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Abstract: In this paper, we consider generalized Fibonacci quadratics and give solutions of them
under certain conditions. For example, for odd number k&, under condition n="U, ,3 (Vk Vint1) — 4) ,
the equation

na® + (Vin — 2U2D) z — (n+ DU (Vi, +2)) =0

has rational roots.
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1 Introduction
The second order sequence {W,, (a, b; p,q)}, or briefly {W,,} is defined for n > 2 by
W, = an,1 + an727

in which Wy = a, W, = b, where a, b are arbitrary integers and p, q are nonzero integers [1]. The
Binet formula for {W,,} is
W, = Aa" + Bg",

__b—ap _ac—b - 3 >
where A = a—ﬁ’B_ o "B and o, = (pi Vp?+4q) /2.
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In [3,4], E. Kili¢ and P. Stanica derived the following recurrence relation for the sequence
{Wkn} . For n > 2 and a fixed positive integer &,

Win = VilWanon) — (=) Wign_2),
where V, = of + p*. Specifically define the generalized Fibonacci {U,} and Lucas {V,}
sequences as U,, = W,, (0, 1;p, 1), V,, = W, (2, p; p, 1), respectively. Thus;
Ui = ViUkm-1) + (—1)*! Uk(n—2),
Vin = ViVion) + (=D Viua).

The Binet formulas are

kn _ kn
Ulm = i and ‘/Im = akn + Bkn7
a—pf
respectively. The equations
ar’ +br—c = 0, ax’ —br —c=0,
ct’4+br—a = 0, ca’>—br—a=0

have the same discriminant and then, the first one is considered. Rational roots of the quadratic
equation ax? + bz + ¢ = 0 are given under certain conditions.
In [7], the author gave that the solutions of the equation F,x? + Foi1x — F, 9 = 0are —1
and F,, o/ F,,.
In [6], for m € Z%, the author gave the rational solutions of the three equations under
conditions n = Fy, 11 — 1, Fy, 1 3F5,, and Fb,, 1 Fo,,, Tespectively:
nz’ 4+ n+1)zx—(n+2) = 0,
nz®+n+2)x—(n+1) = 0,
ne* +(n—-1)z—(n+1) = 0.
In [5], for n,r € Z™", the authors obtained the solutions of equations
ne’ +(n+r)r—m+2r) = 0,
nz® 4+ n+2r)z—(n+r) = 0,
ne? +(n—r)x—(n+r) = 0.
In this paper, we consider generalized Fibonacci quadratics and give solutions of them under

certain conditions. For example, for odd number £, under condition n = U, ,3 (Vka(4n+1) — 4),

the equation
na® + (Vin — 2U;D) z — (n+ DU (Vi, +2)) =0

has rational roots.

2 Generalized Fibonacci quadratics

Throughout this paper, we denote D = V;*> + 4. We will consider some interesting
quadratics including generalized Fibonacci numbers and give the solutions of them under

.. U2 U? .
conditions 5’“ (4 = ViVian—1)) » fk (ViViants) — 4) and UZ (ViVians1) — 4), respectively.
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Lemma 2.1. For odd number k, we have

Ulgvknvkm + DU Uk = 2U1§Vk’(n+m)7
D

—UpnUkm  if mis odd

Vien Vi, if m is even
Proof. From the Binet formulas of sequences {Uy,} and {Vj,}, we have the desired
identities. u
In [2], the authors determined Pell equations involving the generalized Fibonacci and Lucas

sequences by the following Lemmas:

Lemma 2.2. For odd number k, the integer solutions of Dx? + AU? = y?U} are precisely the
pairs (£Usgn, £Vorn) .

Lemma 2.3. For odd number k, the integer solutions of Dx* — AU? = y?U} are precisely the
pairs (iUk(2n+1)> in(an)) .

Lemma 2.4. For odd number k, the integer solutions of DU? (z* — 4) = y? are precisely the
pairs (£Vorn, £DUsgy, ).

Theorem 2.5. For odd number k, rational solutions to
na® + (nVy +2U7) x — (n = UZ (Vi +2)) =0 (2)
exist if and only if n = %’3 (4 — Vka(M,l)) and they are
Vi D DViUkan-1)

+ .
2 A4=ViViun-1y 20U (4 = ViVian—1))

Proof. The discriminant of (2) is

A=V?+4 (U2 —n)".
Rational solutions of (2) exist if and only if A is a perfect square. Hence,

n2V2+4 (U2 —n)’ = VA2

U2 n\ >
Ppal L — ) =
n° + (Vk Vk)

Thus, the Pythagorean triplet has [n, 2(_7‘;—:(]’3), t} , not necessarily primitive. If we present the
triplet as
[ — K2, 2gh, ¢* + 1],
then 2o
n=g*—h? VZ—Vk:gh, t=g*+ h?,
and hence

g° + Vihg — h? — U2 = 0.
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From the discriminant of this equation, we have
Dh? + AU} = UZs*.

Then this equation has positive solutions h = Usy, and s = Vo, with n > 1 in Lemma 2.2.

Hence
= —hVi, £ Urs  —Usiy Vi = Uy Von

2 B 2 ’
and taking m = 1 and 2n instead of n in Lemma 2.1,
_ —UsknVi + Ui Vo

2

= = —Ukians1)-
g B k(2n+1)

Since only the first solution gives positive, considering Binet formulas and recurrence relations
of {Uy,} and {Vj,}, we write

= Uk2n—1),

U

) (ViVisan—1) — 4) :

n = g2 - h2 = Ul?(2n—1) - U22kn =

and using m = 1 in Lemma 2.1,

2

U,
t = 92 + h2 = Ul?(2n71) + U22kn = Ek (Vk(4n—2) + ‘/élkn)

= UrUk@n—1).
Thus, using x = (—Vjn — 2U? £ t) /2n, we obtain the solutions as claimed. O
For example, when k = p = 1 in Theorem 2.5, rational solutions to
nz® +(n+2)z—(n—3)=0
exist if and only if n = % (4 — Ly,,—1) and they are

Lip—1 +5Fy—1—14 Ly 1 —5Fy1 — 14
2(4— Lyp_1) ’ 2(4— Lyp_1)

We have the following theorem by using Lemma 2.3 and combinatoric identities.

Theorem 2.6. For odd number k, rational solutions to
nz® + (Vin —2U2) . — (n+ (Ve +2) UZ) =0
2
exist if and only if n = % (Vka(4n+3) — 4) and they are

Vi D DViUg(an+s)

+ .
2 ViViants) =4 20, (ViVignts) — 4)

For example, when k = p = 1 in Theorem 2.6, rational solutions to
nz*+(n—2)z—(n+3)=0
exist if and only if n = %(L4n_3 — 4) and they are

10F 443 — Langs + 14 —10Fy 43 — Lypyz + 14
2 (Lnys —4) ’ 2 (Lanys —4)
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Theorem 2.7. For odd number k, rational solutions to

nz® + (nVy — 2U;D) z — (n+ DU (Vi +2)) =0 3)
exist if and only if n = U} (Vka(4n+1) — 4) and they are
2V + D — ViiVian+2) 2Vi + D + ViV
I = a To — .
(Vk‘/k(4n+1) - 4) (Vk‘/k:(4n+l) - 4)
Proof. The discriminant of (3) is
Ay =Vin*+4(n+ U,ED)2 :
Rational solutions of (3) exist if and only if A, is a perfect square, A; = VthQ. Hence,
U2D  n\°
2 k 2
4 — | =t
n° + ( Vi + Vk)
2(n+UZD) ) cy .
Thus, [n, Tf, t} form Pythagorean triplet. Considering the triplet as
[92 - h27 2gh7 92 + hz} ’
we have -
2 2 k n 2 2
n=g ; i + v gh, g +hn7
and hence
> — Vihg — h* + U2D = 0.
From the discriminant of this equation, taking h = Uih,, we get
UZD (W — 4) = s
which has positive solutions h; = Vo, and s = DUy, in Lemma 2.4. Hence
h = UxVokn,
hVixs Vo, UiV &= DUgy,y,
g p— pr—
2 2
Vie VornUr £ ViiUspn,
_ e (VarnUs k 2k)+2U2kn-
2
Taking m = 1 and 2n, 2n — 1 instead of n in Lemma 2.1, respectively, and Binet formula

of {U/m} s

= ViUk@nt1) + 2Uzkn = UpVi2nt1),
= ViUki@n-1) — 2Ukn = —ViUr@n-1)-

Only the first solution gives positive n. Using Lemma 2.1 and Binet formula, recurrence relation

of {Vin}, we write
n=g"—h*=UVism) — UVaen = UZ (ViViansn) — 4) -
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and by (1)
t = ¢@+h’= Ulzka(Qn—&-l) + UiVipon
= Uf (Viansn) + Vain) = U (Vetant2) + Vikn) = DUpUpgansr)-
Thus, from z = (—nV} + 2U2D +t) /2n, we obtain the solutions as claimed. O
For example, when £ = p = 1 in Theorem 2.7, rational solutions to
nz? +(n—10)x — (n+15) =0
exist if and only if n = L4,41) — 4 and they are

7+L4n

Ay = 1 i
ane o2 Ly —4

We have the following theorem by using Lemma 2.4 and combinatoric identities.
Theorem 2.8. For odd number k, rational solutions to
nz® + (Vin + 2U;D) x — (n — UZD (Vi —2)) =0

exist if and only if n = U} (Vka(4n+1) — 4) and they are

2V — D — ViVikunt2) 2V = D+ ViV

T = and ro =
' ViVians1) — 4 ? ViVians1) — 4

For example, rational solutions to
nr’ 4 (n+10)x — (n+5) =0

exist if and only if n = L4,+1 — 4 and they are

-3 - L4n+2
— 2 M2 and
T L4n+1 ) and To

3+ Ly,
L4n+1 - 4
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