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Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1;
and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is
unity. The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let σ∗∗(n) denote
the sum of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect
number if σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present
paper is part III in a series of papers on even bi-unitary multiperfect numbers. In parts I and II
we found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 5 and u is odd.
There exist exactly six such numbers. In this part we examine the case a = 6. We prove that
if n = 26u is a bi-unitary triperfect number, then n = 22848, n = 342720, n = 51979200 or
n = 779688000.
Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues.
2010 Mathematics Subject Classification: 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The
letters u, v and w are reserved for odd numbers.
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A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. If d is a unitary divisor of n,
we write d‖n. A divisor d of n is called a bi-unitary divisor if (d, n/d)∗∗ = 1, where the symbol
(a, b)∗∗ denotes the greatest common unitary divisor of a and b. The concept of a bi-unitary
divisor is due to D. Suryanarayana (cf. [5]). Let σ∗∗(n) denote the sum of bi-unitary divisors
of n. The function σ∗∗(n) is multiplicative, that is, σ∗∗(1) = 1 and σ∗∗(mn) = σ∗∗(m)σ∗∗(n)

whenever (m,n) = 1.
The concept of a bi-unitary perfect number was introduced by C. R. Wall [6]; a positive integer

n is called a bi-unitary perfect number if σ∗∗(n) = 2n. C. R. Wall [6] proved that there are only
three bi-unitary perfect numbers, namely 6, 60 and 90. A positive integer n is called a bi-unitary
multiperfect number if σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect
numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present
paper is part III in a series of papers on even bi-unitary multiperfect numbers. In part I (see [2])
we found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 3 and u is
odd. We proved that if 1 ≤ a ≤ 3 and n = 2au is a bi-unitary triperfect number, then a = 3

and n = 120 = 23.3.5. In part II (see [3]) we considered the cases a = 4 and a = 5. We
proved that if n = 24u is a bi-unitary triperfect number, then n = 2160 = 24.33.5, and that if
n = 25u is a bi-unitary triperfect number, then n = 672 = 25.3.7, n = 10080 = 25.32.5.7,
n = 528800 = 25.3.52.13 or n = 22932000 = 25.32.53.72.13.

In the present part we investigate bi-unitary triperfect numbers of the form n = 26u. We
prove in Theorem 3.1 that if n = 26u is a bi-unitary triperfect number, then n = 22848 =

26.3.7.17, n = 342720 = 26.32.5.7.17, n = 51979200 = 26.3.52.72.13.17 or n = 779688000 =

26.32.53.72.13.17.
To sum up, the cases a = 1 and a = 2 give no bi-unitary triperfect numbers, the cases a = 3

and a = 4 produce both one bi-unitary triperfect number, and the cases a = 5 and a = 6 yield
both four bi-unitary triperfect numbers.

For a general account on various perfect-type numbers, we refer to [4].

2 Preliminaries

We assume that the reader has part I (see [2]) available. We, however, recall Lemmas 2.1 and 2.2
from part I, because they are so important also here.

Lemma 2.1. (I) If α is odd, then

σ∗∗(pα)

pα
>
σ∗∗(pα+1)

pα+1

for any prime p.
(II) For any α ≥ 2`− 1 and any prime p,

σ∗∗(pα)

pα
≥

(
1

p− 1

)(
p− 1

p2`

)
− 1

p`
=

1

p2`

(
p2`+1 − 1

p− 1
− p`

)
.

(III) If p is any prime and α is a positive integer, then

σ∗∗(pα)

pα
<

p

p− 1
.
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Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [6]; (II) of Lemma 2.1 has
been used by him [6] without explicitly stating it.

Lemma 2.2. Let a > 1 be an integer not divisible by an odd prime p and let α be a positive
integer. Let r denote the least positive integer such that ar ≡ 1 (mod pα); then r is usually
denoted by ordpα a. We have the following properties.

(i) If r is even, then s = r/2 is the least positive integer such that as ≡ −1 (mod pα). Also,
at ≡ −1 (mod pα) for a positive integer t if and only if t = su, where u is odd.

(ii) If r is odd, then pα - at + 1 for any positive integer t.

Remark 2.2. Let a, p, r and s = r/2 be as in Lemma 2.2 (α = 1). Then p|at − 1 if and only if
r|t. If t is odd and r is even, then r - t. Hence p - at−1. Also, p|at+1 if and only if t = su, where
u is odd. In particular if t is even and s is odd, then p - at + 1. In order to check the divisibility
of at − 1 (when t is odd) by an odd prime p, we can confine to those p for which ordp a is odd.
Similarly, for examining the divisibility of at+1 by p when t is even, we need to consider primes
p with s = ordp a/2 even.

3 Bi-unitary triperfect numbers of the form n = 26u

Theorem 3.1. Assume that n is a bi-unitary triperfect number with 26‖n.

(a) Then n = 26.7b.17c.v, where b = 1 or b = 2 and v is prime to 2.7.17.

(b) If b = 1, then n = 26.3.7.17 = 22848 or n = 26.32.5.7.17 = 342720.

(c) If b = 2, then n = 26.3.52.72.13.17 = 51979200 or n = 26.32.53.72.13.17 = 779688000.

Proof. Let n = 26u, where u is odd, be a bi-unitary triperfect number so that σ∗∗(n) = 3n. Hence

3.26.u = 3n = σ∗∗(n) = σ∗∗(26)σ∗∗(u) = 7.17.σ∗∗(u),

so that
3.26.u = 7.17.σ∗∗(u). (3.1)

From (3.1), 7 and 17 are factors of u. So we may assume that u = 7b.17c.v, where v is odd and
relatively prime to 7.17. We now have

n = 26.7b.17c.v. (3.1a)

Also, from (3.1),
3.26.7b.17c.v = 7.17.σ∗∗(7b)σ∗∗(17c)σ∗∗(v),

and after simplification we get

3.26.7b−1.17c−1.v = σ∗∗(7b)σ∗∗(17c)σ∗∗(v), (3.1b)

where v cannot have more than four odd prime factors.
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We prove Theorem 3.1 in this sequence: (b), (c), and (a).

Proof of (b) of Theorem 3.1. Let b = 1. Then taking b = 1 in (3.1a) we obtain

n = 26.7.17c.v. (3.2a)

Since σ∗∗(7) = 8, taking b = 1 in (3.1b), we get 3.26.17c−1.v = 8.σ∗∗(17c)σ∗∗(v) and on
simplification we obtain

3.23.17c−1.v = σ∗∗(17c)σ∗∗(v), (3.2b)

and v has no more than two odd prime factors.
Case (b = 1, c = 1). Let c = 1. From (3.2b), we get 3.23.v = 18.σ∗∗(v) or

22.v = 3.σ∗∗(v). (3.2c)

This implies 3|v so that v = 3d.w, where (w, 2.3.7.17) = 1. From (3.2a) and (3.2c) we obtain

n = 26.7.17.3d.w, (3.3a)

and
22.3d−1.w = σ∗∗(3d).σ∗∗(w), (3.3b)

where w has at most one odd prime factor.

We have for d ≥ 3, σ
∗∗(3d)

3d
≥ 112

81
. Hence for d ≥ 3, from (3.3a), we obtain

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
18

17
.
112

81
= 3.11 > 3,

a contradiction.
Hence d = 1 or d = 2.

Let d = 1. From (3.3b), 22.w = 4.σ∗∗(w), so that w = σ∗∗(w). Hence w = 1. Thus (3.3b) is
satisfied when d = 1. So from (3.3a) (d = 1), n = 26.7.17.3 = 22848 is a bi-unitary triperfect
number.

Let d = 2. From (3.3b), (d = 2), we obtain 22.3.w = 10.σ∗∗(w) or

2.3.w = 5.σ∗∗(w). (3.4)

Hence 5|w. From (3.4), w can have at most one odd prime factor and so w = 5e. Using this in
(3.3a) and (3.4), we get

n = 26.7.17.32.5e, (3.4a)

and
2.3.5e−1 = σ∗∗(5e). (3.4b)

If e ≥ 2, from (3.4b) it follows that 5|σ∗∗(5e). This is not possible. Hence e = 1 and for this
value (3.4b) is satisfied. Thus n = 26.7.17.32.5 = 342720 is a bi-unitary triperfect number.

The case (b = 1, c = 1) is complete.

Case (b = 1, c ≥ 2). The relevant equations are (3.2a) and (3.2b) with c ≥ 2. We now prove
that n in (3.2a) cannot be a bi-unitary triperfect number when c ≥ 2.

We obtain a contradiction to (3.2b), by examining the factors of σ∗∗(17c). We distinguish the
following cases:
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Case I. Let c be odd so that c ≥ 3. We have σ∗∗(17c) =
17c+1 − 1

16
. Since c + 1 is even,

17c+1 ≡ 1(mod 9). Hence 9|σ∗∗(17c). From (3.2b), it follows that 3|v. Hence v = 3dw,
where w is prime to 2.3.7.17; using this in (3.2a) and (3.2b), we obtain

n = 26.7.17c.3d.w, (3.5a)

and
23.17c−1.3d+1.w = σ∗∗(17c).σ∗∗(3d).σ∗∗(w), (3.5b)

where w has at most one odd prime factor.

Since c ≥ 3, by Lemma 2.1 (` = 2), σ
∗∗(17c)

17c
≥ 88452

83521
; also, for d ≥ 3,

σ∗∗(3d)

3d
≥ 112

81
; using

these results from (3.5a), we obtain for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
112

81
= 3.11 > 3,

a contradiction.

Hence d = 1 or d = 2.

If d = 1, from (3.5a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
4

3
= 3.000610625 > 3,

a contradiction.

Let d = 2. From (3.5a) and (3.5b), we have n = 26.7.17c.32.w, and

23.17c−1.33.w = 10.σ∗∗(17c).σ∗∗(w) or 22.17c−1.33.w = 5.σ∗∗(17c).σ∗∗(w);

the last equation implies that 5|w and so w = 5e.w′. Using this, we get

n = 26.7.17c.32.5e.w′, (3.6a)

and
22.17c−1.33.5e−1.w′ = σ∗∗(17c).σ∗∗(5e).σ∗∗(w′). (3.6b)

From (3.6b), we have w′ = 1. Rewriting (3.6a) and (3.6b), by replacing w′ by 1 we get

n = 26.7.17c.32.5e, (3.6a)′

and
22.17c−1.33.5e−1.w′ = σ∗∗(17c).σ∗∗(5e). (3.6b)′

By Lemma 2.1, for e ≥ 3,
σ∗∗(5e)

5e
≥ 756

625
. Hence for e ≥ 3, from (3.6a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
10

9
.
756

625
= 3.02461551 > 3,

a contradiction.
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Hence e = 1 or e = 2.

If e = 1 then from (3.6a)′,

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
10

9
.
6

5
= 3.000610625 > 3,

a contradiction.

Let e = 2. From (3.6b)′, we have 22.17c−1.33.5.w′ = 26.σ∗∗(17c) or

2.17c−1.33.5.w′ = 13.σ∗∗(17c). (3.6c)

From the equation (3.6c), we infer that w′ = 1. From (3.6c), we find that 13 divides its
left-hand side. This is not possible. Hence d = 2 is not possible.

Thus n = 26.7.17c.v cannot be a bi-unitary triperfect number when c is odd and c ≥ 2.

This completes Case I.

Case II. Let c be even, so that c = 2k. Then

σ∗∗(17c) =

(
17k − 1

16

)
.(17k+1 + 1). (3.7)

(i) Let k be even. Then 32|172−1|17k−1. Hence each of the factors on the right of (3.7)
is even so that 4|σ∗∗(17c). From (3.2b) it follows that v in (3.2b) can have at most one

odd prime factor. Since k is even, 9|17k − 1 so that 9|17
k − 1

16
|σ∗∗(17c). Hence from

(3.2b), 3|v and so v = 3d. From (3.2a), we have

n = 26.7.17c.3d. (3.7a)

Since c = 2k and k is even, c ≥ 4. From (3.7a), for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
112

81
= 3.111744352 > 3,

a contradiction.

Hence d = 1 or d = 2.

Let d = 1. From (3.7a), (d = 1), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
8

7
.
88452

83521
.
4

3
= 3.0006106256 > 3,

a contradiction.

Let d = 2. From (3.7a), (d = 2),

3 =
σ∗∗(n)

n
<

119

64
.
8

7
.
17

16
.
10

9
= 2.508680556 < 3,

a contradiction.

Hence c = 2k and k is even (or same as 4|c) is not admissible.

38



(ii) Let k be odd. We now prove that k ≥ 3.

On the contrary, let k = 1 so that c = 2. Since σ∗∗(172) = 290, taking c = 2 in (3.2b),
we obtain after simplification,

22.3.17.v = 5.29.σ∗∗(v). (3.7b)

It follows from (3.7b) that v is divisible by 5 and 29. Since v can have at most two
odd prime factors, v = 5e.29f . From (3.2a), we have n = 26.7.172.5e.29f , so that

3 =
σ∗∗(n)

n
<

119

64
.
8

7
.
290

289
.
5

4
.
29

28
= 2.760635504 < 3,

a contradiction.

Hence we may assume that k ≥ 3. Hence
17k − 1

16
> 1.

Since k is odd, 16‖17k − 1. Also, 2‖17k+1 + 1. Further, 3 neither divides 17k − 1 nor

17k+1 + 1. Hence 17k − 1

16
and 17k+1 + 1 are relatively prime. Also, 5|17t − 1 if and only

if 4|t. In particular, t should be even. Since k is odd, 5 - 17k − 1. If p and q are odd prime

factors of 17k − 1

16
and 17k+1 + 1, respectively, then p 6= q, p /∈ {3, 5, 17} and q /∈ {3, 17}.

If k + 1

2
is odd, then 290 = 172+1|17k+1+1. In this case it follows from (3.7) that σ∗∗(17c)

is divisible by three odd prime factors, namely, p, 5 and 29. From (3.2b), it follows that v is
divisible by these three odd prime factors; this leads to a contradiction since v cannot have
more than two odd prime factors.

If k + 1

2
is even, then 4|k+1. And so, 5|17k+1−1. Hence 5 - 17k+1+1. In this case σ∗∗(17c)

is divisible by two distinct odd primes p and q; also, p, q /∈ {3, 5, 17}. From (6b) it follows
that v is divisible by p and q. Since v has at most two odd prime factors, v = pdqe. Since
7 - v, we can assume that p ≥ 11 and q ≥ 13. From (3.2a), n = 26.7.17c.pd.qe. Hence

3 =
σ∗∗(n)

n
<

119

64
.
8

7
.
17

16
.
11

10
.
13

12
= 2.690559896 < 3,

a contradiction.

The proof of Case II is complete.

The case b = 1 is finished. This completes the proof of (b) of Theorem 3.1.

Proof of (c) of Theorem 3.1. Let b = 2. Since σ∗∗(72) = 50, taking b = 2 in (3.1b), we get after
simplification, 3.25.7.17c−1.v = 52.σ∗∗(17c).σ∗∗(v); this implies that 52|v. Writing v = 5d.w,
where d ≥ 2, we obtain from (3.1a) and (3.1b),

n = 26.72.17c.5d.w, (d ≥ 2) (3.8a)

and
3.25.7.17c−1.5d−2.w = σ∗∗(17c).σ∗∗(5d)σ∗∗(w), (3.8b)

and w has no more than three odd prime factors and prime to 2.5.7.17.
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Case (b = 2, d = 2). Since σ∗∗(52) = 26, from (3.2b) (d = 2), we get after simplification,

3.24.7.17c−1.w = 13.σ∗∗(17c).σ∗∗(w). (3.8c)

From this equation, we infer that 13|w. Let w = 13e.w′. From (3.8a), we get,

n = 26.72.17c.52.13e.w′, (3.9a)

and from (3.8c), we have

3.24.7.17c−1.13e−1.w′ = σ∗∗(17c).σ∗∗(13e).σ∗∗(w′), (3.9b)

where w′ has at most two odd prime factors.
Let c = 1. From (3.9b), (c = 1), we get after simplification

23.7.13e−1.w′ = 3.σ∗∗(13e).σ∗∗(w′). (3.9c)

It follows from (3.9c) that 3|w′. Let w′ = 3f .w′′. From (3.9a), we have

n = 26.72.17.52.13e.3f .w′′, (3.10a)

and from (3.9c),
23.7.13e−1.3f−1.w′′ = σ∗∗(13e).σ∗∗(3f ).σ∗∗(w′′), (3.10b)

where w′′ has at most one odd prime factor and prime to 2.3.5.7.13.17.
Let e = 1 (already b = 2, d = 2, c = 1). Taking e = 1 in (3.10b), we get after simplification,

22.3f−1.w′′ = σ∗∗(3f ).σ∗∗(w′′). (3.10c)

If f = 1, then from (3.10c), we get w′′ = σ∗∗(w′′) so that w′′ = 1. Thus (3.10c) is satisfied
when f = 1. Taking e = 1, f = 1 and w′′ = 1 in (3.10a), we see that n = 26.72.17.52.13.3 =

51979200 is a bi-unitary triperfect number.
If f = 2, from (3.10c), we find that 5|w′′. But w′′ is prime to 5. So we may assume that

f ≥ 3; hence σ∗∗(3f )

3f
≥ 112

81
. From (3.10c), we have

4

3
=
σ∗∗(3f )

3f
.
σ∗∗(w′′)

w′′
≥ σ∗∗(3f )

3f
≥ 112

81
,

which is false.
Hence e = 1 is complete. Let e = 2. From (3.10b), (e = 2), we get

23.7.13.3f−1.w′′ = 170.σ∗∗(3f ).σ∗∗(w′′). (3.10d)

From (3.10d) it is clear that 5|w′′ But this is false.

We may assume that e ≥ 3; so we can use σ∗∗(13e)

13e
≥ 30772

28561
. From (3.10a), for f ≥ 3, we

have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
18

17
.
26

25
.
30772

28561
.
112

81
= 3.112527184 > 3,

a contradiction.
Hence when e ≥ 3, then f = 1 or f = 2.
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If f = 1, from (3.10a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
18

17
.
26

25
.
30772

28561
.
4

3
= 3.001365498 > 3,

a contradiction.
If f = 2, from (3.10b), 5|w′′ which is false.
This proves that when b = 2 and d = 2, c = 1 is not possible.
We continue assuming b = 2, d = 2 and let c ≥ 2. The relevant equations are (3.9a) and

(3.9b).
If c = 2, since σ∗∗(172) = 290, from (3.9b), we find that 5|w′ which is false. So, without

loss of generality, we may assume that c ≥ 3. Also, if e = 2, since σ∗∗(132) = 170, from (3.9b),
again we see that 5|w′ which is false. Hence we may assume that e 6= 2.

We now assume that 3|n. From (3.9a), 3|w′. Let w′ = 3f .w′′. So from (3.9a), we have

n = 26.72.17c.52.13e.3f .w′′, (3.11a)

and from (3.9b), we obtain

24.7.17c−1.13e−1.3f+1.w′′ = σ∗∗(17c).σ∗∗(13e).σ∗∗(3f ).σ∗∗(w′′); (3.11b)

w′′ cannot have more than one odd prime factor.
If f ≥ 3 and e ≥ 3, from (3.11a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
88452

83521
.
26

25
.
30772

28561
.
112

81
= 3.113160712 > 3,

a contradiction.
Since e 6= 2, if f ≥ 3, then the only possibility is e = 1. Again from (3.11a), (e = 1), we

have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
88452

83521
.
26

25
.
14

13
.
112

81
= 3.111744352 > 3,

a contradiction.
Thus f ≥ 3 does not hold. Hence f = 1 or f = 2.

Let f = 1. If e = 1, from (3.11a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
88452

83521
.
26

25
.
14

13
.
4

3
= 3.000610625 > 3,

a contradiction.
Since e 6= 2, we can assume e ≥ 3. Again from (3.11a), we obtain

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
88452

83521
.
26

25
.
30772

28561
.
4

3
= 3.001976401 > 3,

a contradiction.
Hence f = 1 cannot occur. If f = 2, from (3.11b), we see that 5|w′′ and this is false.
Thus the case b = 2, d = 2 when 3|n is complete.
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Suppose that 3 - n when b = 2, d = 2.

We return to the equations (3.9a) and (3.9b). In these two equations w′ cannot have more than
two odd prime factors. Hence we may assume that w′ = pfqg, where p ≥ 11 and q ≥ 19. Hence
from (3.9a), n = 26.72.17c.52.13e.pf .qg and so

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
26

25
.
13

12
.
11

10
.
19

18
= 2.637175771 < 3,

a contradiction.
Thus the case b = 2, d = 2 and 3 - n is complete. This also finishes the case b = 2 and d = 2.

Case (b = 2, d ≥ 3). We return to the equations (3.8a) and (3.8b), where we assume that d ≥ 3.

Case (b = 2, d = 3). Taking d = 3 in (3.8b) and since σ∗∗(53) = 156 = 22.3.13, we get after
simplification,

23.7.17c−1.5.w = 13.σ∗∗(17c).σ∗∗(w). (3.11c)

From (3.11c), 13|w. Hence w = 13e.w′ Substituting this in (3.8a) and (3.11c), we get

n = 26.72.17c.53.13e.w′, (3.12a)

and
23.7.17c−1.5.13e−1.w′ = σ∗∗(17c).σ∗∗(13e).σ∗∗(w′), (3.12b)

where w′ has at most one odd prime factor.
Let c = 1 (already b = 2, d = 3). Since σ∗∗(17) = 18 = 2.32, from (3.12b), (c = 1), we get

after simplification
22.7.5.13e−1.w′ = 32.σ∗∗(13e).σ∗∗(w′). (3.12c)

From (3.12c), 32|w′ and so w′ = 3f , where f ≥ 2. Hence from (3.12a) and (3.12c), we have

n = 26.72.17.53.13e.3f (f ≥ 2), (3.13a)

and
22.7.5.13e−1.3f−2 = σ∗∗(13e).σ∗∗(3f ). (3.13b)

Let e = 1. From (3.13b) (e = 1), we get

2.5.3f−2 = σ∗∗(3f ). (3.13c)

If f ≥ 3, from (3.13c), 3|σ∗∗(3f ), a contradiction. Hence f = 2. It follows that (3.13c) is
satisfied when f = 2. Hence from (3.13a), (e = 1, f = 2), n = 26.72.17.53.13.32 = 779688000,
is a bi-unitary triperfect number .

If e = 2, since σ∗∗(132) = 170, from (3.13b), 17 is a factor of the left-hand side of (3.13b).
But this is not true.

We may assume that e ≥ 3.

Let f = 2. From (3.13b), (f = 2), we get after simplification, 2.7.13e−1 = σ∗∗(13e); from
this equation since e ≥ 3, we see that 13|σ∗∗(13e) which is false. Hence f ≥ 3.

Thus e and f are both ≥ 3. From (3.13a), we now have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
18

17
.
156

125
.
30772

28561
.
112

81
= 3.73503262 > 3,

a contradiction.
Thus c = 1 is not possible.
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Let c ≥ 2 (with b = 2, d = 3). We return to the equations (3.12a) and (3.12b), where now
c ≥ 2. In (3.12a), w′ has at most one odd prime factor.

If 3 - n, then w′ = 1 or pf , where p ≥ 11. In any case σ∗∗(w′)

w′
<

11

10
. Hence if 3 - n, from

(3.12a), we have

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
156

125
.
13

12
.
11

10
= 2.998052455 < 3,

a contradiction.
Suppose that 3|n. Then w′ = 3f . From (3.12a) and (3.12b),

n = 26.72.17c.53.13e.3f , (3.12c)

and
23.7.17c−1.5.13e−1.3f = σ∗∗(17c).σ∗∗(13e).σ∗∗(3f ). (3.12d)

If f ≥ 3, from (3.12c), we get

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
156

125
.
112

81
= 3.274074074 > 3,

a contradiction; in the above we used that σ∗∗(3f )

3f
≥ 112

81
for f ≥ 3; also, σ∗∗(17c)

17c
≥ 1 and

σ∗∗(13e)

13e
≥ 1.

Hence f = 1 or f = 2.

If f = 1, from (3.12d), it follows that its right-hand side is divisible by 24, whereas its left-
hand side is divisible unitarily by 23.

Let f = 2. Taking f = 2 in (3.12c) and (3.12d), we obtain

n = 26.72.17c.53.13e.32, (3.13a)

and
22.7.17c−1.13e−1.32 = σ∗∗(17c).σ∗∗(13e). (3.13b)

Since σ∗∗(172) = 290, taking c = 2 in (3.13b), we see that the left-hand side of it should be
divisible by 29 and this is not possible. Hence we may assume that c ≥ 3; hence we can use the
result σ

∗∗(17c)

17c
≥ 88452

83521
.

If e ≥ 3, then σ∗∗(13e)

13e
≥ 30772

28561
. Hence if e ≥ 3, from (3.13a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
88452

83521
.
156

125
.
30772

28561
.
10

9
= 3.001976401 > 3,

a contradiction.
Hence e = 1 or e = 2.

If e = 1, (3.13b) reduces to 2.7.17c−1.32 = σ∗∗(17c); this implies that 17|σ∗∗(17c) which is
false.

If e = 2, since σ∗∗(132) = 170, taking e = 2 in (3.13b), we see that 5 should divide its
left-hand side. But this is not possible.

The case b = 2 and d = 3 is complete.
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Case (b = 2, d ≥ 4). The relevant equations are (3.8a) and (3.8b), where d ≥ 4.

Case (b = 2, d ≥ 4, 3|n). Since 3|n, we have 3|w. Let w = 3e.w′. Using this in (3.8a) and (3.8b),
we get

n = 26.72.17c.5d.3e.w′, (d ≥ 4) (3.14a)

and
3.25.7.17c−1.5d−2.3e.w′ = σ∗∗(17c).σ∗∗(5d).σ∗∗(3e).σ∗∗(w′), (3.14b)

and w′ has no more than two odd prime factors and is prime to 2.3.5.7.17.

Since d ≥ 3, we have σ∗∗(5d)

5d
≥ 756

625
and for e ≥ 3,

σ∗∗(3e)

3e
≥ 112

81
. Hence for e ≥ 3, from

(3.14a),

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
756

625
.
112

81
= 3.173 > 3,

a contradiction.
Hence e = 1 or e = 2.

If e = 1, again from (3.14a), (e = 1), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
50

49
.
756

625
.
4

3
= 3.06 > 3,

a contradiction.
Let e = 2 (with b = 2, d ≥ 4). Taking e = 2 in (3.14a) and (3.14b), we get

n = 26.72.17c.5d.32.w′, (d ≥ 4) (3.15a)

and
24.7.17c−1.5d−3.33.w′ = σ∗∗(17c).σ∗∗(5d).σ∗∗(w′), (3.15b)

and w′ has no more than two odd prime factors and is prime to 2.3.5.7.17.
When e = 2, we wish to show that n (hence w′) is not divisible by 11 or 13 or 19 or 23. If this

is proved, then ifw′ is divisible by two odd primes (in the worst case) say p and q, thenw′ = pf .qg,
where we can assume that p ≥ 29 and q ≥ 31. Also, from (3.15a), n = 26.72.17c.5d.32.pf .qg so
that

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
5

4
.
10

9
.
29

28
.
31

30
= 2.996523995 < 3,

a contradiction. With this the case b = 2, d ≥ 4, 3|n would be complete.
We now prove that n in (3.15a) and (3.15b) is not divisible by s, where s ∈ {11, 13, 19, 23}.
We assume that s|n so that s|w′. Let w′ = sf .w′′; substituting this into (3.15a) and (3.15b),

we obtain
n = 26.72.17c.5d.32.sf .w′′, (d ≥ 4) (3.16a)

and
24.7.17c−1.5d−3.33.sf .w′′ = σ∗∗(17c).σ∗∗(5d).σ∗∗(sf ).σ∗∗(w′′), (3.16b)

and w′ has no more than one odd prime factor and is prime to 2.3.5.7.17.s.
We now examine the factors of σ∗∗(5d) in the presence of (3.16a) and (3.16b). We distinguish

the following cases:
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Case A. Let d be odd. Then

σ∗∗(5d) =
5d+1 − 1

4
=

(5t − 1)(5t + 1)

4
,

(
t =

d+ 1

2

)
.

(i) Let t be even. Then 8|5t − 1 and trivially 2|5t + 1. Hence 4| (5
t − 1)(5t + 1)

4
= σ∗∗(5d);

it follows from (3.15b) that w′′ = 1. Rewriting (3.16a) and (3.16b), taking w′′ = 1,
we get

n = 26.72.17c.5d.32.sf , (d ≥ 4) (3.16c)

and
24.7.17c−1.5d−3.33.sf = σ∗∗(17c).σ∗∗(5d).σ∗∗(sf ). (3.16d)

If s = 19 or 23, so that s ≥ 19, from (3.16c), we obtain

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
5

4
.
10

9
.
19

18
= 2.955414841 < 3,

a contradiction.

We may assume that s = 11 or 13. We have:

(a) 3|5t − 1, since t is even.

(b) 9|5t−1 ⇐⇒ 6|t ⇐⇒ 7|5t−1; 6|t implies 56−1|5t−1 and 56−1 = 23.32.7.31.

Hence 31|5t − 1 so that 31|5
t − 1

2
|σ∗∗(5d). This is not possible from (3.16d).

Hence 9 - 5t − 1 and 7 - 5t − 1. As a consequence, 3‖5t − 1.

(c) Since t is even, 8|5t − 1; but 16|5t − 1 implies that 8|σ∗∗(5d). This results in an
imbalance in the powers of two between two sides of (3.16d). Hence 16 - 5t − 1

and so 8‖5t − 1.

(d) 11|5t − 1 ⇐⇒ 5|t; and 5|t implies that 55 − 1|5t − 1. Also, 55 − 1 = 22.11.71.

Hence 71|5
t − 1

2
|σ∗∗(5d); this is not possible from (3.16d). Thus 11 - 5t − 1.

(e) 13|5t − 1 ⇐⇒ 4|t; this implies 16|54 − 1|5t − 1. In (c) above, we proved that
16 - 5t − 1. Hence 13 - 5t − 1.

(f) 17|5t − 1 ⇐⇒ 16|t; this implies 4|t. As in (e), we get a contradiction. Hence
17 - 5t − 1.

We have d ≥ 5, since d is odd and d ≥ 4. Hence t =
d+ 1

2
≥ 3. It is clear

that 5t − 1

24
> 1, odd and not divisible by 3. Hence 5t − 1

24
must be divisible by an

odd prime say p. Since 5t − 1 is not divisible by any of the primes 5, 7, 11, 13

and 17, the same is true with respect to 5t − 1

24
. Hence p|5

t − 1

24
|σ∗∗(5d) and

p /∈ {2, 3, 5, 7, 11, 13, 17}. This contradicts (3.16d) since s = 11 or 13.

The case that t is even is complete.

(ii) Let t be odd.

(a) 4‖5t − 1 since t is odd. Hence 5t − 1

4
is odd and > 1 since t ≥ 3.

(b) 5t − 1 is not divisible by 3, 7, 13, 17 or 23, since t is odd; trivially not divisible
by 5.
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(c) 19|5t − 1⇐⇒ 9|t; this implies that 59 − 1|5t − 1. Also, 59 − 1 = 22.19.31.829.

Hence 5t − 1

4
| σ∗∗(5d), is divisible by 31 and 829. It follows from (3.16b) that w′′

is divisible by 31 and 829. This is not possible since w′′ cannot have more than
one odd prime factor. Hence 19 - 5t − 1.

(d) Let s 6= 11. We claim that 11 - 5t − 1. Suppose that 11|5t − 1. This is if and
only if 5|t. Hence 11|5t − 1 implies 55 − 1|5t − 1. Also, 55 − 1 = 22.11.71. It

follows that 5t − 1

4
|σ∗∗(5d), is divisible by 11 and 71. Since s 6= 11, from (3.16b)

we infer that w′′ is divisible by 11 and 71. This is not possible since w′′ cannot
have more than one odd prime factor. Hence when s 6= 11, 11 - 5t − 1.

(e) Let s = 11. We prove that 5t − 1

4
has a prime factor 6= 11; if 11 - 5t − 1, then

this is trivially true. We assume that 11|5t − 1. If 5t − 1

4
is divisible by 11 alone,

then we must have 5t − 1

4
= 11α for some positive integer α. If α ≥ 2, then

112|5t − 1; this is if and only if 55|t. In particular 11|t. Hence 511 − 1|5t − 1

and 511 − 1 = 22.12207031. It follows that 12207031|5
t − 1

4
= 11α, which is

impossible. Hence 5t − 1

4
= 11 or 5t = 45, which is not possible. Thus 5t − 1

4
must

be divisible by an odd prime say p 6= 11. Clearly, p /∈ {3, 5, 7, 11, 13, 17, 19, 23}.
Hence p|5

t − 1

4
|σ∗∗(5d). From (3.16b), we find that p|w′′.

Thus if s 6= 11, from (a)–(d), it follows that 5t − 1

4
is not divisible by any prime

in the set {3, 5, 7, 11, 13, 17, 19, 23}. In particular, if p|5
t − 1

4
|σ∗∗(5d) and

p /∈ {3, 5, 7, 11, 13, 17, 19, 23}, from (3.16b), we infer that p|w′′.

Hence when t is odd, we can conclude that there is an odd prime p|5
t − 1

4
and p|w′′.

Let s ∈ {11, 13, 19, 23}. We now prove that we can find an odd prime q|5t + 1 and
q|w′′ when t is odd. We have

(f) 2‖5t + 1 and 3|5t + 1.

(g) 5t + 1 is not divisible by 13 and 17 since t is odd.

(h) 5t + 1 is not divisible by 11 and 19 for any t.

(i) 23|5t+1 ⇐⇒ t = 11u, where u is odd. Hence 23|5t+1 implies 511+1|5t+1.
Also, 511 + 1 = 2.3.23.67.5281. So, 5t + 1, a factor of σ∗∗(5d), is divisible by
67 and 5281. From (3.16b), it follows that w′′ is divisible by 67 and 5281. This
cannot happen. Hence 23 - 5t + 1.

Thus 5t + 1 is not divisible by any of 11, 13, 17, 19 and 23.

(j) We may note that 7|5t + 1 ⇐⇒ 9|5t + 1⇐⇒ t = 3u, where u is odd. Assume

that 7 - 5t + 1. Then 9 - 5t + 1. Hence 3‖5t + 1. Also, 5t + 1

6
> 1, odd and not

divisible by any of the primes 3, 5, 7, 11, 13, 17, 19 and 23. Let q|5
t + 1

6
so that

q|σ∗∗(5d). Then q /∈ {3, 5, 7, 11, 13, 17, 19, 23}. From (3.16b), q|w′′.
Suppose that 7|5t+1 so that 9|5t+1. We note that 27|5t+1 ⇐⇒ t = 9u, where
u is odd. Hence 27|5t+1 implies 59+1|5t+1. Also, 59+1 = 2.33.7.5167. Hence
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5167|5t + 1|σ∗∗(5d). From (3.16b), it follows that 5167|w′′. We already proved

that there is an odd prime p|5
t − 1

4
and p|w′′. Now, 5t − 1

4
and 5t+1 are relatively

prime. Since p and 5167 respectively divide these factors, it follows that w′′ is
divisible by these two odd primes. This cannot happen. Hence 27 - 5t + 1. Thus
7|5t + 1 implies 9‖5t + 1.

We have 5t + 1

18
is > 1, odd and not divisible by 3. By our assumption, 7|5

t + 1

18

and from (3.16b), 72 - 5t + 1

18
, since 5t + 1

18
|σ∗∗(5d). Hence 7‖5

t + 1

18
. If 5t + 1

18
is

divisible by 7 alone, then we must have 5t + 1

18
= 7 or 5t = 125 or t = 3.

We now prove that t = 3 is not possible. Suppose that 3 = t =
d+ 1

2
so that

d = 5. We have σ∗∗(55) = 56 − 1

4
= 2.32.7.31. Taking d = 5 in (3.16b), we get

after simplification

23.3.17c−1.52.sf .w′′ = 31.σ∗∗(17c).σ∗∗(sf ).σ∗∗(w′′); (3.16e)

this implies that 31|w′′ so that w′′ = 31g. Substituting w′′ = 31g in (3.16a) and
(3.16e), we get

n = 26.72.17c.5d.32.sf .31g, (3.17a)

and
23.3.17c−1.52.sf .31g−1 = σ∗∗(17c).σ∗∗(sf ).σ∗∗(31g). (3.17b)

We obtain a contradiction by examining the factors of σ∗∗(17c).

Let c be odd. Then 9|σ∗∗(17c). This is not possible from (3.17b).

We may assume that c is even so that c = 2k. Then

σ∗∗(17c) =

(
17k − 1

16

)
.(17k+1 + 1).

(i) If k is even, 9|17k− 1 and so 9|17
k − 1

16
|σ∗∗(17c) and this leads to a contradiction from

(3.17b).

(ii) Let k be odd. First we note that k > 1. If k = 1, then c = 2. We have σ∗∗(172) = 290.
Taking c = 2 in (3.17b), we see that 29 divides its right-hand side but 29 does not
divide its left-hand side. Hence k = 1 cannot occur.

We may assume that k ≥ 3. Since k is odd, 16‖17k − 1; also, 17k − 1 is not divisible by
3, 5, 7, 11, 13, 23 and 31 since k is odd. 19|17k−1 ⇐⇒ 9|k. In such a case 179−1|17k−1.

Also, 179 − 1 = 24.19.307.1270657. In particular, 307|17
k − 1

16
|σ∗∗(17c). But this is not

possible can be seen from (3.17b). Hence 19 - 17k − 1.

Thus 17k − 1

16
> 1 and is odd; also it is not divisible by 3, 5, 7, 11, 13, 17, 19, 23 and 31. If

p is an odd prime factor of 17k − 1

16
|σ∗∗(17c), then p /∈ {3, 5, 7, 11, 13, 17, 19, 23, 31}. But

this is not possible from (3.17b).

Thus d = 5 (or t = 3) is not admissible.
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Hence 5t + 1

18
is not divisible by 7 alone. As a consequence, we can find an odd prime

q|5
t + 1

18
and q 6= 7. Since 5t + 1

18
is not divisible by 3, 5, 7, 11, 13, 17, 19 and 23,

q /∈ {3, 5, 7, 11, 13, 17, 19, 23}. It follows from (3.16b) that q|w′′. Since p|w′′ , q|w′′ and
p 6= q it follows that w′′ is divisible by two odd primes which is not possible.

This completes the case when t = d+ 1

2
is odd.

Case B. It remains to examine the case when d is even. Let d = 2k. Then

σ∗∗(5d) =

(
5k − 1

4

)
.(5k+1 + 1).

(iii) If k is even, we get a contradiction just as in (i) of Case A where t was even.

(iv) Assume that k is odd. Since d = 2k ≥ 4, we have k ≥ 3. Again as in (ii) of Case A,

on similar lines, we can show that 5k − 1

4
is divisible by an odd prime p|w′′.

It remains to examine 5k+1 + 1 when k is odd.

(v) Since k + 1 is even, 2‖5k+1 + 1 and not divisible by 3, 7 and 23.

(vi) Since 5t + 1 is not divisible by 11 and 19 for any positive integer t; the same is true
with respect to 5k+1 + 1.

(vii) 17|5k+1 + 1 ⇐⇒ k + 1 = 8u, where u is odd. Hence 17|5k+1 + 1 implies
58 + 1|5k+1 + 1. Also, 58 + 1 = 2.17.11489. Hence 11489|5k+1 + 1|σ∗∗(5d). From

(3.16b), 11489|w′′. Since p|5
k − 1

4
divides w′′, it follows that w′′ is divisible by two

odd primes. This cannot happen. Hence 17 - 5k+1 + 1.

(viii) If 13 - 5k+1+1, then it follows from (v)–(vi) that 5k+1 + 1

2
> 1, is odd and not divisible

by any of the primes 3, 5, 7, 11, 13, 19 and 23. Thus if q|5
k+1 + 1

2
, then q is odd and

q /∈ {3, 5, 7, 11, 13, 19, 23.}. From (3.16b), q|w′′.
Suppose that 13|5k+1 + 1. Suppose that 132|5k+1 + 1; this is if and only if
k + 1 = 26u, where u is odd. This implies that 526 + 1|5k+1 + 1 and 526 + 1 =

2.132.53.83181652304609. Thus 5k+1 + 1

2
is divisible by two odd primes and these

primes divide w′′ by (3.16b). But this is not possible. Hence 13‖5
k+1 + 1

2
. It follows

that 5k+1 + 1

26
> 1, odd and not divisible by any of 3, 5, 7, 11, 13, 17, 19 and 23. Hence

if q|5
k+1 + 1

26
, then q is odd and q /∈ {3, 5, 7, 11, 13, 19, 23}. From (3.16b), q|w′′.

Thus p and q divide w′′. This is not possible.

This completes the Case B.

Hence s - n, where s ∈ {11, 13, 19, 23}.
Thus, n in (3.16a) satisfying (3.16b) cannot be a bi-unitary triperfect number when b = 2,

d ≥ 4 and 3|n.

48



Case (b = 2, d ≥ 4, 3 - n). The relevant equations are (3.8a) and (3.8b). We obtain a contradic-
tion by examining the factors of σ∗∗(17c), and hence n in (3.8a) cannot be a bi-unitary triperfect
number.

For the validity of (3.8b), we show that the only choice for c is that c = 2k, where k is odd. In

such a case, we prove that 17k − 1

16
and 17k+1 + 1 should be divisible by two odd primes p and q,

and each of them exceeds 41. We can assume that p ≥ 43 and q ≥ 47. If at all w has a third prime
factor say r, then obviously r ≥ 11, from (3.8b). Hence n = 26.72.17c.5d.pe.qf .rg. We have

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
5

4
.
43

42

47

46
.
11

10
= 2.899557597 < 3,

a contradiction.
If c is odd or 4|c, then 9|σ∗∗(17c). This implies that 3|w, from (3.8b). This is not true since

by our assumption 3 - n.
Let c = 2k, where k is odd. We have

(a) 16‖17k− 1 since k is odd. Also, 17k− 1 is not divisible by 3, 5, 7, 11, 13, 23, 29, 31, 37 and
41, since k is odd; not divisible by 17 trivially.

(b) 19|17k−1 implies 9|k. This implies that 179−1|17k−1. Also, 179−1 = 24.19.307.1270657.

Hence 19, 307 and 1270657 divide 17k − 1

16
|σ∗∗(17c); from (3.8b), it follows that these three

prime factors divide w. Since w has at most three prime factors, from (3.8a), we have
n = 26.72.17c.5d.19e.(307)f .(1270657)g so that

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
17

16
.
5

4
.
19

18
.
307

306
.
1270657

1270656
= 2.668567854 < 3,

a contradiction. Hence 19 - 17k − 1.

Thus 17k − 1

16
is odd and not divisible by any of the primes from 3 to 41. We now prove that

17k − 1

16
> 1 or k > 1.

Assume that k = 1 so that c = 2. We have σ∗∗(172) = 290. Taking c = 2 in (3.8b), we get
after simplification

3.24.7.17.5d−2.w = 29.σ∗∗(5d).σ∗∗(w), (3.18)

so that 29|w. Let w = 29e.w′. From (3.8a) and (3.18), we obtain

n = 26.72.172.5d.29e.w′, (3.18a),

and
3.24.7.17.5d−2.29e−1.w′ = σ∗∗(5d).σ∗∗(29e).σ∗∗(w′), (3.18b)

where w′ has at most two odd prime factors.
If p1 and p2 denote these two prime factors of w′, then it follows from (3.18b) that p1 ≥ 11

and p2 ≥ 13. Also, n = 26.72.172.5d.29e.pf1 .p
g
2. We have

3 =
σ∗∗(n)

n
<

119

64
.
50

49
.
290

289
.
5

4
.
29

28
.
11

10
.
13

12
= 2.937283312 < 3,

a contradiction.
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Hence k = 1 is not admissible. We may assume that k ≥ 3, since k is odd. Thus 17k − 1

16
, odd

and not divisible by any prime from 3 to 41. Let p|17
k − 1

16
. Then p ≥ 43.

We now consider the factor 17k+1 + 1, where k is odd and ≥ 3.

(c) 17k+1 + 1 is not divisible by 3, 7, 11, 13, 23 and 31 since k + 1 is even; also, 2‖17k+1 + 1.

(d) 19 - 17t + 1 for any positive integer t. In particular, 19 - 17k+1 + 1.

(e) 37|17k+1 + 1⇐⇒ k + 1 = 18u, where u is odd; this implies that 178 + 1|17k+1 + 1. Also,
178+1 = 2.5.29.37.109.181.2089.83233.382069. Hence 17k+1+1 is divisible by seven odd
prime factors ≥ 29 and from (3.8b), these seven prime factors divide w. This contradicts
the fact that w has no more than three odd prime factors. This proves that 37 - 17k+1 + 1.

(f) 41|17k+1 + 1 =⇒ k + 1 = 20u; This implies that 1720 + 1|17k+1 + 1. Also,
1720 + 1 = 2.p1.p2.p3, where p1 = 41, p2 = 41761 and p3 = 118 684 412 830 256 8601.
Hence 17k+1 + 1|σ∗∗(17c) is divisible by p1, p2 and p3. From (3.8b) it follows that these

three primes divide w. We have already shown that p|w, where p| 17
k − 1

16
and p ≥ 43. Thus

w is divisible by four odd primes p, p1, p2 and p3. This is not possible. Hence 41 - 17k+1+1.

(g) We may note that 5|17k+1 + 1 ⇐⇒ 29|17k+1 + 1 ⇐⇒ k + 1 = 2u.

Suppose that 5 - 17k+1 + 1. Then 29 - 17k+1 + 1. From (c)–(f) above, it follows that
17k+1 + 1

2
is odd, > 1 and not divisible by any prime from 3 to 41. If q|17

k+1 + 1

2
, then

from (3.8b) it follows that q|w and q ≥ 43.

Suppose that 5|17k+1 + 1 so that 29|17k+1 + 1. Let us assume that 17k+1 + 1

2
= 5α.29β ,

where α and β are positive integers. If α ≥ 2, then 52|17k+1 + 1. But this is if and only if
k + 1 = 10u; in such a case 1710 + 1|17k+1 + 1. Also, 1710 + 1 = 2.52.29.21881.63541.

Hence 21881|17
k+1 + 1

2
= 5α.29β . This is obviously false. Hence α = 1.

Similarly, if β ≥ 2, 292|17k+1+1; this is if and only if k+1 = 58u so that 1758+1|17k+1+1.
Also, 1758 + 1 = 2.5.4908077.P , where

P = 5627 688 836 691 687 811 685 586 936 872 121 257 317 104 508 544 673 081 805 033.

In particular, 4908077|17
k+1 + 1

2
= 5α.29β . But this cannot happen. Hence β = 1.

Thus 17k+1 + 1

2
= 5.29 or 17k+1 = 289 so that k + 1 = 2 or k = 1. But k ≥ 3. This

contradiction proves that 17k+1 + 1

2
must be divisible by a prime q 6= 5 and 29. It now

follows that 17k+1 + 1

2
is divisible by an odd prime q not in [3, 41]; also, since q|σ∗∗(17c),

from (3.18b), we have q|w. The primes p and q are different since they divide 17k − 1

16
and

17k+1 + 1 respectively which are relatively prime. As mentioned in the beginning of the
case b = 2, d ≥ 4, 3 - n we obtain a contradiction.

The case b = 2 is complete. The proof of (c) of Theorem 3.1 is complete.
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Proof of (a) of Theorem 3.1.
Case b ≥ 3. We return to the equations (3.1a) and (3.1b), where b ≥ 3. We claim that n in
(3.1a) cannot be a bi-unitary triperfect number. On the contrary we assume that n in (3.1a) is a
bi-unitary triperfect number and obtain a contradiction.
Case b ≥ 3 with 3|n. From (3.1a), 3|v. Let v = 3du, where (u, 2.3.7.17) = 1. Substituting
v = 3du in (3.1a) and (3.1b), we obtain

n = 26.7b.17c.3d.u, (b ≥ 3) (3.19a)

and
26.3d+1.7b−1.17c−1.u = σ∗∗(7b).σ∗∗(17c).σ∗∗(3d).σ∗∗(u), (3.19b)

where u has at most three odd prime factors.

By Lemma 2.1, since b ≥ 3,
σ∗∗(7b)

7b
>

2752

2401
. Also, σ∗∗(17c)

17c
≥ 88452

83521
when c ≥ 3 and

σ∗∗(3d)

3d
≥ 112

81
when d ≥ 3. Hence if c ≥ 3 and d ≥ 3, from (3.19a), we get

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
88452

83521
.
112

81
= 3.120816493 > 3,

a contradiction.
Hence when c ≥ 3, then d = 1 or d = 2. Let c ≥ 3.

If d = 1, from (3.19a), (d = 1), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
88452

83521
.
4

3
= 3.009358761 > 3,

a contradiction.
Let d = 2. Taking d = 2 in (3.19b), since σ∗∗(9) = 10, it follows that 5|u. Let u = 5e.w.

Using this in (3.19a) and (3.19b), we get,

n = 26.7b.17c.32.5e.w, (b ≥ 3, c ≥ 3) (3.20a)

and
25.33.7b−1.17c−1.5e−1.w = σ∗∗(7b).σ∗∗(17c).σ∗∗(5e).σ∗∗(w), (3.20b)

where w has at most two odd prime factors.
We have σ∗∗(5e)

5e
≥ 756

625
for e ≥ 3. Hence from (3.20a), for e ≥ 3,

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
88452

83521
.
10

9
.
756

625
= 3.033433631 > 3,

a contradiction.
Hence e = 1 or e = 2.

If e = 1, we have from (3.20a),

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
88452

83521
.
10

9
.
6

5
= 3.009358761 > 3,

a contradiction.
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Let e = 2 (c ≥ 3, d = 2). Since σ∗∗(52) = 26, taking e = 2 in (3.20b), we obtain

25.33.7b−1.17c−1.5e−1.w = 26.σ∗∗(7b).σ∗∗(17c).σ∗∗(w)

or
24.33.7b−1.17c−1.5e−1.w = 13.σ∗∗(7b).σ∗∗(17c).σ∗∗(w); (3.20c)

from this equation it follows that 13|w. Let w = 13f .w′. Now from (3.20a) and (3.20c), we
obtain

n = 26.7b.17c.32.52.13f .w′, (b ≥ 3, c ≥ 3) (3.21a)

and
24.33.7b−1.17c−1.5.13f−1.w′ = σ∗∗(7b).σ∗∗(17c).σ∗∗(13f ).σ∗∗(w′), (3.21b)

where w′ has no more than one odd prime factor.
By examining the factors of σ∗∗(7b) we show that if b is odd or 4|b, then we obtain a contra-

diction. If b = 2k, where k is odd, we prove that 7k − 1

6
is divisible by a prime p ≥ 29. From

(3.21b), p|w′ and so w = pg. So from (3.21a), we have n = 26.7b.17c.32.52.13f .pg; hence

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
10

9
.
26

25
.
13

12
.
29

28
= 2.988378605 < 3,

a contradiction.
We now justify the above.
If b is odd or 4|b, we have 8|σ∗∗(7b). From (3.21b), we find that in this case, 25 divides its

right-hand side but its left-hand side is unitarily divisible by 24. This is a contradiction.
In what follows we will be using several results on the divisibility of 7k−1 by various primes.

We refer to Appendix C of [2] for these results.
Let b = 2k, where k is odd. Since b ≥ 3, we have k ≥ 3.

(a) 2‖7k − 1 since k is odd; and 3|7k − 1.

(b) 7k − 1 is not divisible by 5, 11, 13, 17 and 23, since k is odd; trivially not divisible by 7.

(c) Assume 27|7k − 1. This implies 9|k and so 79− 1|7k − 1. Also, 79− 1 = 2.33.19.37.1063.

It follows that 7k − 1

6
, a factor of σ∗∗(7b), is divisible by 19, 37 and 1063. From (3.21b),

these three primes divide w′. But w′ is divisible at most by one odd prime factor. Hence
27 - 7k − 1.

(d) We note that 9|7k − 1 ⇐⇒ 19|7k − 1 ⇐⇒ 3|k. Hence if 9 - 7k − 1 then 19 - 7k − 1; in

this case 7k − 1

6
is not divisible by 3 and 19. Thus from (a) and (b), 7k − 1

6
> 1, odd and

not divisible by 3, 5, 7, 11, 17, 19 and 23. Hence if p|7
k − 1

6
, then from (3.21b), p|w′ and

p ≥ 29.

Suppose that 9|7k − 1 so that 19|7k − 1. By (c), 9‖7k − 1. Then 7k − 1

18
is odd and > 1; also

not divisible by 3. Suppose 7k − 1

18
is divisible by 19 alone so that 7k − 1

18
= 19α. If α ≥ 2,

then 192|7k − 1; this is if and only if 57|k and so 19|k. But 419|719 − 1|7k − 1. Hence
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419|7
k − 1

18
= 19α which is impossible. Hence α = 1 and so 7k − 1

18
= 19 or k = 3. Hence

b = 6.

We now prove that b = 6 is not admissible. We have σ∗∗(76) = 2.3.19.1201. Taking b = 6

in (3.21b), we see that 19 and 1201 divide w′. But w′ has at most one odd prime factor.

This proves that b = 6 is not possible. Hence 7k − 1

18
must be divisible by an odd prime say

p 6= 19. It follows that p /∈ {3, 5, 7, 11, 17, 19, 23}. From (3.21b), p|w′ and p ≥ 29.

The case b ≥ 3, c ≥ 3, 3|n is complete.
We may assume that b ≥ 3, 3|n and c = 1 or c = 2. We return to (3.19a) and (3.19b).
Let c = 1. Since σ∗∗(17) = 18, taking c = 1 in (3.19a) and (3.19b), we get

n = 26.7b.17.3d.u, (b ≥ 3) (3.22a)

and
25.3d−1.7b−1.u = σ∗∗(7b).σ∗∗(3d).σ∗∗(u), (3.22b)

where u has at most three odd prime factors.
From (3.22a), we have for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
18

17
.
112

81
= 3.120181406 > 3,

a contradiction.
Hence d = 1 or d = 2.

If d = 1, then n = 26.7b.17.3.u and so we have

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
18

17
.
4

3
= 3.008746 > 3,

a contradiction.
Let d = 2. Since σ∗∗(32) = 10, taking d = 2 in (3.22b) we see that 5|u. Let u = 5e.w. With

this u, from (3.22a), (d = 2), and (3.22b), (d = 2), we get

n = 26.7b.17.32.5e.w, (b ≥ 3) (3.22c)

and
24.3.7b−1.5e−1.w = σ∗∗(7b).σ∗∗(5e).σ∗∗(w), (3.22d)

where w can have at most two prime factors and (w, 2.3.5.7.17) = 1.

If e ≥ 3, from (3.22c), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
18

17
.
10

9
.
756

625
= 3.032816327 > 3,

a contradiction. Hence e = 1 or e = 2. If e = 1, we have n = 26.7b.17.32.5.w and so

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
18

17
.
10

9
.
6

5
= 3.008746356 > 3,

a contradiction.
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Let e = 2. Since σ∗∗(52) = 26, taking e = 2 in (3.22d), we find that 13|w. Let w = 13f .w′.
From (3.22c) and (3.22d), we get

n = 26.7b.17.32.52.13f .w′, (b ≥ 3) (3.23a)

and
23.3.7b−1.5.13f−1.w′ = σ∗∗(7b).σ∗∗(13f ).σ∗∗(w′); (3.23b)

w′ has no more than one odd prime factor and w′ is prime to 2.3.5.7.13.17.
We obtain a contradiction from (3.23b) by examining the factors of σ∗∗(7b).
If b is odd or 4|b, then 8|σ∗∗(7b). Hence the right-hand side of (3.23b) is divisible by 24 while

its left-hand side unitarily by 23.

We may assume that b = 2k, and k is odd; b ≥ 3 implies k ≥ 3. We have

σ∗∗(7b) =

(
7k − 1

6

)
.(7k+1 + 1).

(a) 2‖7k − 1.

(b) 3‖7k − 1, since 3 is a unitary divisor of the left-hand side of (3.23b).

(c) 7k − 1 is not divisible by 5, 11, 13, 17 and 23 since k is odd; not divisible by 7 trivially.

(d) Since 7k − 1 is not divisible by 9 and hence not divisible by 19.

From (a)–(d), we conclude that 7k − 1

6
is odd, > 1 and not divisible by any prime from

3 to 23. Hence if p|7
k − 1

6
, then from (3.23b), p|w′ and p ≥ 29. Hence w′ = pg and

n = 26.7b.17.32.52.13f .pg. We have

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
18

17
.
10

9
.
26

25
.
13

12
.
29

28
= 2.978038194 < 3,

a contradiction.
The case c = 1 is complete.
Let c = 2. The relevant equations are (3.19a) and (3.19b). Since σ∗∗(172) = 290 = 2.5.29,

taking c = 2 in (3.19b), we find that u is divisible by 5 and 29. Hence, u = 5e.29f .w. From
(3.19a), (c = 2), and (3.19b), (c = 2), we obtain the following:

n = 26.7b.172.3d.5e.29f .w, (b ≥ 3) (3.24a)

and

25.3d+1.7b−1.17.5e−1.29f−1.w = σ∗∗(7b).σ∗∗(3d).σ∗∗(5e).σ∗∗(29f ).σ∗∗(w), (3.24b)

w is prime to 2.3.5.7.17.29 and has no more than one prime factor.

From Lemma 2.1, we have σ∗∗(5e)

5e
≥ 26

25
for all e ≥ 1. Using σ∗∗(3d)

3d
≥ 112

81
, for d ≥ 3, from

(3.24a), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
290

289
.
112

81
.
26

25
= 3.075316052 > 3,

a contradiction.
Hence d = 1 or d = 2.
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Let d = 1. Since σ∗∗(3) = 4, taking d = 1 in (3.24b), we find that w = 1. Taking w = 1 in
(3.24a) and (3.24b), we get

n = 26.7b.172.3.5e.29f , (b ≥ 3) (3.24c)

and
23.7b−1.17.32.5e−1.29f−1 = σ∗∗(7b).σ∗∗(5e).σ∗∗(29f ). (3.24d)

If e = 1, from (3.24c), (e = 1), we have

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
290

289
.
4

3
.
6

5
= 3.421711542 > 3,

a contradiction.
Let e = 2. Since σ∗∗(52) = 26, taking e = 2 in (3.24d), we find that 13 divides its left-hand

side which is false.
For e ≥ 3, using σ∗∗(5e)

5e
≥ 756

625
, from (3.24c) we get

3 =
σ∗∗(n)

n
≥ 119

64
.
2752

2401
.
290

289
.
4

3
.
756

625
= 3.449085234 > 3,

a contradiction.
The case d = 1 is complete.
Let d = 2. Taking d = 2 in (3.24a) and (3.24b), we get

n = 26.7b.172.32.5e.29f .w, (b ≥ 3) (3.24e)

and
24.33.7b−1.17.5e−2.29f−1.w = σ∗∗(7b).σ∗∗(5e).σ∗∗(29f ).σ∗∗(w), (3.24f)

where w is prime to 2.3.5.7.17.29 and has no more than one prime factor.
We shall obtain a contradiction by examining the factors of σ∗∗(7b).
If b is odd or 4|b, then 8|σ∗∗(7b). This results in imbalance in powers of two between both

sides of (3.24f).
Let b = 2k, where k is odd. Since b ≥ 3, we have k ≥ 3. Also,

σ∗∗(7b) =

(
7k − 1

6

)
.(7k+1 + 1).

We consider 7k+1 + 1, where k is odd.

(a) 2‖7k+1 + 1 and 3 - 7k+1 + 1; trivially not divisible by 7.

(b) 29 - 7t + 1 for any t; in particular 29 - 7k+1 + 1.

(c) Suppose that 5 - 7k+1 + 1 and 17 - 7k+1 + 1. Then from (a) and (b) it is clear that 7k+1 + 1

2
is > 1, odd and every prime factor of it is not in {3, 5, 7, 17, 29}. Hence each prime factor

of 7k+1 + 1

2
divides w from (3.24f).
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(d) Suppose that 5|7k+1+1 and 17 - 7k+1+1; 5|7k+1+1 =⇒ k+1 = 2u. Hence 72+1|7k+1+1.

Thus 52|7k+1 + 1. Assume that 7k+1 + 1

2
= 5α, where α ≥ 2. If α ≥ 3, then 53|7k+1 + 1.

This is if and only if k + 1 = 10u. Also, 710 + 1 = 2.53.281.4021. It follows that

281|7
10 + 1

2
|7

k+1 + 1

2
= 5α and this is impossible. Hence α = 2 so that 7k+1 + 1

2
= 52.

Hence k = 1. But k ≥ 3. Thus 7k+1 + 1

2
is divisible by an odd prime q 6= 5. Also, by our

assumption q 6= 17. Hence from (a) and (b), q /∈ {3, 5, 7, 17, 29}. Since 7k+1 + 1

2
|σ∗∗(7b),

from (3.24f), q|w.

(e) Suppose 17|7k+1 + 1 and 5 - 7k+1 + 1. From (3.24b), 17 is a unitary divisor of its left-hand
side. Since 17|7k+1 + 1|σ∗∗(7b) it follows that 17‖7k+1 + 1. If 7k+1 + 1 is divisible by 17

alone, then we must have 7k+1 + 1

2
= 17 or 7k+1 = 33 which is not possible. Hence 7k+1 + 1

2
which is> 1 and odd should be divisible by an odd prime q 6= 17. By our assumption q 6= 5.
Hence from (a) and (b), q /∈ {3, 5, 7, 17, 29}. From (3.24f), q|w.

(f) Suppose that 7k+1 + 1 is divisible by both 5 and 17. Then 52|7k+1 + 1 and 17‖7k+1 + 1.
Assume that 53|7k+1+1. This is if and only if k+1 = 10u. Also, 710+1 = 2.53.281.4021.
Thus 281 and 4021 divide 7k+1 + 1 which is a divisor of σ∗∗(7b). From (3.24f), it follows

that w is divisible by 281 and 4021. This is not possible. Hence 52‖7k+1+1. Thus 7k+1 + 1

2.52.17
is odd and > 1. It must be divisible by an odd prime q and q /∈ {3, 5, 7, 17, 29}. From
(3.24f), q|w.

(g) From (a)–(f), it follows that 7k+1 + 1

2
is divisible by an odd prime q|w. Since w has no more

than one prime factor, w = qf .

We shall now consider 7k − 1 when k is odd. We have

(h) 2‖7k − 1 and 3|7k − 1.

(i) 9|7k − 1 if and only if 19|7k − 1 if and only if 3|k. Suppose 9|7k − 1. Then 19|7k − 1.

Hence 19|σ∗∗(7b). From (3.24f), since w = qf , q = 19. Since q|7
k+1 + 1

2
, 19|7k−1, 7k−1

and 7k+1 + 1

2
are relatively prime, q 6= 19. This proves that 9 - 7k − 1 (as a consequence

3‖7k − 1) and so 19 - 7k − 1.

(j) Since k is odd, 7k − 1 is not divisible by 5 and 17. Also, 29|7k − 1 if and only if 7|k. We
have 77 − 1 = 2.3.29.4733. It follows from (3.24f) that 4733|w = qf . But q 6= 4733 since
q and 4733 are prime factors of relatively prime factors. Hence 29 - 7k − 1.

(k) Thus
7k − 1

6
is > 1, odd and not divisible by any prime in {3, 5, 7, 17, 29}. If p|7

k − 1

6
, then

p is an odd prime /∈ {3, 5, 7, 17, 29}. From (3.24f), p|w = qf . This is not possible since
p 6= q.

With this contradiction, the case d = 2 is complete. Also, the case c = 2, 3|n, is complete.
The case b ≥ 3 with 3|n is complete.
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Case b ≥ 3 with 3 - n. We return to the equations (3.1a) and (3.1b). We assume that b ≥ 3 and
3 - n. We show that n cannot be a bi-unitary triperfect number. We first settle this when 5 - n.
We examine σ∗∗(17c) to obtain a contradiction. We distinguish the following cases:

(i) If c is odd or 4|c, then 9|σ∗∗(17c). From (3.1b), it follows that 3|v. But this is not true since
3 - n has been assumed.

(ii) Let c = 2k, where k is odd.

(a) Then 17k − 1 is not divisible by 3, 5, 7, 11, 13, 23, 29 and 37; trivially not divisible by
17.

(b) Suppose 19|17k− 1. This implies 9|k and as a consequence 179− 1|17k− 1. We have
179 − 1 = 2.19.307.1270657. Hence all the three odd prime factors of 179 − 1 divide
17k − 1

6
|σ∗∗(17c). From (3.1b), these three prime factors divide v. Since v is divisible

by not more than four prime factors, let p denote the possible fourth prime factor. We
can assume that p ≥ 11. Hence n = 26.7b.17c.19d.307e.(1270657)f .pg, so that

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
19

18
.
307

306
.
1270657

1270656
.
11

10
= 2.953428577 < 3,

a contradiction. Hence 19 - 17k − 1.

(c) 32 - 17k − 1, since k is odd. Hence 16‖17k − 1.

(d) We now prove that k > 1. Let k = 1. Then c = 2. Since σ∗∗(172) = 290, 5|σ∗∗(172).
Taking c = 2 in (3.1b), we find that 5|v. This is false since 5 - n by our assumption.
Hence k ≥ 3.

From (a)–(d), it follows that 17k − 1

16
> 1, odd and not divisible by any of the primes

3, 5, 7, 11, 13, 17, 19, 23, 29 and 37. Hence 17k − 1

16
must be divisible by a prime p ≥ 41.

Let the other three prime factors of v be p1, p2 and p3, where p1 ≥ 11, p2 ≥ 13 and
p3 ≥ 19. Hence n = 26.7b.17c.pd1.p

e
2.p

f
3 .p

g, so that

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
11

10
.
13

12
.
19

18
.
41

40
= 2.971682922 < 3,

a contradiction.

Thus n = 26.7b.17c.v (b ≥ 3) is not a bi-unitary triperfect number if 3 - n and 5 - n.
We prove that n = 267b17cv, where b ≥ 3, 5|n, 3 - n and (v, 2.3.7.17) = 1 cannot be a

bi-unitary triperfect number.
We assume the contrary and obtain a contradiction.
Since 5|n, we can write v = 5dw, where (w, 2.3.5.7.17) = 1. Hence

n = 267b17c5dw, (b ≥ 3). (3.25a)

If n is a bi-unitary triperfect number, then σ∗∗(n) = 3n. Hence from (3.25a) and since
σ∗∗(26) = 119 = 7.17, the equation σ∗∗(n) = 3n on simplification transforms into

3.26.7b−1.17c−1.5d.w = σ∗∗(7b)σ∗∗(17c)σ∗∗(5d)σ∗∗(w), (3.25b)

57



where
w cannot have more than three odd prime factors. (3.25c)

It may be noted that c ≥ 2 can be assumed; c = 1 implies that σ∗∗(17c) = 18 and so 9 divides the
left-hand side of (3.25b). This is not possible since w is prime to 3.

Trivially an odd prime factor of the left-hand side of (3.25b) divides w if and only if it does
not belong to {3, 5, 7, 17}.

We essentially use the following lemmas (Lemmas 3.1, 3.2 and 3.3) to prove that n given in
(3.25a) cannot be a bi-unitary triperfect number:

Lemma 3.1. Let n be as in (3.25a) with w = pe1p
f
2p

g
3, where p1, p2 and p3 are distinct odd primes

with p1 ≥ 29, p2 ≥ 1009 and p3 ≥ 1013 and e, f, and g are positive integers. Then σ∗∗(n) < 3n.

Hence n cannot be a bi-unitary perfect number.

Proof. We have n = 267b17c5dpe1p
f
2p

g
3 so that by Lemma 2.1,

σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
5

4
.
29

28
.
1009

1008
.
1013

1012
= 2.989869702 < 3.

Lemma 3.2. Let n = 267b17c5dw (b ≥ 3) be as given in (3.25a).

(I) If b is odd or 4|b, then n cannot be a bi-unitary triperfect number.

(II) If b = 6, then n cannot be a bi-unitary triperfect number.

(III) Let b = 2k, where k ≥ 5 is odd. We have

σ∗∗(7b) =

(
7k − 1

6

)
.(7k+1 + 1).

If n is a bi-unitary triperfect number, then:

(A) 7k − 1

6
is divisible by an odd prime p′ > 2520 dividing w.

(B) 7k+1 + 1 is divisible by an odd prime q′ ≥ 1201 dividing w.

(C) n is not divisible by 11 or 13 or 19 or 23.

Proof. We assume that n is a bi-unitary triperfect number. Then (3.25b) holds.
Proof of (I). Let b be odd. We have

σ∗∗(7b) =
7b+1 − 1

6
=

(7t − 1)(7t + 1)

6
,

where t =
b+ 1

2
.

(i) Let t be even. Then 48 = 72 − 1|7t − 1 and 2‖7t + 1. Hence 16| (7
t − 1)(7t + 1)

6
= σ∗∗(7b).

It follows from (3.25b) that 26 divides its right-hand side, whereas 26 unitarily divides its
left-hand side. Hence w = 1 so that from (3.25a), n = 267b17c5d. We have

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
5

4
= 2.881062826 < 3,

a contradiction.
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(ii) Let t be odd. Then 8|7t+1 and 2‖7t− 1. Hence 8| (7
t − 1)(7t + 1)

6
= σ∗∗(7b). From (3.25b),

it follows that, 25 divides its right-hand side and 26 unitarily divides its left-hand side.
Hence w cannot have more than one odd prime factor. We obtain a contradiction by
showing that w is divisible by two odd prime factors.

We have 8|7t + 1. If 16|7t + 1 then since 2‖7t − 1, it follows that 16|σ∗∗(7b) and we obtain
a contradiction as in (i). So we may assume that 16 - 7t + 1 and hence 8‖7t + 1.

Since t is odd, 7t + 1 is not divisible by 3, 5 and 17; also not divisible by 7 trivially. We

have that 7t + 1

8
is odd and > 1 since t ≥ 2 as b ≥ 3. Hence we can find an odd prime

q|7
t + 1

8
|σ∗∗(7b); also, q /∈ {3, 5, 7, 17}. From (3.25b), it follows that q|w.

We now consider the factor 7t − 1 when t is odd.

(a) We have 2‖7t − 1 and 3|7t − 1.

(b) We may note that 9|7t − 1⇐⇒ 3|t⇐⇒ 19|7t − 1. Hence 9|7t − 1 =⇒ 19|7t − 1 so

that 19|7
t − 1

6
|σ∗∗(7b). From (3.25b), we see that 19|w. Already w is divisible by q.

Since q|7t+1, 19|7t− 1 and q is odd, q 6= 19. Thus w is divisible by two odd primes,
whereas it should be divisible by not more than one odd prime. Hence 9 - 7t−1; also,
19 - 7t − 1 and 3‖7t − 1.

(c) Since t is odd, 7t − 1 is not divisible by 5 or 17; not divisible by 7 trivially. Thus
7t − 1

6
is odd, > 1 and not divisible by 3, 5, 7 or 17. Hence we can find an odd prime

p|7
t − 1

6
|σ∗∗(7b) and p /∈ {3, 5, 7, 17}. From (3.25b), p|w. Since 7t − 1

6
and 7t + 1 are

relatively prime, we must have p 6= q. Hence w is divisible by two odd primes. But
this cannot happen.

The proof of (I) when b is odd is complete.
Now let b = 2k, where k is even. This is same as 4|b.

(iii) Since k is even, 8|7k − 1 and since k + 1 is odd, 8|7k+1 + 1, so that 32|σ∗∗(7b). It follows
that 28 divides the right-hand side of (3.25b), but 26 divides its left-hand side unitarily. This
is a contradiction.

The proof of (I) is complete.

Proof of (II). Let b = 6. Then σ∗∗(76) =
(
73 − 1

6

)
.(74 + 1) = 2.3.19.1201.

If we assume that n is a bi-unitary triperfect number, taking b = 6 in (3.25b) we get,

25.75.17c−1.5d.w = 19.1201.σ∗∗(17c)σ∗∗(5d)σ∗∗(w). (3.25d)

It follows from (3.25d) that w is divisible by 19 and 1201. So we can write, w = 19e.(1201)f .w′,
where w′ is prime to 2.3.5.7.17.19.1201. Hence from (3.25a),

n = 267617c5d19e(1201)fw′, (3.26a)

and from (3.25d),

25.75.17c−1.5d.19e−1.(1201)f−1.w′ = σ∗∗(17c)σ∗∗(5d)σ∗∗(19e)σ∗∗((1201)f )σ∗∗(w′), (3.26b)
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where
w′ has at most one odd prime factor. (3.26c)

By examining the factors of σ∗∗(5d) we arrive at a contradiction to (3.26c).

If d is odd, then 3|5d+1 − 1. Hence 3|5
d+1 − 1

4
|σ∗∗(5d). It follows from (3.26b) that its right-

hand side is divisible by 3 but its left-hand side is not.

Let d = 2`, so that σ∗∗(5d)) =
(
5` − 1

4

)
.(5`+1 + 1).

If ` is even, then 3|5` − 1 and so 3|σ∗∗(5d). This leads to a contradiction as above.
We may assume that d = 2` and ` is odd.
If ` = 1, then d = 2 and so σ∗∗(5d) = 26 = 2.13. Taking d = 2 in (3.26b), we infer that 13|w′

and in view of (3.26c), w′ = 13g, say. From (3.26a), we obtain, n = 267617c5219e(1201)f13g,
so that

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
26

25
.
19

18
.
1201

1200
.
13

12
= 2.743348734 < 3,

a contradiction.
We may assume that ` > 1 so that ` ≥ 3 since ` is odd.
Since ` is odd, 4‖5` − 1 and 5` − 1 is not divisible by 7 or 17; trivially not divisible by 5.
19|5`− 1⇐⇒ 9|`; this implies that 59− 1|5`− 1. We have 59− 1 = 22.19.31.829. Hence 31

and 829 divide 5` − 1

4
|σ∗∗(5d). From (3.26b) it follows that w′ is divisible by 31 and 829; this is

not possible because of (3.26c). Thus 19 - 5` − 1. Also, 1201|5` − 1 ⇐⇒ 600|`. Since ` is odd,
1201 - 5` − 1.

Thus 5` − 1

4
is odd, > 1 and not divisible by 5, 7, 17, 19 or 1201. Let p|5

` − 1

4
|σ∗∗(5d) so that

p is odd and p /∈ {5, 7, 17, 19, 1201}. From (3.26b), p|w′.
We now consider the factor 5`+1 + 1, where ` is odd. We have 2‖5`+1 + 1 and it is not

divisible by 5, 7 or 19; 17|5`+1 + 1 ⇐⇒ ` + 1 = 8u (u odd); this implies that 58 + 1|5`+1 + 1.
Since 11489|58 + 1, it follows that σ∗∗(5d) is divisible by 11489 and from (3.26b), 11489|w′.
Since 5` − 1

4
and 5`+1 + 1 are relatively prime, p and 11489 divide these factors respectively, we

must have p 6= 11489. Thus w′ is divisible by two odd primes contradicting (3.26c). Hence
17 - 5`+1 + 1.

Also, 1201|5`+1+1⇐⇒ `+1 = 300u, where u is odd; in particular, `+1 = 12u′, where u′ is
odd. Hence 512+1|5`+1, and 512+1 = 2.313.39001. Hence 313 and 39001 divide 5`+1+1|σ∗∗(5d).
From (3.26b) we see that w′ is divisible by these two odd primes contradicting (3.26c). Hence
1201 - 5`+1 + 1.

Thus if q|5
`+1 + 1

2
, then q is odd and q /∈ {5, 7, 17, 19, 1201}; hence from (3.26b), q|w′. Hence

w′ is divisible by two odd primes p and q, p 6= q contradicting (3.26c).
We have proved that when b = 6, n in (3.25a) cannot be a bi-unitary triperfect number.
The proof of (II) is complete.

Proof of (III)(A). Let b = 2k, where k ≥ 5 and odd.
We assume that n given in (3.25a) is a bi-unitary triperfect number and hence (3.25b) holds.

Let
S ′7 = {p|7k − 1 : p ∈ [3, 2520]− {3, 19, 37, 1063} and ordp7 is odd}.
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From Lemma 2.4 (a) of [2], it follows that if S ′7 is non-empty, then we can find a prime

p′|7
k − 1

6
|σ∗∗(7b) and p′ ≥ 2521; that is, III (A) of Lemma 3.2 holds. Also, from (3.25b), p′|w.

We may assume that S ′7 is empty. Since p - 7k − 1 if ordp7 is even, it follows that:

(A1)
7k − 1

6
is not divisible by any prime in [3, 2520] except possibly 3, 9, 37 and 1067.

(A2) We have 3|7k − 1 and since k is odd, 2‖7k − 1. Also, 27 - 7k − 1. If this is not so, then

9|7
k − 1

6
|σ∗∗(7b) and from (3.25b) it follows that 3|w and this is not true. We settle the

divisibility of 7k − 1 by 9 later.

(A3) We note that 37|7k − 1 ⇐⇒ 9|k ⇐⇒ 1063|7k − 1. We assume that 37|7k − 1. Hence

79 − 1|7k − 1. Also, 79 − 1 = 2.33.19.37.1063. Hence 32|7
9 − 1

6
|7

k − 1

6
|σ∗∗(7b). From

(3.25b), 3|w. This is false. Hence 37 - 7k − 1.

(A4) We have 9|7k − 1⇐⇒ 3|k ⇐⇒ 19|7k − 1.

(A5) Suppose 19 - 7k− 1. Then 9 - 7k− 1 and so 3‖7k− 1. Hence from A1, A2 and A3,
7k − 1

6
is

not divisible by any prime in [3, 2520]. Since 7k − 1

6
> 1 and odd, if p′|7

k − 1

6
|σ∗∗(7b), then

p′ > 2560 and p′|w by (3.25b).

Hence (III)(A) of Lemma 3.2 follows.

(A6) Suppose that 19|7k − 1 so that 9|7k − 1. Hence 9‖7k − 1. It follows that 7k − 1

18
is odd, > 1

and not divisible by 3. We can show that 7k − 1

18
is not divisible by 19 alone. Hence we can

find an odd prime p′|7
k − 1

18
and p′ 6= 19. We have p′|7

k − 1

18
|7

k − 1

6
|σ∗∗(7b) and it follows

A1 toA4 that p′ > 2503. From (3.25b), it is clear that p′|w.

This completes the proof of (III)(A).

Proof of (III)(B):

(B1) Let

T ′7 = {q|7k+1 + 1 : q ∈ [3, 1193]− {5, 13, 181, 193, 409}} and s =
1

2
ordq7 is even.

By Lemma 2.4 (b) of [2], if T ′7 is non-empty, then we can find a prime q′|7
k+1 + 1

2
|σ∗∗(7b)

and q′ > 1193. By (3.25b), it follows that q′|w. This upholds III(B) of Lemma 3.2.

(B2) We may assume that T ′7 is empty. Since q - 7k+1 + 1 if s =
1

2
ordq7 is not even, from

T ′7 = ∅, we can conclude that 7k+1 + 1

2
is not divisible by any prime in [3, 1193] except

possibly 5, 13, 181, 193 and 409.

(B3) We may note that 193|7k+1+1⇐⇒ 12|k ⇐⇒ 409|7k+1+1. Suppose that 193|7k+1+1. This
implies that 712 + 1|7k+1 + 1. Also, 712 + 1 = 2.73.193.409.1201. Hence 7k+1 + 1|σ∗∗(7b)
is divisible by four odd primes 73, 193, 409 and 1201. From (3.25b), these four odd primes

divide w. This contradicts (3.25c). Thus 7k+1 + 1

2
is not divisible by 193 and 409.
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(B4) We note that 13|7k+1 + 1 if and only if k + 1 = 6u if and only if 181|7k+1 + 1. Assume
that 13|7k+1 + 1 so that 181|7k+1 + 1 and k + 1 = 6u. Hence 76 + 1|7k+1 + 1. Also,
76 + 1 = 2.52.13.181. So, 52|7k+1 + 1. We now show that 53 - 7k+1 + 1. We have
53|7k+1 + 1 if and only if k + 1 = 10u; also, 710 + 1 = 2.53.281.4021. Thus 53|7k+1 + 1

implies that 281 and 4021 divide 7k+1 + 1|σ∗∗(7b). From (3.25b), it follows that 281 and
4021 are factors of w. Already, 13 and 181 are factors of 7k+1+1|σ∗∗(7b) and from (3.25b),
13 and 181 divide w also. Thus four prime factors divide w contradicting (3.25c). Hence
53 - 7k+1 + 1 and so 52‖7k+1 + 1.

Clearly, 7k+1 + 1

50
is odd, > 1 and not divisible by 5. We note that 132|7k+1 + 1 if and only

if k + 1 = 78u. Hence 132|7k+1 + 1 implies that 778 + 1|7k+1 + 1. From Appendix G
of [2], we can see that 778 + 1 has more than three prime factors dividing w. This cannot
happen. Hence 132 - 7k+1 + 1 and so 13‖7k+1 + 1. Further, 1812|7k+1 + 1 if and only if
k + 1 = 1068u; also, from Appendix G of [2], 71068 + 1 has more than three prime factors
dividing w. This contradicts (3.25c). Hence 1812 - 7k+1 + 1 and so 181‖7k+1 + 1.

Thus 13|7k+1 + 1 implies that 13 and 181 are unitary divisors of 7k+1 + 1

50
; if it is divisible

by 13 and 181 alone, then we should have 7k+1 + 1

50
= 13.181 and so k = 5 or b = 10. We

now prove that b = 10 is not possible.

We have σ∗∗(710) =
(
75 − 1

6

)
.(76 + 1) = 2.52.13.181.2801. Thus σ∗∗(710) is divisible by

three prime factors dividing w in (3.25b). From (3.25c), we have w = 13e.181f .(2801)g.
Taking b = 10 in (3.25a) and (3.25b), we get

n = 26.710.17c.5d.13e.181f .(2801)g, (3.27a)

and
3.25.79.17c−1.5d−2.13e−1.181f−1.(2801)g−1

= σ∗∗(17c).σ∗∗(5d).σ∗∗(13e).σ∗∗(181f ).σ∗∗((2801)g), (3.27b)

where c ≥ 2 and d ≥ 2.

We obtain a contradiction by examining the factors of σ∗∗(17c) in different cases.

If c is odd or 4|c, then 9|σ∗∗(17c). It follows from (3.27b) that this cannot happen.

Hence we may assume that c = 2` and ` is odd. Since ` is odd, 17` − 1 is not divisible by
3, 5, 7 and 13; trivially not divisible by 17. Also, 17t− 1 is divisible by 32 if and only if t is
even; divisible by 181 if and only if 36|t and by 2801 if and only if 56|t. In these cases, all
the values of t must be even. Since ` is odd, 17` − 1 is not divisible by 32 or 181 or 2801.

Since 16|17` − 1 and 32 - 17` − 1, we have 16‖17` − 1. Hence 17` − 1

16
is odd.

If ` = 1, then c = 2 and σ∗∗(172) = 290. Hence 29|σ∗∗(172). Taking c = 2 in (3.27b), we
find that 29 should divide the right-hand side of it. This is is not possible.

Hence ` ≥ 3 and so 17` − 1

16
> 1. Thus 17` − 1

16
> 1, odd and not divisible by 3, 5, 7, 13, 17,

181 and 2801. Since 17` − 1

16
is a factor of σ∗∗(17c), this cannot happen by virtue of (3.27b).

Therefore, b = 10 is not possible.
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This proves that 7k+1 + 1

50
must be divisible by an odd prime q′ /∈ {5, 13, 181}. Now

q′|7
k+1 + 1

50
|7

k+1 + 1

2
and we already proved that 7k+1 + 1

2
is not divisible by any prime in

[3, 1193]− {5, 13, 181}, it follows that q′ > 1193 (or q′ ≥ 1201).

Thus we proved (III)(B) when 13|7k+1 + 1.

(B5) Assume that 13 - 7k+1 + 1 and hence 181 - 7k+1 + 1. If 5 - 7k+1 + 1, then none of the

primes in [3, 1193] is a factor of 7k+1 + 1

2
and so every prime factor of it exceeds 1193. This

upholds the statement in (III)(B). Hence we may assume that 5|7
k+1 + 1

2
. This is if and only

if k+1 = 2u; hence 72+1 = 50|7k+1+1. Thus 52|7k+1+1. If 53|7k+1+1 then k+1 = 10u.
Hence 710 + 1 = 2.53.281.4021 is a factor of 7k+1 + 1. From (3.25b), it follows that w is

divisible by 281 and 4021; also, w is divisible by p′ > 2521 dividing 7k − 1

6
from (III)(A).

Hence from (3.25a), n = 26.7b.17c.5d.281e.(4021)f .p′g, and so

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
5

4
.
281

280
.
4021

4020
.
2521

2520
= 2.893219225 < 3,

a contradiction.

Hence 53 - 7k+1 + 1 and so 52‖7k+1 + 1. If 7k+1 + 1

2
is divisible by 5 alone, then we must

have 7k+1 + 1

2
= 52 or k = 1. But k ≥ 5. This contradiction proves that 7k+1 + 1

2
must be

divisible by an odd prime q′ 6= 5. By our assumption, 7k+1 + 1 is not divisible by 13 and
from B1, B2 and B3, it follows that q′ > 1193 and from (3.25b), q′|w, since q′ is a factor of
σ∗∗(7b).

Thus the proof of (III)(B) is complete.

Proof of (III)(C). Let n be as given in (3.25a) and (3.25b). First we observe that c ≥ 3. When
c = 2, σ∗∗(172) = 290. Taking c = 2 in (3.25b), we see that 29|w. Let p′ and q′ be the primes
dividing w obtained in (III)(A) and (III)(B), where p′ ≥ 2521 and q′ > 1193; so, q′ ≥ 1201.
Now the primes 29, p′ and q′ satisfy the hypothesis of Lemma 3.1. Hence n cannot be a bi-unitary
triperfect number contrary to our assumption. Hence c ≥ 3.

(i) Suppose that 11|n. Hence from (3.25a), 11|w. By (3.25c), w = 11ep′fq′g. From (3.25a)

and (3.25b), we have
n = 26.7b.17c.5d.11e.p′f .q′g, (3.28a)

and

3.26.7b−1.17c−1.5d.11e.p′f .q′g = σ∗∗(7b)σ∗∗(17c)σ∗∗(5d)σ∗∗(11e)σ∗∗(p′f )σ∗∗(q′g).

(3.28b)

When e = 1, σ∗∗(11e) = 12. Hence 4|σ∗∗(11e). From (3.28b), it follows that 27 divides its
right-hand side, whereas 26 is a unitary divisor of its left-hand side. This is a contradiction.

If e = 2, σ∗∗(11e) = 122 = 2.61. Taking e = 2 in (3.28b), we find that 61 divides its
left-hand side but it cannot divide its right-hand side. Hence we may assume that e ≥ 3.
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Hence, without loss of generality, we can assume that b ≥ 9, c ≥ 3, and e ≥ 3. By Lemma
2.1, we have

σ∗∗(7b)

7b
≥ 6723200

5764801
(b ≥ 9), (3.28c)

σ∗∗(17c)

17c
≥ 88452

83521
(c ≥ 3) (3.28d)

and σ∗∗(11e)

11e
≥ 15984

14641
, (e ≥ 3). Also, if d ≥ 3, then σ∗∗(5d)

5d
≥ 756

625
. From these results

and (3.28a), when d ≥ 3, we obtain

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
88452

83521
.
756

625
.
15984

14641
= 3.032684127 > 3,

a contradiction.

Hence d = 1 or d = 2.

If d = 1, from (3.28a),

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
88452

83521
.
6

5
.
15984

14641
= 3.008615205 > 3,

a contradiction.

If d = 2, σ∗∗(5d) = 26. Hence from (3.28b), it follows that 13 divides its right-hand side
but it cannot divide its left-hand side.

Hence 11 - n.

(ii) Suppose 13|n. Hence w = 13ep′fq′g. From (3.25a) and (3.25b), we get

n = 26.7b.17c.5d.13e.p′f .q′g, (3.29a)

and
3.26.7b−1.17c−1.5d.13e.p′f .q′g = σ∗∗(7b)σ∗∗(17c)σ∗∗(5d)σ∗∗(13e)σ∗∗(p′f )σ∗∗(q′g).

(3.29b)

By Lemma 2.1, for d ≥ 5,
σ∗∗(5d)

5d
≥ 19406

15625
and for e ≥ 3,

σ∗∗(13e)

13e
≥ 30772

28561
. Since we have

b ≥ 9 and c ≥ 3, from (3.29a), we obtain for d ≥ 5 and e ≥ 3,

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
88452

83521
.
19406

15625
.
30772

28561
= 3.073045463 > 3,

a contradiction. Thus d ≥ 5 implies that e = 1 or e = 2.

If d ≥ 5 and e = 1, from (3.29a), we get,

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
88452

83521
.
19406

15625
.
14

13
= 3.071647353 > 3,

a contradiction.

Let d ≥ 5 and e = 2. Taking e = 2 in (3.29a), we get

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
5

4
.
170

169
.
2521

2520
.
1201

1200
= 2.901676629 < 3,

a contradiction.

Thus d ≥ 5 cannot occur. Hence d takes the choices 1, 2, 3 and 4.
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Let d = 1. Taking d = 1 in (3.29a), we get

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
6

5
.
13

12
.
2521

2520
.
1201

1200
= 2.999992261 < 3,

a contradiction.

If d = 2, from (3.29a), we obtain

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
26

25
.
13

12
.
2521

2520
.
1201

1200
= 2.599993292 < 3,

a contradiction. Since σ∗∗(53) = 22.3.13 and σ∗∗(54) = 22.32.7, σ∗∗(5d) is divisible by 4

when d = 3 or d = 4. In these cases 27 divides the right-hand side of (3.29b) while 26 is a
unitary divisor of its left-hand side.

Thus 13 - n.

(iii) We assume that 19|n so that w = 19ep′fq′g. From (3.25a) and (3.25b), we have

n = 26.7b.17c.5d.19e.p′f .q′g, (3.29c)

and

3.26.7b−1.17c−1.5d.19e.p′f .q′g = σ∗∗(7b)σ∗∗(17c)σ∗∗(5d)σ∗∗(19e)σ∗∗(p′f )σ∗∗(q′g).

(3.29d)

If d ≥ 7 and e ≥ 3, from (3.29c) we obtain (since b ≥ 9, c ≥ 3)

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
88452

83521
.
487656

390625
.
137561

130321
= 3.026252265 > 3,

a contradiction; in the above we used (3.28c), (3.28d),

σ∗∗(5d)

5d
≥ 487656

390625
(d ≥ 7) and

σ∗∗(19e)

19e
≥ 137561

130321
(e ≥ 3).

Thus d ≥ 7 implies that e = 1 or e = 2.

Let d ≥ 7. If e = 1, then σ∗∗(19e) = 20. Hence 4|σ∗∗(19e). From (3.29d) it follows
that there is a mismatch in powers of two between two sides of (3.29d). If e = 2, then
σ∗∗(19e) = 362 = 2.181. Taking e = 2 in (3.29d), we see that 181 divides the left-hand
side of (3.29d), which is false.

Hence d ≥ 7 is not possible so that 1 ≤ d ≤ 6.

Taking d = 1 in (3.29c), we have n = 26.7b.17c.5.19e.p′f .q′g, and so

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
6

5
.
19

18
.
2521

2520
.
1201

1200
= 2.923069382 < 3,

a contradiction.

When d = 2, σ∗∗(5d) = 26 = 2.13. Taking d = 2 in (3.29d), we see that 13 divides the
left-hand side of it and this is not possible.

We have σ∗∗(53) = 22.3.13 and σ∗∗(54) = 22.32.7. Thus if d = 3 or d = 4, 4|σ∗∗(5d); this
results in imbalance in the powers of two between both sides of (3.29d).
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Also, σ∗∗(55) = 2.32.7.31 and σ∗∗(56) = 2.31.313. Hence if d = 5 or d = 6, 31|σ∗∗(5d).
From (3.29d), it follows that 31 divides the left-hand side of it. This is not possible.

Thus 19 - n.

(iv) We prove that 23 - n. On the contrary we assume that 23|n and obtain a contradiction. Let
23|n and hence w = 23ep′fq′g. From (3.25a) and (3.25b), we get,

n = 26.7b.17c.5d.23e.p′f .q′g, (b ≥ 9, c ≥ 3) (3.30a)

and

3.26.7b−1.17c−1.5d.23e.p′f .q′g = σ∗∗(7b)σ∗∗(17c)σ∗∗(5d)σ∗∗(23e)σ∗∗(p′f )σ∗∗(q′g).

(3.30b)

By Lemma 2.1, we have

σ∗∗(7b)

7b
≥6723200

5764801
(b ≥ 9),

σ∗∗(17c)

17c
≥25641254

24137569
(c ≥ 5),

σ∗∗(5d)

5d
≥487656

390625
(d ≥ 7),

σ∗∗(23e)

23e
≥154752626

148035889
(e ≥ 5).

From (3.30a), we have for c ≥ 5, d ≥ 7, and e ≥ 5,

3 =
σ∗∗(n)

n
≥ 119

64
.
6723200

5764801
.
25641254

24137569
.
487656

390625
.
154752626

148035889
= 3.006276895 > 3,

a contradiction.

Hence c ≥ 5, d ≥ 7 implies 1 ≤ e ≤ 4. Assume that c ≥ 5, d ≥ 7.

We have σ∗∗(23) = 24 = 23.3, σ∗∗(233) = 24.3.5.53 and σ∗∗(234) = 26.33.132. Hence
23|σ∗∗(23e) when e = 1, 3, 4. From (3.30b), this is not possible as in such a case 28 divides
its right-hand side, whereas its left-hand side is divisible by 26 unitarily.

When e = 2, σ∗∗(23e) = 2.5.53. Taking e = 2 in (3.30b), it follows that 53 should divide
its left-hand side. This is not possible.

Thus c ≥ 5, d ≥ 7 cannot hold.

Let c ≥ 5 and 1 ≤ d ≤ 6.

When d = 1, from (3.30a), n = 26.7b.17c.5.23e.p′f .q′g and so we have

3 =
σ∗∗(n)

n
<

119

64
.
7

6
.
17

16
.
6

5
.
23

22
.
2521

2520
.
1201

1200
= 2.895097426 < 3,

a contradiction.

When d = 2, 13|σ∗∗(5d); in this case from (3.30b), 13 should divide its left-hand side.
This is not possible.

When d = 3 or d = 4, 4|σ∗∗(5d); in these two cases there will be a mismatch of the powers
of 2 between its two sides.
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When d = 5 or d = 6, 31|σ∗∗(5d). Hence form (3.30b), 31 should divide its left-hand side.
This is not possible.

Hence c ≥ 5 is not possible. So, we must have c = 3 or c = 4 since c ≥ 3.

Since σ∗∗(173) = 22.32.5.29 and σ∗∗(174) = 22.35.7.13, 4|σ∗∗(17c) when c = 3 or c = 4.
In these cases we obtain a contradiction from (3.30b) due to the imbalance of the powers
of 2 between its two sides.

Thus 23 - n.
This proves (III)(C) in all the cases.

Lemma 3.3. The number n = 267b17cv, where b ≥ 3, 5|n, 3 - n and (v, 2.3.7.17) = 1 cannot
be a bi-unitary triperfect number.

Proof. Since 5|n, n is of the form given in (3.25a). Suppose that n is a bi-unitary triperfect
number. By (III)(A) and (B) of Lemma 3.2, w is divisible by primes p′ > 2507 and q′ > 1201.
Let us redesignate p′ and q′ by p2 and p3. Since w cannot have more than three odd prime factors,
by (III)(C), a possible third prime factor say p1 of w will be ≥ 29. Now, the primes p1, p2 and p3
satisfy the hypothesis of Lemma 3.1. Hence n cannot be a bi-unitary triperfect number.

This completes the proof of (a) of Theorem 3.1 and also the proof of Theorem 3.1.

4 Concluding remarks

Partial results on bi-unitary triperfect numbers divisible unitarily by 27 are obtained. We mention
one such result: if n is a bi-unitary triperfect number divisible unitarily by 27 and 52, then
n = 44553600. We could fix bi-unitary triperfect numbers divisible unitarily by 28; 57657600 is
the only such number.
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