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1 Introduction

Let n ≥ 1 be a positive integer, and denote by ϕ(n) the Euler totient function. Let d(n) denote
the number of divisors of n. Put ϕ(1) = d(1) = 1. It is well-known that for n > 1 having the
prime factorization n = pa11 . . . parr one has

ϕ(n) = pa1−11 . . . par−1r (p1 − 1) . . . (pr − 1) = n.
∏
p|n

(
1− 1

p

)
, (1)

where p runs through all prime divisors of n, and p1, . . . , pr are distinct primes, with a1, . . . ,

ar ≥ 1 integers. It is also well-known that

d(n) = (a1 + 1) . . . (ar + 1). (2)

In paper [3], we have proved the following inequality

ϕ(n) + d(n) ≤ n+ 1, (3)

for n ≥ 2, with equality only for n = 4 or n being prime.
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In fact, (3) was a consequence of the stronger relation (see [3]):

ϕ(n) + d(n) ≤ n, (4)

for any n 6= 4, different from prime.
However, the cases of equality for (4) are not studied in [3]. The aim of this note is to consider

also the case of equality. Certain related new inequalities will be pointed out, too.

2 Main results

Theorem 1. The equation ϕ(n) + d(n) = n has the only solutions n = 8 and n = 9.

Proof. Case 1. Let n be an even number. Then it is well-known that ϕ(n) ≤ n

2
.Using the relation

d(n) < 2
√
n (see, e.g., [1]), we get

ϕ(n) + d(n) <
n

2
+ 2
√
n ≤ n

if 2
√
n ≤ n

2
, i.e., n ≥ 16. Now, for n < 16 and even, a simple verification shows that (4) holds

true with a strict inequality, except for n = 8, when there is equality. Therefore, the only even
solution except for n = 4 is n = 8.
Case 2. Let n be odd and not a prime. Suppose that ϕ(n) + d(n) = n holds true. As for n ≥ 3,
ϕ(n) is even, then d(n) should be an odd number. But from (2) it is immediate that n must be a
perfect square, i.e., n = m2. As ϕ(m2) = mϕ(m), the equality becomes

mϕ(m) + d(m2) = m2. (5)

Equality (5) implies that m should be a divisor of d(m2), i.e.,

d(m2) = k.m, (6)

for certain, k ≥ 1. As d(N) < 2
√
N , we get d(m2) < 2m, implying that one must have

k = 1 in (6). Equation d(m2) = m can be also written as

(2α1 + 1) . . . (2αs + 1) = qα1
1 . . . qαss , (7)

where m = qα1
1 . . . qαss is the prime factorization of m.

Now, as m is odd, let q1 be the least odd prime factor of m, with q1 ≥ 3. Since the inequality
3α1 ≥ 2α1+1 holds true, with equality only for α1 = 1, and as 5α2 ≥ 2α2+1, etc., we must have
m = 3. This finally gives n = m2 = 9, as the single odd solution of the equation. This finishes
the proof of Theorem 1.

Remark 1. From Theorem 1 and relation (4) it follows that

ϕ(n) + d(n) < n, (8)

for any n 6= 4, 8, 9 and n being composite.
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Remark 2. From the proof of Theorem 1 we get that (8) holds true for any even number, distinct
from 2, 4, 8, and that (8) holds true for any odd composite number distinct from 9.

Remark 3. Another proof of (4) and Theorem 1 can be obtained by the use of a computer and
some known inequalities. This is based on the following lemmas.

Lemma 1. When n > 1 is composite, then

ϕ(n) ≤ n−
√
n. (9)

Lemma 2. For any n ≥ 1262 one has

d(n) <
√
n. (10)

Lemma 1 is well-known (see, e.g., [1]), while (10) is proved in [2].
Now, by (9) and (10) we get that ϕ(n) + d(n) < n for any n ≥ 1262, n being composite.

By a computer search for n ≤ 1261, one can deduce (4) and obtain the only solutions n = 8 and
n = 9.

Remark 4. Thus, for any n ≥ 1262 composite, we get the following refinement of (4):

ϕ(n) ≤ n−
√
n < n− d(n)., (11)

Remark 5. The inequality (11) can be further improved for squarefull numbers, i.e., for numbers
with the property: if pa||n (where pa is the greatest prime power of a prime dividing n) , then
a ≥ 2.

Indeed, this is based on the following relation (see [4]):

ϕ(n) ≤ n− n

γ(n)
, (12)

where γ(n) =
∏
p|n
p is the product of the prime divisors of n.

Now, it is immediate that, n

γ(n)
≥
√
n, or equivalently γ(n) ≤

√
n, i.e., p1 . . . pr ≤ p

α1
2
1 . . . p

αr
2
r .

This is valid, when α1 ≥ 2, . . . , αr ≥ 2, i.e., when n is squarefull.
Thus we get: when n ≥ 1262 is a squarefull number, one has

ϕ(n) ≤ n− n

γ(n)
≤ n−

√
n < n− d(n).

Remark 6. This paper has been motivated by [3]. The results are quite strong to offer the
solutions to other equations, too. For example, let ω(n) denote the number of distinct prime
factors of n > 1. Let d∗(n) denote the number of unitary divisors of n (see [4]). Then, as
d∗(n) ≥ ω(n) + 1, we get, by relation (4) that:

n+ 1 ≥ ϕ(n) + d(n) ≥ ϕ(n) + d∗(n) ≥ ϕ(n) + ω(n) + 1.

Thus, particularly, the equation
ϕ(n) + ω(n) = n

has the only solutions as n = prime. Many other equations are studied in our paper [5].
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