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Abstract: In this article, we consider the various possibilities for p and k modulo 16, and show
conditions under which the respective congruence classes for σ(m2) (modulo 8) are attained, if
pkm2 is an odd perfect number with special prime p. We prove that

1. σ(m2) ≡ 1 (mod 8) holds only if p+ k ≡ 2 (mod 16).

2. σ(m2) ≡ 3 (mod 8) holds only if p− k ≡ 4 (mod 16).

3. σ(m2) ≡ 5 (mod 8) holds only if p+ k ≡ 10 (mod 16).

4. σ(m2) ≡ 7 (mod 8) holds only if p− k ≡ 4 (mod 16).
We express gcd(m2, σ(m2)) as a linear combination of m2 and σ(m2). We also consider some
applications under the assumption that σ(m2)/pk is a square. Lastly, we prove a last-minute
conjecture under this hypothesis.
Keywords: Sum of divisors, Sum of aliquot divisors, Deficiency, Odd perfect number, Special
prime.
2010 Mathematics Subject Classification: 11A05, 11A25.

1 Introduction

Let σ(z) denote the sum of the divisors of z ∈ N, the set of positive integers. Denote the
deficiency [13] of z by D(z) = 2z − σ(z), and the sum of the aliquot divisors [14] of z by
s(z) = σ(z)− z. Note that we have the identity D(z) + s(z) = z.
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If n is odd and σ(n) = 2n, then n is said to be an odd perfect number [17]. Euler proved that
an odd perfect number, if one exists, must have the form n = pkm2, where p is the special prime
satisfying p ≡ k ≡ 1 (mod 4) and gcd(p,m) = 1.

Chen and Luo [3] gave a characterization of the forms of odd perfect numbers n = pkm2 such
that p ≡ k (mod 8). Starni [16] proved that there is no odd perfect number decomposable into
primes all of the type ≡ 1 (mod 4) if n = pkm2 and p 6≡ k (mod 8). Starni used a congruence
from Ewell [11] to prove this result.

Note that, in general, since m2 is a square, we get

σ(m2) ≡ 1 (mod 2).

Dris and San Diego [9] provide an alternative proof of the following theorem from Chen and
Luo [3]:

Theorem 1.1. If n = pkm2 is an odd perfect number with special prime p, then σ(m2) ≡ 1

(mod 4) holds if and only if p ≡ k (mod 8).

Chen and Luo [3] actually proved the following (stronger) theorem:

Theorem 1.2. Let n = pkm2 be an odd perfect number, with p prime, gcd(p,m) = 1, and
p ≡ k ≡ 1 (mod 4). Then

σ(m2) ≡ 1 (mod 4) ⇐⇒ p ≡ k (mod 8),

σ(m2) ≡ 3 (mod 4) ⇐⇒ p ≡ k + 4 (mod 8).

This paper considers the possibilities for σ(m2) modulo 8 under suitable hypotheses for p and
k modulo 16.

2 Preliminaries

Starting from the fundamental equality

σ(m2)

pk
=

2m2

σ(pk)

(which follows from the facts that σ(n) = 2n, σ is multiplicative, and gcd(pk, σ(pk)) = 1) one
can derive

σ(m2)

pk
=

2m2

σ(pk)
= gcd(m2, σ(m2))

so that we ultimately have

D(m2)

s(pk)
=

2m2 − σ(m2)

σ(pk)− pk
= gcd(m2, σ(m2))

and
s(m2)

D(pk)/2
=
σ(m2)−m2

pk − σ(pk)
2

= gcd(m2, σ(m2)),

9



whereby we obtain
D(pk)D(m2)

s(pk)s(m2)
= 2.

Note that we also have the following equation

2D(m2)s(m2)

D(pk)s(pk)
=

(
gcd(m2, σ(m2))

)2

. (∗)

Notice that the right-hand side of Equation (∗) is odd. (Furthermore, it is congruent to 1 modulo
8.) Lastly, notice that we can easily get

σ(pk) ≡ k + 1 ≡ 2 (mod 4)

(since p ≡ k ≡ 1 (mod 4)) so that it remains to consider the possible equivalence classes for
σ(m2) modulo 4.

Chen and Luo proved that σ(m2) ≡ 1 (mod 4) if and only if p ≡ k (mod 8).
This paper considers the following problem: What congruence classes are attained by σ(m2)

modulo 8 when p and k are constrained to certain congruence classes modulo 16?

3 Discussion and results

We know that the answer to the question we posed in the previous section must somehow depend
on the equivalence class of p and k modulo 16, but as we only know that p ≡ k ≡ 1 (mod 4),
and that p ≡ k (mod 8) if and only if σ(m2) ≡ 1 (mod 4), we need to consider the following
cases separately and thereby prove the corresponding results.

First, we prove the following lemmas.

Lemma 3.1. Suppose that n = pkm2 is an odd perfect number with special prime p. Consider
the possible congruence classes for σ(m2) modulo 8.

1. If σ(m2) ≡ 1 (mod 8) or σ(m2) ≡ 5 (mod 8), then p ≡ k (mod 8).

2. If σ(m2) ≡ 3 (mod 8) or σ(m2) ≡ 7 (mod 8), then p 6≡ k (mod 8).

Proof. This follows directly from Theorem 1.1.

We reproduce the following lemmas from Dris et al. [9], adjusting to account for p and k
modulo 16 instead of modulo 8.

Lemma 3.2. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. If p ≡ 1 (mod 16), then σ(pk) ≡ k + 1 (mod 16).

2. If p ≡ 5 (mod 16), then

σ(pk) ≡


6 (mod 16), if k ≡ 1 (mod 16)

2 (mod 16), if k ≡ 5 (mod 16)

14 (mod 16), if k ≡ 9 (mod 16)

10 (mod 16), if k ≡ 13 (mod 16)

.
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3. If p ≡ 9 (mod 16), then

σ(pk) ≡


10 (mod 16), if k ≡ 1 (mod 16)

14 (mod 16), if k ≡ 5 (mod 16)

2 (mod 16), if k ≡ 9 (mod 16)

6 (mod 16), if k ≡ 13 (mod 16)

.

4. If p ≡ 13 (mod 16), then

σ(pk) ≡


14 (mod 16), if k ≡ 1 (mod 16)

10 (mod 16), if k ≡ 5 (mod 16)

6 (mod 16), if k ≡ 9 (mod 16)

2 (mod 16), if k ≡ 13 (mod 16)

.

Proof. Let n = pkm2 be an odd perfect number with special prime p. It follows that p ≡ 1

(mod 4).
We consider four cases:
Case 1: p ≡ 1 (mod 16) We obtain

σ(pk) =
k∑
i=0

pi ≡ 1 +
k∑
i=1

pi ≡ 1 +
k∑
i=1

1i ≡ k + 1 (mod 16),

as desired.
Case 2: p ≡ 5 (mod 16) We get

σ(pk) =
k∑
i=0

pi ≡
k∑
i=0

5i ≡


6 (mod 16), if k ≡ 1 (mod 16)

2 (mod 16), if k ≡ 5 (mod 16)

14 (mod 16), if k ≡ 9 (mod 16)

10 (mod 16), if k ≡ 13 (mod 16)

.

Case 3: p ≡ 9 (mod 16) We derive

σ(pk) =
k∑
i=0

pi ≡
k∑
i=0

9i ≡


10 (mod 16), if k ≡ 1 (mod 16)

14 (mod 16), if k ≡ 5 (mod 16)

2 (mod 16), if k ≡ 9 (mod 16)

6 (mod 16), if k ≡ 13 (mod 16)

.

Case 4: p ≡ 13 (mod 16) We have that

σ(pk) =
k∑
i=0

pi ≡
k∑
i=0

13i ≡


14 (mod 16), if k ≡ 1 (mod 16)

10 (mod 16), if k ≡ 5 (mod 16)

6 (mod 16), if k ≡ 9 (mod 16)

2 (mod 16), if k ≡ 13 (mod 16)

.
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The next lemma computes the congruence class for the deficiency of the Euler component pk.

Lemma 3.3. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. Suppose that exactly one of the following conditions hold:

(a) p ≡ k ≡ 1 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 13 (mod 16)

(c) p ≡ k ≡ 9 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 5 (mod 16)

It follows that D(pk) ≡ 0 (mod 16).

2. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 13 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 1 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 5 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 9 (mod 16)

It follows that D(pk) ≡ 4 (mod 16).

3. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 9 (mod 16)

(b) p ≡ k ≡ 5 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 1 (mod 16)

(d) p ≡ k ≡ 13 (mod 16)

It follows that D(pk) ≡ 8 (mod 16).

4. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 5 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 9 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 13 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 1 (mod 16)

It follows that D(pk) ≡ 12 (mod 16).

Proof. The proof is trivial and follows directly from Lemma 3.2, using the formula D(pk) =

2pk − σ(pk).

We now compute the congruence class for the sum of the aliquot divisors of the Euler com-
ponent pk.

Lemma 3.4. Suppose that n = pkm2 is an odd perfect number with special prime p.

1. Suppose that exactly one of the following conditions hold:

(a) p ≡ k ≡ 1 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 1 (mod 16)
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(c) p ≡ 9 (mod 16), k ≡ 1 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 1 (mod 16)

It follows that s(pk) ≡ 1 (mod 16).

2. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 5 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 13 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 5 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 13 (mod 16)

It follows that s(pk) ≡ 5 (mod 16).

3. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 9 (mod 16)

(b) p ≡ 5 (mod 16), k ≡ 9 (mod 16)

(c) p ≡ k ≡ 9 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 9 (mod 16)

It follows that s(pk) ≡ 9 (mod 16).

4. Suppose that exactly one of the following conditions hold:

(a) p ≡ 1 (mod 16), k ≡ 13 (mod 16)

(b) p ≡ k ≡ 5 (mod 16)

(c) p ≡ 9 (mod 16), k ≡ 13 (mod 16)

(d) p ≡ 13 (mod 16), k ≡ 5 (mod 16)

It follows that s(pk) ≡ 13 (mod 16).

Proof. The proof is trivial and follows directly from Lemma 3.3, using the formula
s(pk) = pk −D(pk).

Lemma 3.5. Suppose that n = pkm2 is an odd perfect number with special prime p.
1. If σ(m2) ≡ 1 (mod 8), then D(m2) ≡ 1 (mod 8).

2. If σ(m2) ≡ 3 (mod 8), then D(m2) ≡ 7 (mod 8).

3. If σ(m2) ≡ 5 (mod 8), then D(m2) ≡ 5 (mod 8).

4. If σ(m2) ≡ 7 (mod 8), then D(m2) ≡ 3 (mod 8).

Proof. The proof is trivial and follows directly from the fact that m2 ≡ 1 (mod 8) (since m is
odd), using the underlying assumptions and the formula D(m2) = 2m2 − σ(m2).

Lemma 3.6. Suppose that n = pkm2 is an odd perfect number with special prime p.
1. If σ(m2) ≡ 1 (mod 8), then s(m2) ≡ 0 (mod 8).

2. If σ(m2) ≡ 3 (mod 8), then s(m2) ≡ 2 (mod 8).

3. If σ(m2) ≡ 5 (mod 8), then s(m2) ≡ 4 (mod 8).

4. If σ(m2) ≡ 7 (mod 8), then s(m2) ≡ 6 (mod 8).

Proof. The proof is trivial and follows directly from Lemma 3.5, using the formula s(m2) =

m2 −D(m2).
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We are now ready to prove our main results.

Theorem 3.7. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying
σ(m2) ≡ 1 (mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ k ≡ 1 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 13 (mod 16)

3. p ≡ k ≡ 9 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 5 (mod 16)

Proof. Let n = pkm2 be an odd perfect number with special prime p, satisfying σ(m2) ≡ 1

(mod 8). By Lemma 3.1, p ≡ k (mod 8) holds.
We now consider each of the resulting possible congruences for p and k modulo 16:

1. p ≡ k ≡ 1 (mod 16)

2. p ≡ 1 (mod 16), k ≡ 9 (mod 16)

3. p ≡ k ≡ 5 (mod 16)

4. p ≡ 5 (mod 16), k ≡ 13 (mod 16)

5. p ≡ 9 (mod 16), k ≡ 1 (mod 16)

6. p ≡ k ≡ 9 (mod 16)

7. p ≡ 13 (mod 16), k ≡ 5 (mod 16)

8. p ≡ k ≡ 13 (mod 16)

We shall show that no integer solutions to Equation (∗) exist for the second, third, fifth and
eighth cases. Notice that the right-hand side of Equation (∗) is odd. (Furthermore, it is congruent
to 1 modulo 8.)

First, suppose that p ≡ 1 (mod 16), k ≡ 9 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8

(mod 16). By Lemma 3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 9 (mod 16). By
Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from Equation (∗) we obtain (symbolically)

2(8a1 + 1)(8b1) = (8x1 + 1)(16c1 + 8)(16d1 + 9)

which does not have any integer solutions.
Next, suppose that p ≡ k ≡ 5 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16). By

Lemma 3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 13 (mod 16). By Lemma 3.6,
s(m2) ≡ 0 (mod 8). Thus, from Equation (∗) we obtain (symbolically)

2(8a2 + 1)(8b2) = (8x2 + 1)(16c2 + 8)(16d2 + 13)

which does not have any integer solutions.
Now, suppose that p ≡ 9 (mod 16), k ≡ 1 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8

(mod 16). By Lemma 3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 1 (mod 16). By
Lemma 3.6, s(m2) ≡ 0 (mod 8). Thus, from Equation (∗) we obtain (symbolically)

2(8a3 + 1)(8b3) = (8x3 + 1)(16c3 + 8)(16d3 + 1)

which does not have any integer solutions.
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Finally, suppose that p ≡ k ≡ 13 (mod 16) holds. By Lemma 3.3, D(pk) ≡ 8 (mod 16).
By Lemma 3.5, D(m2) ≡ 1 (mod 8). By Lemma 3.4, s(pk) ≡ 5 (mod 16). By Lemma 3.6,
s(m2) ≡ 0 (mod 8). Thus, from Equation (∗) we obtain (symbolically)

2(8a4 + 1)(8b4) = (8x4 + 1)(16c4 + 8)(16d4 + 5)

which does not have any integer solutions.
It can be double-checked that the other cases yield potential solutions, and do not result to a

contradiction.
This concludes the proof.

Theorem 3.8. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying
σ(m2) ≡ 3 (mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 13 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 1 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 5 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 9 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise
for the interested reader.

Theorem 3.9. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying
σ(m2) ≡ 5 (mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 9 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 5 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 1 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 13 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise
for the interested reader.

Theorem 3.10. Suppose that n = pkm2 is an odd perfect number with special prime p satisfying
σ(m2) ≡ 7 (mod 8). This implies that exactly one of the following conditions hold:

1. p ≡ 1 (mod 16), k ≡ 13 (mod 16)

2. p ≡ 5 (mod 16), k ≡ 1 (mod 16)

3. p ≡ 9 (mod 16), k ≡ 5 (mod 16)

4. p ≡ 13 (mod 16), k ≡ 9 (mod 16)

Proof. The proof of this theorem is very similar to that of Theorem 3.7, and is left as an exercise
for the interested reader.

Remark 3.11. To summarize, Theorem 3.7, Theorem 3.8, Theorem 3.9, and Theorem 3.10 just
state collectively that if n = pkm2 is an odd perfect number with special prime p, then
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1. σ(m2) ≡ 1 (mod 8) holds only if p+ k ≡ 2 (mod 16).

2. σ(m2) ≡ 3 (mod 8) holds only if p− k ≡ 4 (mod 16).

3. σ(m2) ≡ 5 (mod 8) holds only if p+ k ≡ 10 (mod 16).

4. σ(m2) ≡ 7 (mod 8) holds only if p− k ≡ 4 (mod 16).

4 Applications

Let n = pkm2 be an odd perfect number with special prime p, and let σ(m2)/pk be a square.
Since σ(m2)/pk is odd, it follows that σ(m2)/pk ≡ 1 (mod 4). But it is known that p ≡ k ≡ 1

(mod 4). In particular, we know that pk ≡ 1 (mod 4). This implies that σ(m2) ≡ 1 (mod 4), if
σ(m2)/pk is a square. By Theorem 1.1, we infer that p ≡ k (mod 8).

Moreover, Broughan, Delbourgo, and Zhou prove in [1, Lemma 8, page 7] that if σ(m2)/pk

is a square, then k = 1 holds.
Thus, under the assumption that σ(m2)/pk is a square, we have

p ≡ k = 1 (mod 8).

Remark 4.1. Let n = pkm2 be an odd perfect number with special prime p.
Note that if

σ(m2)

pk
=

m2

σ(pk)/2

is a square, then k = 1 and σ(pk)/2 = (p+ 1)/2 is also a square.
The possible values for the special prime satisfying p < 100 and p ≡ 1 (mod 8) are 17, 41,

73, 89, and 97. For each of these values:

p1 + 1

2
=

17 + 1

2
= 9 = 32.

p2 + 1

2
=

41 + 1

2
= 21, which is not a square.

p3 + 1

2
=

73 + 1

2
= 37, which is not a square.

p4 + 1

2
=

89 + 1

2
= 45, which is not a square.

p5 + 1

2
=

97 + 1

2
= 49 = 72.

A quick way to rule out 41, 73 and 89, as remarked by Ochem [12] over at Mathematics
StackExchange, is as follows: “If (p + 1)/2 is an odd square, then (p + 1)/2 ≡ 1 (mod 8), so
that p ≡ 1 (mod 16). This rules out 41, 73, and 89.”

So we are now in the following situation: Assuming σ(m2)/pk is a square, we have σ(m2) ≡ 1

(mod 4) and p ≡ k = 1 (mod 8).
Adjusting to account for σ(m2) modulo 8 and for p, k modulo 16, we obtain either

σ(m2) ≡ 1 (mod 8) and p ≡ 1 (mod 16)
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or
σ(m2) ≡ 5 (mod 8) and p ≡ 9 (mod 16),

from Remark 3.11. Furthermore, we know by Remark 4.1 that if σ(m2)/pk is a square, then
p ≡ 1 (mod 16).

This implies that the lowest possible value for the special prime p is 17.
We state this result as our next theorem.

Theorem 4.2. Suppose that n = pkm2 is an odd perfect number with special prime p. If
σ(m2)/pk is a square, then σ(m2) ≡ 1 (mod 8) and p ≡ 1 (mod 16). It follows that p ≥ 17.

5 Evolution of the proof of a conjecture

Additional tools are required if we are to push the lower bound for p (when σ(m2)/pk is a square)
from 17 onwards.

On the other hand, we also know that the equation

gcd(m2, σ(m2)) =
σ(m2)

pk
=

2m2

σ(pk)
=
D(m2)

s(pk)
=

2s(m2)

D(pk)

holds, which is actually an identity.
Also, we have

gcd(m2, σ(m2)) =
σ(m2)

pk
=
D(m2)

s(pk)
=

(p− 1)D(m2)

pk − 1

from which we obtain

gcd(m2, σ(m2)) =
σ(m2)− (p− 1)D(m2)

pk − (pk − 1)
= 2(1− p)m2 + pσ(m2)

and this last equation holds unconditionally. Finally, when σ(m2)/pk is a square, then as dis-
cussed in [1] (Lemma 8, page 7), it follows that k = 1, so that the odd perfect number n = pkm2

can be written in the form

n =
p(p+ 1)

2
·D(m2),

where both (p+1)/2 andD(m2) are squares. Since k = 1, then we consider whether it is possible
that

2m2 − σ(m2) = D(m2) =
p+ 1

2
so that, solving for p, we obtain

p = 4m2 − 2σ(m2)− 1.

Substituting this value in the other equation containing p:

2m2 − σ(m2) = pσ(m2)− 2(p− 1)m2

2m2 − σ(m2) =

(
4m2 − 2σ(m2)− 1

)
σ(m2)− 2

(
4m2 − 2σ(m2)− 2

)
m2

2m2 − σ(m2) = 4m2σ(m2)− 2

(
σ(m2)

)2

− σ(m2)− 4

(
2m2 − σ(m2)− 1

)
m2,

which unfortunately, even after further simplification, does not lead to a contradiction.
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Nonetheless, we predict that:

Conjecture 5.1. Suppose that n = pkm2 is an odd perfect number with special prime p. If
σ(m2)/pk is a square, then

D(m2) 6= p+ 1

2
.

Remark 5.2. We end this section with some remarks about conditions which follow from assum-
ing the negation of Conjecture 5.1.

First and foremost, we have

σ(m2)

p
= D(m2) =

m2

(p+ 1)/2
=
p+ 1

2
,

which implies that the odd perfect number n = pkm2 takes the form

n = p

(
p+ 1

2

)2

= (2m− 1)m2.

Notice that we then have the equations

σ

((
p+ 1

2

)2
)

= σ(m2) = pD(m2) =
p(p+ 1)

2

and inequalities

p(p+ 1)

2
= σ

((
p+ 1

2

)2
)
<

(
σ

(
p+ 1

2

))2

≤ (p− 1)2,

where we have used the inequality σ((p + 1)/2) ≤ p − 1 (from the line immediately preceding
the statement of Theorem 4 in page 5 of Cohen and Sorli’s paper [4]).

This results in the trivial lower bound p ≥ 5 - hence, still no contradiction, at this point.

Proof. As this article was about to be submitted to NNTDM, the authors realized how to prove
Conjecture 5.1.

First, we need the following lemma, proved in https://math.stackexchange.com/
questions/3121498: If n = pkm2 is an odd perfect number with special prime p, then
m2 − pk is not a square.

We reproduce the proof of the lemma in the following form here: If n = pkm2 is an odd
perfect number with special prime p, then m2 − pk is not a square if σ(m2)/pk is a square.

Let pkm2 be an odd perfect number with special prime p. Then p ≡ k ≡ 1 (mod 4) and
gcd(p,m) = 1.

By Pomerance et al. [5], we know that pk < m2, so that m2 − pk is a positive integer. Also,
since m2 is a square and p ≡ 1 (mod 4), then

m2 − pk ≡ 1− 1 ≡ 0 (mod 4).

Suppose that pkm2 is an odd perfect number with special prime p, and that m2 − pk = s2, for
some integer s ≥ 2.
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Then
m2 − s2 = pk = (m+ s)(m− s)

so that we obtain pk−v = m+ s

pv = m− s

where v is a positive integer satisfying 0 ≤ v ≤ (k − 1)/2. It follows that we have the systempk−v + pv = pv(pk−2v + 1) = 2m

pk−v − pv = pv(pk−2v − 1) = 2s

Since p is a prime satisfying p ≡ 1 (mod 4) and gcd(p,m) = 1, from the first equation it
follows that v = 0, so that we obtain pk + 1 = 2m

pk − 1 = 2s

which yields

m =
pk + 1

2
< pk.

Lastly, note that the inequality p < m has been proved by Brown (2016) [2], Dris (2017) [7], and
Starni (2018) [15], so that we are faced with the inequality

p < m < pk.

This implies that k > 1.
Now assume to the contrary that D(m2) = (p+ 1)/2 and σ(m2)/pk is a square.
Then we obtain the following form for the odd perfect number n = pkm2 = pm2:

n = (2m− 1)m2.

It follows that

m2 − pk = m2 − p = m2 − (2m− 1) = m2 − 2m+ 1 = (m− 1)2

is a square. By our lemma, this implies that k > 1.
This clearly contradicts σ(m2)/pk being a square, since it implies k = 1. QED

We end this section with a corollary to the proof of Conjecture 5.1:

Corollary 5.2.1. Suppose that n = pkm2 is an odd perfect number with special prime p. If
σ(m2)/pk is a square, then D(m2) > (p+ 1)/2.

Proof. The proof proceeds by contradiction and uses the inequality p < m [2, 7, 15].
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5.1 A simplified approach to Conjecture 5.1

We include this subsection here for the sake of completion. (The authors realized these results
after this paper was accepted by NNTDM, but prior to publication.)

First, we state and prove some quick lemmas.

Lemma 5.3. Suppose that n = pkm2 is an odd perfect number with special prime p. If the
equation

D(m2) =
p+ 1

2
holds, then k = 1.

Proof. Let n = pkm2 be an odd perfect number with special prime p. Suppose that the equation

D(m2) =
p+ 1

2

holds. Dividing through by s(pk), we get

D(m2)

s(pk)
=

(p+ 1)(p− 1)

2(pk − 1)
.

But we know that
D(m2)

s(pk)
=
σ(m2)

pk
,

and that σ(m2)/pk ≥ 3 by Dris (2008) [6]. Therefore, we get the inequality

3 ≤ (p+ 1)(p− 1)

2(pk − 1)
,

which implies that
6(pk − 1) ≤ p2 − 1.

Since the prime p satisfies p ≡ k ≡ 1 (mod 4), then pk ≥ 5, which means that

pk − 1 < 6(pk − 1) ≤ p2 − 1.

This gives k < 2, from which we conclude that k = 1 (since k must be a positive integer satisfying
k ≡ 1 (mod 4)).

Lemma 5.4. Suppose that n = pkm2 is an odd perfect number with special prime p. If k = 1,
then the inequation

D(m2) 6= p+ 1

2
holds.

Proof. Let n = pkm2 be an odd perfect number with special prime p. Suppose that k = 1.
Assume to the contrary that the equation

D(m2) =
p+ 1

2

20



holds. Dividing through by m2, we get

2− σ(m2)

m2
=
D(m2)

m2
=
p+ 1

2m2
.

But since k = 1 is true, then we have

σ(m2)

m2
=

2pk

σ(pk)
=

2p

p+ 1
.

Substituting, we obtain

p+ 1

2m2
=
D(m2)

m2
= 2− σ(m2)

m2
= 2− 2p

p+ 1
=

2

p+ 1
,

from which we finally get

m2 =

(
p+ 1

2

)2

.

This implies that

m =
p+ 1

2
< p,

which contradicts the result p < m by Brown (2016) [2], Dris (2017) [7], and Starni (2018)
[15].

Clearly, Lemma 5.3 and Lemma 5.4 together give a proof for the following theorem. (Note
that this theorem proves and is stronger than Conjecture 5.1.)

Theorem 5.5. Suppose that n = pkm2 is an odd perfect number with special prime p. The
inequation

D(m2) 6= p+ 1

2
holds.

Proof. Let n = pkm2 be an odd perfect number with special prime p. Assume to the contrary
that

D(m2) =
p+ 1

2
.

By Lemma 5.3, we have the implication

D(m2) =
p+ 1

2
=⇒ k = 1.

It follows that k = 1. Furthermore, by Lemma 5.4, we get

k = 1 =⇒ D(m2) 6= p+ 1

2
.

This implies that

D(m2) 6= p+ 1

2
,

which contradicts our initial assumption that

D(m2) =
p+ 1

2
.

We therefore conclude that
D(m2) 6= p+ 1

2
.
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The following theorem is a stronger version of Corollary 5.2.1.

Theorem 5.6. Suppose that n = pkm2 is an odd perfect number with special prime p. The
inequality

D(m2) >
p+ 1

2
holds.

Proof. Let n = pkm2 be an odd perfect number with special prime p. Assume to the contrary
that

D(m2) ≤ p+ 1

2
.

By Theorem 5.5, we have

D(m2) 6= p+ 1

2
.

It follows that
D(m2) <

p+ 1

2
.

Dividing through by m2, we get

2− σ(m2)

m2
<
p+ 1

2m2
.

But σ(m2)/m2 is bounded from above as follows:

σ(m2)

m2
≤ 2p

p+ 1
.

This implies that
2

p+ 1
= 2− 2p

p+ 1
≤ 2− σ(m2)

m2
<
p+ 1

2m2
.

It follows that

m2 <

(
p+ 1

2

)2

from which we conclude that
m <

p+ 1

2
< p,

which contradicts the result p < m by Brown (2016) [2], Dris (2017) [7], and Starni (2018) [15].
We therefore conclude that

D(m2) >
p+ 1

2
.

6 Further research

It is currently not clear to the authors how to use Theorem 1.2 to further simplify and/or unify the
presentation of the congruences in Remark 3.11 (where we have considered σ(m2) modulo 8),
similar to those used by Chen and Luo in their theorem (where they considered σ(m2) modulo
4).

Likewise, the authors do not currently see a quick way to settle the following conjecture,
which is a generalization of Theorem 5.5:
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Conjecture 6.1. Suppose that n = pkm2 is an odd perfect number with special prime p. The
inequation

D(m2)

s(pk)
6= σ(pk)

2

holds.

We leave these problems to other researchers for resolution.
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