > 0.
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Theorem 4.3. For every integer n > 0, we have:

(i) QBn(x, y) =

(
−2xQMn−1(x, y) QMn(x, y)

−2xQMn(x, y) QMn+1(x, y)

)
=

(
0 1

−2x.1 3y

)n(
−2xQM−1(x, y) QM0(x, y)

−2xQM0(x, y) QM1(x, y)

)
;

(ii) det(QBn(x, y)) = −(2x)n+1(QM−1(x, y)−QM0(x, y)
2);

(iii) QB−1(x, y) =

(
−2xQM−n−1(x, y) QM−n(x, y)

−2xQM−n(x, y) QM−n+1(x, y)

)
=

(
0 1

−2x.1 3y

)−n [(
1 0

0 1

)
+

(
3y
2x − 1

2x

1 0

)
i+

(
− (2x−9y2)

4x2 − 3y
4x2

3y
2x − 1

2x

)
j +

(
− (27y3−4xy)

8x3

(2x−9y2)
8x3

− (2x−9y2)
4x2 − 3y

4x2

)
k

]
.

Proof. We consider the matrix:

QBn(x, y)

(
−2xQMn−1(x, y) QMn(x, y)

−2xQMn(x, y) QMn+1(x, y)

)

=

(
−2x(Mn−1(x, y) +Mn(x, y)i+Mn+1(x, y)j +Mn+2(x, y)k) Mn(x, y) +Mn+1(x, y)i+Mn+2(x, y)j +Mn+3(x, y)k

−2x(Mn(x, y) +Mn+1(x, y)i+Mn+2(x, y)j +Mn+3(x, y)k) Mn+1(x, y) +Mn+2(x, y)i+Mn+3(x, y)j +Mn+4(x, y)k

)

=

(
−2xMn−1(x, y) Mn(x, y)

−2xMn(x, y) Mn+1(x, y)

)
+

(
−2xMn(x, y) Mn+1(x, y)

−2xMn+1(x, y) Mn+2(x, y)

)
i

+

(
−2xMn+1(x, y) Mn+2(x, y)

−2xMn+2(x, y) Mn+3(x, y)

)
j +

(
−2xMn+2(x, y) Mn+3(x, y)

−2xMn+3(x, y) Mn+4(x, y)

)
k

=

(
0 1

−2x.1 3y

)n

+

(
0 1

−2x.1 3y

)n+1

i+

(
0 1

−2x.1 3y

)n+2

j +

(
0 1

−2x.1 3y

)n+3

k

=

(
0 1

−2x.1 3y

)n
(1 0

0 1

)
+

(
0 1

−2x.1 3y

)
i+

(
0 1

−2x.1 3y

)2

j +

(
0 1

−2x.1 3y

)3

k


=

(
0 1

−2x.1 3y

)n [(
−2xM−1(x, y) M0(x, y)

−2xM0(x, y) M1(x, y)

)
+

(
−2xM0(x, y) M1(x, y)

−2xM1(x, y) M2(x, y)

)
i+

(
−2xM1(x, y) M2(x, y)

−2xM2(x, y) M3(x, y)

)
j

]
+

(
0 1

−2x.1 3y

)n [(
−2xM2(x, y) M3(x, y)

−2xM3(x, y) M4(x, y)

)
k

]
=

(
0 1

−2x.1 3y

)n(
−2x

(
− 1

2x + 0i+ 1j + 3yk
)

0 + i+ 3yj + (9y2 − 2x)k

−2x(0 + i+ 3yj + (9y2 − 2x)k) 1 + 3yi+ (9y2 − 2x)j + (27y3 − 12xy)k

)

=

(
0 1

−2x.1 3y

)n(
−2xQM−1(x, y) QM0(x, y)

−2xQM0(x, y) QM1(x, y)

)
.

Finally, we will take the matrix, for every n > 1, we have:

QB−n(x, y) =

(
−2xQM−n−1(x, y) QM−n(x, y)

−2xQM−n(x, y) QM−n+1(x, y)

)

=
(
−2x(M−n−1(x, y) + M−n(x, y)i + M−n+1(x, y)j + M−n+2(x, y)k) M−n(x, y) + M−n+1(x, y)i + M−n+2(x, y)j + M−n+3(x, y)k

−2x(M−n(x, y) + M−n+1(x, y)i + M−n+2(x, y)j + M−n+3(x, y)k) M−n+1(x, y) + M−n+2(x, y)i + M−n+3(x, y)j + M−n+4(x, y)k

)
=

(
−2xM−n−1(x, y) M−n(x, y)

−2xM−n(x, y) M−n+1(x, y)

)
+

(
−2xM−n(x, y) M−n+1(x, y)

−2xM−n+1(x, y) M−n+2(x, y)

)
i+

(
−2xM−n+1(x, y) M−n+2(x, y)

−2xM−n+2(x, y) M−n+3(x, y)

)
j

+

(
−2xM−n+2(x, y) M−n+3(x, y)

−2xM−n+3(x, y) M−n+4(x, y)

)
k
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= (B−n(x, y) +B−n+1(x, y)i+B−n+2(x, y)j +B−n+3(x, y)k)

= (B−n(x, y) +B−(n−1)(x, y)i+B−(n−2)(x, y)j +B−(n−3)(x, y)k)

=

(
0 1

−2x.1 3y

)−n

+

(
0 1

−2x.1 3y

)−n−1

i+

(
0 1

−2x.1 3y

)−n−2

j +

(
0 1

−2x.1 3y

)−n−3

k

=

(
0 1

−2x.1 3y

)−n
(1 0

0 1

)
+

(
0 1

−2x.1 3y

)−1

i+

(
0 1

−2x.1 3y

)−2

j +

(
0 1

−2x.1 3y

)−3

k



=

(
0 1

−2x.1 3y

)−n [(
1 0

0 1

)
+

(
3y
2x − 1

2x

1 0

)
i+

(
− (2x−9y2)

4x2 − 3y
4x2

3y
2x − 1

2x

)
j +

(
− (27y3−4xy)

8x3

(2x−9y2)
8x3

− (2x−9y2)
4x2 − 3y

4x2

)
k

]
,

from where the result follows.

Finally, let us see the corresponding generating function with the notion of generating function
for the bivariate Mersenne quaternion.

Theorem 4.4. The generating function for the bivariate Mersenne polynomials is:

GQM(t) =
QM0(x, y) + (QM1(x, y)− 3yQM0(x, y))t

1− 3yt+ 2xt2
.

Proof. We consider the formal series indicated by GQM(t)
∞∑
i=0

QMi(x, y)t
i, where the coeffi-

cients are exactly the quaternions bivariate polynomials of Mersenne.
We observe, however, the following relationship

QMn+2(x, y)− 3yQMn+1(x, y) + 2xQMn = 0,∀n > 0.

In this way, we will consider the following expressions constituted as infinite sums indicated
below:

1GQM(t) = QM0(x, y)t
0 +QM1(x, y)t+ . . .+QMn(x, y)t

n + . . .

(−3y)GQM(t)t = −3yQM0(x, y)t− 3yQM1(x, y)t
2 − . . .− 3yQMn−1(x, y)t

n + . . .

(2x)GQM(t)t2 = 2xQM0(x, y)t
2 + 2xyQM1(x, y)t

3 + . . .+ 2xQMn−2(x, y)t
n + . . .

Then, we group the expression:

GQM(t)− 3yGQM(t)t+ 2xGQM(t)t2

= GQM(t)(1− 3yt+ 2xt2)

= QM0(x, y) + (QM1(x, y)− 3yQM0(x, y))t+ (QM2(x, y)− 3yQM1(x, y) + 2xQM0(x, y))t
2

+ 0t3 + . . .+ (QMn(x, y)− 3yQMn−1(x, y) + 2xQMn−2(x, y))t
n + . . . .

Finally, we will find that:

GQM(t) =
QM0(x, y) + (QM1(x, y)− 3yQM0(x, y))t

1− 3yt+ 2xt2

=
i+ 3yj + (1 + (3y − 3)i+ (9y2 − 9y − 2x)j + (27y3 − 12xy)k)t

1− 3yt+ 2xt2
.
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5 Conclusion

In this work we present a new notion called bivariate Mersenne polynomials and some gener-
ating matrices. Some generalized results can be found in the work [3], however, the properties
presented in the previous sections involve matrix properties.
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