Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 3, 1–4 DOI: 10.7546/nntdm.2020.26.3.1-4

On the equation $\varphi(n) + d(n) = n$ and related inequalities

József Sándor

Department of Mathematics, Babeş-Bolyai University Cluj-Napoca, Romania e-mail: jsandor@math.ubbcluj.ro

Received: 19 November 2020

Accepted: 10 July 2020

Abstract: We study the equation $\varphi(n) + d(n) = n$, and prove related new inequalities. **Keywords:** Arithmetic function, Inequality. **2010 Mathematics Subject Classification:** 11A25.

1 Introduction

Let $n \ge 1$ be a positive integer, and denote by $\varphi(n)$ the Euler totient function. Let d(n) denote the number of divisors of n. Put $\varphi(1) = d(1) = 1$. It is well-known that for n > 1 having the prime factorization $n = p_1^{a_1} \dots p_r^{a_r}$ one has

$$\varphi(n) = p_1^{a_1 - 1} \dots p_r^{a_r - 1}(p_1 - 1) \dots (p_r - 1) = n \prod_{p \mid n} \left(1 - \frac{1}{p} \right), \tag{1}$$

where p runs through all prime divisors of n, and p_1, \ldots, p_r are distinct primes, with $a_1, \ldots, a_r \ge 1$ integers. It is also well-known that

$$d(n) = (a_1 + 1) \dots (a_r + 1).$$
(2)

In paper [3], we have proved the following inequality

$$\varphi(n) + d(n) \le n + 1,\tag{3}$$

for $n \ge 2$, with equality only for n = 4 or n being prime.

In fact, (3) was a consequence of the stronger relation (see [3]):

$$\varphi(n) + d(n) \le n,\tag{4}$$

for any $n \neq 4$, different from prime.

However, the cases of equality for (4) are not studied in [3]. The aim of this note is to consider also the case of equality. Certain related new inequalities will be pointed out, too.

2 Main results

Theorem 1. The equation $\varphi(n) + d(n) = n$ has the only solutions n = 8 and n = 9.

Proof. Case 1. Let n be an even number. Then it is well-known that $\varphi(n) \leq \frac{n}{2}$. Using the relation $d(n) < 2\sqrt{n}$ (see, e.g., [1]), we get

$$\varphi(n) + d(n) < \frac{n}{2} + 2\sqrt{n} \le n$$

if $2\sqrt{n} \le \frac{n}{2}$, i.e., $n \ge 16$. Now, for n < 16 and even, a simple verification shows that (4) holds true with a strict inequality, except for n = 8, when there is equality. Therefore, the only even solution except for n = 4 is n = 8.

<u>Case 2.</u> Let *n* be odd and not a prime. Suppose that $\varphi(n) + d(n) = n$ holds true. As for $n \ge 3$, $\varphi(n)$ is even, then d(n) should be an odd number. But from (2) it is immediate that *n* must be a perfect square, i.e., $n = m^2$. As $\varphi(m^2) = m\varphi(m)$, the equality becomes

$$m\varphi(m) + d(m^2) = m^2. \tag{5}$$

Equality (5) implies that m should be a divisor of $d(m^2)$, i.e.,

$$d(m^2) = k.m, (6)$$

for certain, $k \ge 1$. As $d(N) < 2\sqrt{N}$, we get $d(m^2) < 2m$, implying that one must have k = 1 in (6). Equation $d(m^2) = m$ can be also written as

$$(2\alpha_1 + 1)\dots(2\alpha_s + 1) = q_1^{\alpha_1}\dots q_s^{\alpha_s},$$
(7)

where $m = q_1^{\alpha_1} \dots q_s^{\alpha_s}$ is the prime factorization of m.

Now, as m is odd, let q_1 be the least odd prime factor of m, with $q_1 \ge 3$. Since the inequality $3^{\alpha_1} \ge 2\alpha_1 + 1$ holds true, with equality only for $\alpha_1 = 1$, and as $5^{\alpha_2} \ge 2\alpha_2 + 1$, etc., we must have m = 3. This finally gives $n = m^2 = 9$, as the single odd solution of the equation. This finishes the proof of Theorem 1.

Remark 1. From Theorem 1 and relation (4) it follows that

$$\varphi(n) + d(n) < n,\tag{8}$$

for any $n \neq 4, 8, 9$ and n being composite.

Remark 2. From the proof of Theorem 1 we get that (8) holds true for any even number, distinct from 2, 4, 8, and that (8) holds true for any odd composite number distinct from 9.

Remark 3. Another proof of (4) and Theorem 1 can be obtained by the use of a computer and some known inequalities. This is based on the following lemmas.

Lemma 1. When n > 1 is composite, then

$$\varphi(n) \le n - \sqrt{n}.\tag{9}$$

Lemma 2. For any $n \ge 1262$ one has

$$d(n) < \sqrt{n}.\tag{10}$$

Lemma 1 is well-known (see, e.g., [1]), while (10) is proved in [2].

Now, by (9) and (10) we get that $\varphi(n) + d(n) < n$ for any $n \ge 1262$, n being composite. By a computer search for $n \le 1261$, one can deduce (4) and obtain the only solutions n = 8 and n = 9.

Remark 4. Thus, for any $n \ge 1262$ composite, we get the following refinement of (4):

$$\varphi(n) \le n - \sqrt{n} < n - d(n).,\tag{11}$$

Remark 5. The inequality (11) can be further improved for squarefull numbers, i.e., for numbers with the property: if $p^a || n$ (where p^a is the greatest prime power of a prime dividing n), then $a \ge 2$.

Indeed, this is based on the following relation (see [4]):

$$\varphi(n) \le n - \frac{n}{\gamma(n)},\tag{12}$$

where $\gamma(n) = \prod_{p|n} p$ is the product of the prime divisors of n.

Now, it is immediate that, $\frac{n}{\gamma(n)} \ge \sqrt{n}$, or equivalently $\gamma(n) \le \sqrt{n}$, i.e., $p_1 \dots p_r \le p_1^{\frac{\alpha_1}{2}} \dots p_r^{\frac{\alpha_r}{2}}$. This is valid, when $\alpha_1 \ge 2, \dots, \alpha_r \ge 2$, i.e., when n is squarefull.

Thus we get: when $n \ge 1262$ is a squarefull number, one has

$$\varphi(n) \le n - \frac{n}{\gamma(n)} \le n - \sqrt{n} < n - d(n).$$

Remark 6. This paper has been motivated by [3]. The results are quite strong to offer the solutions to other equations, too. For example, let $\omega(n)$ denote the number of distinct prime factors of n > 1. Let $d^*(n)$ denote the number of unitary divisors of n (see [4]). Then, as $d^*(n) \ge \omega(n) + 1$, we get, by relation (4) that:

$$n+1 \ge \varphi(n) + d(n) \ge \varphi(n) + d^*(n) \ge \varphi(n) + \omega(n) + 1.$$

Thus, particularly, the equation

$$\varphi(n) + \omega(n) = n$$

has the only solutions as n = prime. Many other equations are studied in our paper [5].

References

- [1] Sándor, J., Mitrinović, D., & Crstici, B. (2005). *Handbook of Number Theory, Vol. I*, Springer.
- [2] Sándor, J., & Kovács, L. (2008). A note on the arithmetical functions d(n) and $\sigma(n)$. Octagon Math. Mag., 16 (1), 270–274.
- [3] Sándor, J. (2010). Two arithmetic inequalities. *Advanced Studied Contemporary Mathematics*, 20 (2), 197–202.
- [4] Sándor, J. (2014). On certain inequalities for σ , φ , ψ and related functions. *Notes on Number Theory and Discrete Mathematics*, 20 (2), 52–60.
- [5] Sándor, J. (1989). Some diophantine equations for particular arithmetic functions. *Seminarul de Teoria Stucturilor*, 53, 1–10 (in Romanian).