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1 Introduction

Let X be a positive integer. We denote the sum of the divisors of X by

σ(X) =
∑
d|X

d.

We also denote the deficiency of X by

D(X) = 2X − σ(X),

the sum of the aliquot divisors of X by

s(X) = σ(X)−X,

and the abundancy index of X by I(X) = σ(X)/X .
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Note that both σ and I are multiplicative. That is, if gcd(A,B) = 1, then we have

σ(AB) = σ(A)σ(B)

and
I(AB) = I(A)I(B).

If gcd(C,D) > 1, then we have
σ(CD) < σ(C)σ(D)

and
I(CD) < I(C)I(D),

so that in general we have the inequalities

σ(Y Z) ≤ σ(Y )σ(Z)

and
I(Y Z) ≤ I(Y )I(Z)

for σ and I . Equality holds if and only if gcd(Y, Z) = 1. Lastly, note that although the deficiency
function D is not multiplicative, it is in general true that the inequality

D(Y Z) ≤ D(Y )D(Z)

holds whenever gcd(Y, Z) = 1, per a result in Dris [5].
If m is odd and σ(m) = 2m, then m is called an odd perfect number. Euler proved that an

odd perfect number, if one exists, must have the form m = qkn2 where q is the special prime
satisfying q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1. Note that we have

σ(qk)σ(n2) = σ(qkn2) = σ(m) = 2m = 2qkn2

so that we obtain

σ(n2)

qk
=

2n2

σ(qk)
= gcd(n2, σ(n2)) =

D(n2)

s(qk)
=

2s(n2)

D(qk)
.

Descartes and Frenicle conjectured that k = 1 always holds. More recently, Sorli predicts
k = 1 after testing large numbers with eight distinct prime factors for perfection. To date, no
proof of the Descartes–Frenicle–Sorli Conjecture on odd perfect numbers is known, although
various equivalent conditions have been derived by Dris [4], and Dris and Tejada [2].

In this note, we pursue an approach started in the M. Sc. thesis by Dris [7] and thereby attempt
to produce stronger bounds for the sum I(qk) + I(n2). Currently, we know by Dris [6] that
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20
< I(qk) + I(n2) < 3

and that these bounds are best-possible.
We also know that

q + 1

q
≤ I(qk) <

q

q − 1
<

2(q − 1)

q
< I(n2) ≤ 2q

q + 1
,

from which we get
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(
I(qk)− q

q − 1

)(
I(n2)− q

q − 1

)
< 0

and (
I(qk)− q + 1

q

)(
I(n2)− q + 1

q

)
≥ 0.

Using the fact that I(qk)I(n2) = I(qkn2) = 2, we obtain

2(q − 1)

q
+

q

q − 1
< I(qk) + I(n2) ≤ 2q

q + 1
+
q + 1

q
.

Notice that the lower bound equals

L(q) =
2(q − 1)

q
+

q

q − 1
=

3q2 − 4q + 2

q(q − 1)
= 3− q − 2

q(q − 1)

and that the upper bound equals

U(q) =
2q

q + 1
+
q + 1

q
=

3q2 + 2q + 1

q(q + 1)
= 3− q − 1

q(q + 1)
.

Equality holds in L(q) < I(qk) + I(n2) ≤ U(q) if and only if the Descartes–Frenicle–Sorli
Conjecture on odd perfect numbers holds.

2 On D(qk)D(n2) = 2s(qk)s(n2)

From the Introduction, we have the equation

σ(n2)

qk
=

2n2

σ(qk)
= gcd(n2, σ(n2)) =

D(n2)

s(qk)
=

2s(n2)

D(qk)
,

from which we obtain
D(qk)D(n2) = 2s(qk)s(n2).

We begin with a proof of the following lemma.

Lemma 2.1. If m = qkn2 is an odd perfect number with special prime q, then

D(qk)D(n2) = 2s(qk)s(n2) =
2n2(qk − 1)(qk+1 − 2qk + 1)

(q − 1)(qk+1 − 1)
.

Proof. Let m = qkn2 be an odd perfect number with special prime q.
Since q is prime and using that

σ(n2) =
2qkn2

σ(qk)

and

σ(qk) =
qk+1 − 1

q − 1
,

we have
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D(qk)D(n2) = 2s(qk)s(n2) = 2(σ(qk)− qk)(σ(n2)− n2)

= 2(σ(qk)− qk)
(
2qkn2

σ(qk)
− n2

)
= 2n2

(
3qk − σ(qk)− 2q2k

σ(qk)

)
= 2n2

(
3qk − qk+1 − 1

q − 1
− 2q2k(q − 1)

qk+1 − 1

)
= 2n2 · 3q

k(q − 1)(qk+1 − 1)− (qk+1 − 1)2 − 2q2k(q − 1)2

(q − 1)(qk+1 − 1)

=
2n2(qk − 1)(qk+1 − 2qk + 1)

(q − 1)(qk+1 − 1)
.

We can now prove the following theorem, using Lemma 2.1.

Theorem 2.2. If m = qkn2 is an odd perfect number with special prime q, then

3− (I(qk) + I(n2)) =
(qk − 1)(qk+1 − 2qk + 1)

qk(q − 1)(qk+1 − 1)
.

Proof. Let m = qkn2 be an odd perfect number with special prime q.
By Lemma 2.1, we have

D(qk)D(n2) = 2s(qk)s(n2) =
2n2(qk − 1)(qk+1 − 2qk + 1)

(q − 1)(qk+1 − 1)
.

Dividing both sides of

2s(qk)s(n2) =
2n2(qk − 1)(qk+1 − 2qk + 1)

(q − 1)(qk+1 − 1)

by 2qkn2, we obtain
s(qk)

qk
· s(n

2)

n2
=

(qk − 1)(qk+1 − 2qk + 1)

qk(q − 1)(qk+1 − 1)
.

But we also have

s(qk)

qk
· s(n

2)

n2
=
(
I(qk)− 1

) (
I(n2)− 1

)
=
(
I(qk)I(n2) + 1

)
−
(
I(qk) + I(n2)

)
= 3− (I(qk) + I(n2)).

This finishes the proof.

We now attempt to find the global extrema for the expression

3− (I(qk) + I(n2)) =
(qk − 1)(qk+1 − 2qk + 1)

qk(q − 1)(qk+1 − 1)
,

first when the expression is considered as a function of k, and then when the expression is
considered as a function of q.
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2.1 Global extrema for f1(k) = (qk−1)(qk+1−2qk+1)
qk(q−1)(qk+1−1)

Theorem 2.3. If m = qkn2 is an odd perfect number with special prime q, then

q − 1

q(q + 1)
= f1(1) ≤ f1(k) = 3− (I(qk) + I(n2)) <

q − 2

q(q − 1)
.

Proof. Let

f1(k) =
(qk − 1)(qk+1 − 2qk + 1)

qk(q − 1)(qk+1 − 1)
.

Then, we have

f1
′(k) =

(q − 4)q2k+1 + 2qk+1 + 2q2k − 1

qk(q − 1)(qk+1 − 1)2
ln q,

which is positive for k ≥ 1 and q ≥ 5.
Thus, we see that f1(k) is increasing for k ≥ 1.
Since

f1(1) =
q − 1

q(q + 1)

and

lim
k→∞

f1(k) = lim
k→∞

(1− 1
qk
)(1− 2

q
+ 1

qk+1 )

(q − 1)(1− 1
qk+1 )

=
q − 2

q(q − 1)
,

we have
q − 1

q(q + 1)
≤ f1(k) <

q − 2

q(q − 1)
,

with the further result that these bounds are the best possible.

2.2 Global extrema for f2(q) = (qk−1)(qk+1−2qk+1)
qk(q−1)(qk+1−1)

Theorem 2.4. If m = qkn2 is an odd perfect number with special prime q, then

0 < f2(q) = 3− (I(qk) + I(n2)) ≤ f(5) =
(5k − 1)(5k+1 − 2 · 5k + 1)

4 · 5k(5k+1 − 1)
<

3

20
.

If k = 1, then

0 < f2(q) = 3− (I(qk) + I(n2)) ≤ 2

15
.

Proof. Let

f2(q) =
(qk − 1)(qk+1 − 2qk + 1)

qk(q − 1)(qk+1 − 1)
.

We obtain, with some help of WolframAlpha,

f2
′(q) =

−(qk+1 − kq + k − q)(q2k+1(q − 4) + 2qk+1 + 2q2k − 1)

qk+1(q − 1)2(qk+1 − 1)2
.

Here, let
g(q) = qk+1 − kq + k − q.

Then,
g′(q) = (qk − 1)(k + 1) > 0.
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Hence, g(q) is increasing and

g(q) ≥ g(5) = 5k+1 − 4k − 5 > 0.

It follows that f2(q) is strictly decreasing for q ≥ 5. Since lim
q→∞

f(q) = 0, we have

0 < f2(q) ≤ f(5) =
(5k − 1)(5k+1 − 2 · 5k + 1)

4 · 5k(5k+1 − 1)
<

3

20
.

But we have

f2(q) = 3−
(
I(qk) + I(n2)

)
.

This implies that
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20
< 3−

(
(5k − 1)(5k+1 − 2 · 5k + 1)

4 · 5k(5k+1 − 1)

)
≤ I(qk) + I(n2) < 3,

with the further result that these bounds are the best possible. (Note that, when k = 1, we have
the slightly stronger bound 43/15 ≤ I(qk) + I(n2) < 3.)

3 Concluding remarks and further research

Notice that, although we were unsuccessful in improving the bounds for I(qk) + I(n2) (and
therefore, we were unable to obtain either nontrivial lower or upper bounds for q; see the paper
by Dris [3] for more information), we were able to extract useful information on the common
value for

D(qk)D(n2) = 2s(qk)s(n2)

and thereby get additional data about the quantity

3− (I(qk) + I(n2)).

For example, from a finding in Dris [3], it is known that the improved bound q > 5 is equivalent
to the improved lower bound

I(qk) + I(n2) >
43

15
.

Thus, if we assume that q = 5, then tackling the two remaining cases separately, we obtain

• Case 1. If q = 5 and k = 1, then

I(qk) + I(n2) = I(q) + I(n2) =
3q2 + 2q + 1

q(q + 1)
= I(5) +

2

I(5)
=

43

15
.

• Case 2. If q = 5 and k > 1, then using the facts that qk 6= 55 (see the paper by Cohen and
Sorli [1]), and k ≡ 1 (mod 4), we obtain 59 | qk, so that

I(59) ≤ I(qk) <
5

4
<

8

5
< I(n2) ≤ 2

I(59)
,
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where
I(59) =

2441406

1953125
= 1.249999872,

from which we get
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20
< I(qk) + I(n2) = I(5k) + I(n2) ≤ I(59) +

2

I(59)
,

where
I(59) +

2

I(59)
=

6794928894043

2384185546875
≈ 2.85000003584.

Unfortunately, Case 1 does not yield a fruitful result (as it is currently unknown whether 5/3
is an abundancy index or otherwise), and while Case 2 appears promising, it also does not add to
our existing knowledge, as attempting to solve the resulting inequality

3−
(
(5k − 1)(5k+1 − 2 · 5k + 1)

4 · 5k(5k+1 − 1)

)
≤ I(qk) + I(n2) ≤ 6794928894043

2384185546875

only implies that k ≥ 9 and nothing more.
On a final note: Notice that

I(qk) + I(n2) = I(qk) +
2

I(qk)
= I(n2) +

2

I(n2)
,

which somehow leaves the impression that a consideration of the rational function

Q(M) =M +
2

M
=
M2 + 2

M

may be in order. The author is not well-versed nor an expert on quadratic forms, but his intuition
tells him that perhaps if the rational function Q(M) could be expressed as a quadratic form, then
the comprehensive theory of quadratic forms (see Malyshev [8] for a survey of the field) could
potentially be used to bear on the problem of getting improved lower and upper bounds for the
quantity

I(qk) + I(n2).

We leave this as an open problem for other researchers to investigate.
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