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Department of Mathematics, Faculty of Arts and Sciences

Kastamonu University, Kastamonu 37150, Turkey
e-mail: ahmetdasdemir37@gmail.com

Received: 3 February 2020 Revised: 23 April 2020 Accepted: 24 April 2020

Abstract: This study shows that the generalized order-k Pell–Lucas and Modified Pell numbers
can be expressed in terms of the well-known Fibonacci numbers. Certain n-square Hessenberg
matrices with permanents equal to the Fibonacci numbers are defined. These Hessenberg
matrices are then extended to super-diagonal (0, 1, 2)-matrices. In particular, the permanents of
the super-diagonal matrices are shown to equal the components of the generalized order-k
Pell–Lucas and Modified Pell numbers, and also their sums. In addition, two computer
algorithms regarding our results are composed.
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1 Introduction

The well-known Fibonacci numbers {Fn}∞n=0 are defined by the recurrence relation

Fn+1 = Fn + Fn−1, n > 1 (1)

with initial conditions F0 = 0 and F1 = 1. The Lucas numbers {Ln}∞n=0 are defined by the
same recurrence relation but with different initial condition (L0 = 2 and L1 = 1). The Fibonacci
numbers have many properties and are exploited in many applications. Well-known systematic
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investigations of the Fibonacci and Lucas sequences are presented in [7, 8]. The Pell numbers
{Pn}∞n=0 form another sequence with the recurrence relation

Pn = 2Pn−1 + Pn−2, n > 1 (2)

starting from P0 = 0 and P1 = 1. The classical Pell–Lucas {Qn}∞n=0 and the Modified Pell
{qn}∞n=0 numbers are defined by the same recurrence but with initial terms Q0 = Q1 = 2 and
q0 = q1 = 1 respectively. It should be noted that the Pell–Lucas and Modified Pell numbers
are related through Qn = 2qn (see the reference in [5]). Therefore, the known properties of the
Pell–Lucas numbers can also be written for the Modified Pell numbers. A researcher studying
one sequence will inevitably become familiar with the other.

Many investigations of Fibonacci and Pell numbers by numerous researchers have been pub-
lished. Horadam considered many properties of the usual and Modified Pell numbers [4, 5], and
Ercolano derived the generating matrices of Pell sequences [3]. Daşdemir investigated certain
properties of the Pell, Pell–Lucas and Modified Pell numbers by a matrix approach [1]. Em-
ploying various Hessenberg matrices, Kaygısız and Şahin presented certain determinantal and
permanental representations of the generalized order-k Fibonacci numbers [6]. Daşdemir derived
the recurrence relations corresponding to generalizations of the usual Pell–Lucas and Modified
Pell numbers [2].

The present paper presents the generalized order-k Modified Pell and Pell–Lucas numbers in
terms of Fibonacci numbers and obtains their permanental representations using Hessenberg and
super-diagonal matrices. It also derives certain sum formulae from the super-diagonal matrices.

Before presenting our results, we remember that the generalized k-Modified Pell numbers are
defined by Daşdemir [2] as follows:

qin = 2qin−1 + qin−2 + · · ·+ qin−k (3)

with initial conditions

qin =


1, ifn = 0

−1, ifn+ i = 1 and i 6= 1

0, otherwise
for 1− k ≤ n ≤ 0. (4)

Similarly, the generalized order-k Pell–Lucas numbers are defined by the same recurrence relation
but with initial conditions

Qi
n =


2, ifn = 0

−2, ifn+ i = 1 and i 6= 1

0, otherwise
for 1− k ≤ n ≤ 0. (5)

2 Main results

This section presents the main results of the paper, namely, that the generalized order-k Modified
Pell and Pell–Lucas numbers can be represented in terms of the usual Fibonacci numbers. For
this purpose, we first state the following lemma.
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Lemma 2.1. Let 0 6 t; s 6 k. Then

qks+t+1 = F2(s+t+1) − F2(s+t−k) +
s+t−k∑
j=1

F2jF2(s+t−k−j+1). (6)

Proof. First consider the case of s + t < k + 1. From the definition of the generalized order-k
Modified Pell numbers given in [2], we directly obtain

qk1 = F2, qk2 = F4, qk3 = F6, . . . , qkk+1 = F2(k+1). (7)

Now consider the case of s+ t > k + 1. When s+ t = k + 1, Eq. (7) gives

qkk+2 = 2qkk+1 + qkk + · · ·+ qk2 = 2F2(k+1) + F2k + · · ·+ F4. (8)

Monograph [8] gives the famous summation formula comprising Fibonacci terms

n∑
i=1

F2i = F2n+1 − 1. (9)

Substituting Eq. (9) into the recurrence relation (8), we get

qkk+2 = F2(k+1) + F2(k+1) + F2k + · · ·+ F4 + F2 − F2

= F2(k+1) +
k+1∑
i=1

F2i − F2

= F2(k+2) − F2 − F2F2

confirming that Lemma 2.1 is true for the present case. Assuming that Lemma 2.1 also holds in
the case k+2 6 s+ t 6 2k− 1, we must validate the lemma for the case s+ t = 2k. Under this
assumption,

qk2k = F4k − F2k−2 −
k−1∑
j=1

F2jF2(k−j)

can be written. Hence, it is seen that

qk2k+1 = 2qk2k + qk2k−1 + · · ·+ qkk+2 + qkk+1

= 2

{
F4k − F2(k−1) −

k−1∑
j=1

F2jF2(k−j)

}
+

{
F2(2k−1) − F2(k−2) −

k−2∑
j=1

F2jF2(k−1−j)

}

+ · · ·+

{
F2(k+2) − F2 −

1∑
j=1

F2jF2(2−j)

}
+ F2(k+1)

= F4k − F2(k−1) −
k−1∑
j=1

F2jF2(k−j) +
2k∑

j=k+1

F2j −
k−1∑
j=1

F2j −
k−1∑
i=1

k−i∑
j=1

F2iF2j

= F4k − F2(k−1) −
k−1∑
j=1

F2jF2(k−j) +
2k∑

j=k+1

F2j −
k−1∑
j=1

F2j −
k−1∑
i=1

F2i

(
F2(k−i)+1 − 1

)
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= F4k − F2(k−1) −
k−1∑
j=1

F2jF2(k−j) +
2k∑

j=k+1

F2j −
k−1∑
i=1

F2i

(
F2(k−i+1) − F2(k−i)

)
= F4k − F2(k−1) +

2k∑
j=k+1

F2j −
k−1∑
j=1

F2jF2(k−j+1)

= F4k − F2(k−1) +
2k∑
j=1

F2j −
k∑

j=1

F2j −
k−1∑
j=1

F2jF2(k−j+1)

= F4k+2 − F2k −
k∑

j=1

F2jF2(k−j+1),

as desired. This completes the proof.

Note that the generalized order-k Pell–Lucas numbers can be investigated by a similar
approach. The author of [2] found that the generalized order-k Modified Pell and Pell–Lucas
numbers are interrelated through

Qn
i = 2qn

i, (10)

where 1 6 i 6 k and n > 0. Hence, the statement

Qk
s+t+1 = 2

(
F2(s+t+1) − F2(s+t−k) +

s+t−k∑
j=1

F2jF2(s+t−k−j+1)

)
(11)

can be given. In addition, we can write

Fn + Ln = 2Fn+1 for n ∈ Z. (12)

Consequently, Eq. (11) can be re-written as a combination of Fibonacci and Lucas numbers.
The main goal of the paper is to derive the generalized order-k Modified Pell and Pell–Lucas

numbers via certain special matrices, namely, certain n-square Hessenberg matrices and super-
diagonal matrices. After defining these matrices, we can obtain many important properties of the
generalized order-k Modified Pell and Pell–Lucas numbers.

First, we introduce a super-diagonal matrix P (k, n) = [pij]n×n, k ≤ n, with entries
p11 = pi+1,i = 1 for 1 ≤ i ≤ n− 1, pii = 2 for 2 ≤ i ≤ n, pij = 1 for i+ 1 ≤ j ≤ i+ k − 1 and
0 otherwise. Mathematically, P (k, n) is given by

P (k, n) =



1 1 1 · · · 1 0 0 · · · 0

1 2 1 · · · 1 1 0 · · · 0

0 1 2 1 · · · 1 0 · · · 0
... 0 1 2 1 · · · 1

. . . ...
0 · · · 0 1 2 1 · · · 1 0
... · · · · · · . . . . . . . . . . . . ... 1

0 · · · · · · · · · 0 1 2 1
...

0 · · · · · · · · · 0 0 1 2 1

0 · · · · · · · · · 0 0 0 1 2


. (13)
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Theorem 2.2. For the super-diagonal (0, 1, 2)-matrix P (k, n) given in (13), we have

perP (k, n) = qkn, n ≥ 1. (14)

Proof. In order to access the proof, we first consider the case of 1 ≤ t ≤ k and k = n. Clearly,
the matrix P (k, n) reduces to P (t, t), in the form of a Hessenberg matrix, which is denoted by
Kt. We can write

perK1 = 1 = F2, perK2 = 3 = F4, perK3 = 8 = F6,

perK4 = 21 = F8, perK5 = 55 = F10, . . . , perKn = F2n.

Hence, from Lemma 2.1, expanding the permanent of the matrix P (t, t) with respect to the last
row, yields

perP (t, t) = 2perKt−1 + perKt−2 + · · ·+ perK1 + 1

= 2F2(t−1) + F2(t−2) + · · ·+ F2 + 1

= F2t−2 + F2t−1 − 1 + 1

= F2t

= qkt .

Now, consider the case of k < n and k + 1 ≤ t ≤ n. When t = k + 1, the permanent of
perP (k, n) is computed as a Laplace expansion of the permanent with respect to the last row, we
get

perP (k, k + 1) = 2perP (k, k) + perP (k, k − 1) + · · ·+ perP (k, 1)

= 2qkk + qkk−1 + · · ·+ qk1

= qkk+1

Assuming that Eq. (14) holds for k + 1 ≤ t ≤ n, we must prove the validity of Theorem 2.2 in
the case of n = t+ 1. We thus have

perP (k, t+ 1) = perP (k, t) + perP (k, t− 1) + · · ·+ perP (k, t− k + 1)

= 2qkt + qkt−1 + · · ·+ qkt−k+1

= qkt+1,

which completes the proof.

As another main result, we define a new super-diagonal (0, 1, 2)-matrix R (k, n) = [rij]n×n,
with r1i = 2 for 2 ≤ i ≤ k, rii = 2 for 1 ≤ i ≤ n, ri+1,i = 1 for 1 ≤ i ≤ n − 1, rij = 1 for
i+ 1 ≤ j ≤ i+ k − 1 and i 6= 1 and 0 otherwise. Clearly,
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R (k, n) =



2 2 2 · · · 2 0 0 · · · 0

1 2 1 · · · 1 1 0 · · · 0

0 1 2 1 · · · 1 0 · · · 0
... 0 1 2 1 · · · 1

. . . ...
0 · · · 0 1 2 1 · · · 1 0
... · · · · · · . . . . . . . . . . . . ... 1

0 · · · · · · · · · 0 1 2 1
...

0 · · · · · · · · · 0 0 1 2 1

0 · · · · · · · · · 0 0 0 1 2


. (15)

We hence obtain the following theorem.

Theorem 2.3. Let R (k, n) take the form of Eq. (15). Then, for n ≥ 1, we have

perR (k, n) = Qk
n. (16)

Proof. It is easily be seen that r1i = 2p1i for 1 6 i 6 n. The following result is then evident from
matrix theory:

perR (k, n) = 2perP (k, n) = 2qkn = Qk
t , (17)

which completes the proof.

3 Computer algorithm

We have presented our fundamental results above. It is well-known that one who studies on
a generalized order-k sequence has three fundamental factors for determining the values of the
sequence, i.e. i, j, and k. However, considering the foregoing results concludes that determining
the permanents of the corresponding super-diagonal matrices P (k, n) and R (k, n) requires both
cumbersome and very tedious computations; further, it can be very difficult to find the terms of
the generalized order-k Modified Pell and Pell–Lucas numbers for larger values of k and n. To
eliminate this obstacle, we, therefore, presented two computer algorithms, which are used for
controlling and computing both the permanents of the mentioned super-diagonal matrices and the
terms of the corresponding generalized sequence, based on the utilization of Mathematica c© 11.2.

In this study, we only considered the case i = k for the results. Consequently, we have two
variables, namely k and n. Nevertheless, we designed the algorithms regarding our generalized
sequences for the case wherein i, j, and k can arbitrarily be chosen so that these programs can
then be used for other problems. Fig. 1 shows a computer algorithm related to the result of
Theorem 2.2, while Fig. 2 exhibits a computer algorithm for the equation of Theorem 2.3.
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Fig. 1. Computer algorithm for the generalized order-k Modified Pell numbers

When the programs are started, we obtain the results regarding the value of the corresponding
sequence, the respective matrix itself, and the permanent of that, respectively, with respect to
the chosen values of k and n. For convenience and readability, in the algorithms, we denoted
by q (k, n) = qn

k the generalized order-k Modified Pell numbers and by Q (k, n) = Qn
k the

generalized order-k Pell–Lucas numbers.

Fig. 2. Computer algorithm for the generalized order-k Pell–Lucas numbers
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4 Conclusions

This study established that the generalized order-k Pell–Lucas and Modified Pell numbers can
be written in terms of the usual Fibonacci numbers. Certain families of the Hessenberg and
super-diagonal matrices were presented. The terms of the generalized order-k Modified Pell and
Pell–Lucas numbers, and also their sums, were obtained through the permanents of the given
super-diagonal matrices.
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