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Abstract: In this paper, we consider generalized Fibonacci quadratics and give solutions of them
under certain conditions. For example, for odd number k, under condition n=U2

k

(
VkVk(4n+1)−4

)
,

the equation
nx2 +

(
Vkn− 2U2

kD
)
x−

(
n+DU2

k (Vk + 2)
)

= 0

has rational roots.
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1 Introduction

The second order sequence {Wn (a, b; p, q)} , or briefly {Wn} is defined for n > 2 by

Wn = pWn−1 + qWn−2,

in which W0 = a,W1 = b, where a, b are arbitrary integers and p, q are nonzero integers [1]. The
Binet formula for {Wn} is

Wn = Aαn +Bβn,

where A =
b− aβ
α− β

, B =
aα− b
α− β

and α, β =
(
p±

√
p2 + 4q

)
/2.
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In [3, 4], E. Kılıç and P. Stanica derived the following recurrence relation for the sequence
{Wkn} . For n > 2 and a fixed positive integer k,

Wkn = VkWk(n−1) − (−q)kWk(n−2),

where Vk = αk + βk. Specifically define the generalized Fibonacci {Un} and Lucas {Vn}
sequences as Un = Wn (0, 1; p, 1) , Vn = Wn (2, p; p, 1), respectively. Thus;

Ukn = VkUk(n−1) + (−1)k+1 Uk(n−2),

Vkn = VkVk(n−1) + (−1)k+1 Vk(n−2).

The Binet formulas are

Ukn =
αkn − βkn

α− β
and Vkn = αkn + βkn,

respectively. The equations

ax2 + bx− c = 0, ax2 − bx− c = 0,

cx2 + bx− a = 0, cx2 − bx− a = 0

have the same discriminant and then, the first one is considered. Rational roots of the quadratic
equation ax2 + bx+ c = 0 are given under certain conditions.

In [7], the author gave that the solutions of the equation Fnx
2 + Fn+1x − Fn+2 = 0 are −1

and Fn+2/Fn.

In [6], for m ∈ Z+, the author gave the rational solutions of the three equations under
conditions n = F2m+1 − 1, F2m+3F2m and F2m+1F2m, respectively:

nx2 + (n+ 1)x− (n+ 2) = 0,

nx2 + (n+ 2)x− (n+ 1) = 0,

nx2 + (n− 1)x− (n+ 1) = 0.

In [5], for n, r ∈ Z+, the authors obtained the solutions of equations

nx2 + (n+ r)x− (n+ 2r) = 0,

nx2 + (n+ 2r)x− (n+ r) = 0,

nx2 + (n− r)x− (n+ r) = 0.

In this paper, we consider generalized Fibonacci quadratics and give solutions of them under
certain conditions. For example, for odd number k, under condition n = U2

k

(
VkVk(4n+1) − 4

)
,

the equation
nx2 +

(
Vkn− 2U2

kD
)
x−

(
n+DU2

k (Vk + 2)
)

= 0

has rational roots.

2 Generalized Fibonacci quadratics

Throughout this paper, we denote D = V 2
k + 4. We will consider some interesting

quadratics including generalized Fibonacci numbers and give the solutions of them under

conditions U
2
k

D

(
4− VkVk(4n−1)

)
,
U2
k

D

(
VkVk(4n+3) − 4

)
and U2

k

(
VkVk(4n+1) − 4

)
, respectively.
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Lemma 2.1. For odd number k, we have

UknVkm + VknUkm = 2Uk(n+m),

UknVkm − VknUkm = −2Uk(n−m),

U2
kVknVkm +DUknUkm = 2U2

kVk(n+m),

Vk(n+m) + Vk(n−m) =


D

U2
k

UknUkm if m is odd

VknVkm if m is even
. (1)

Proof. From the Binet formulas of sequences {Ukn} and {Vkn}, we have the desired
identities.

In [2], the authors determined Pell equations involving the generalized Fibonacci and Lucas
sequences by the following Lemmas:

Lemma 2.2. For odd number k, the integer solutions of Dx2 + 4U2
k = y2U2

k are precisely the
pairs (±U2kn,±V2kn) .

Lemma 2.3. For odd number k, the integer solutions of Dx2 − 4U2
k = y2U2

k are precisely the
pairs

(
±Uk(2n+1),±Vk(2n+1)

)
.

Lemma 2.4. For odd number k, the integer solutions of DU2
k (x2 − 4) = y2 are precisely the

pairs (±V2kn,±DU2kn).

Theorem 2.5. For odd number k, rational solutions to

nx2 +
(
nVk + 2U2

k

)
x−

(
n− U2

k (Vk + 2)
)

= 0 (2)

exist if and only if n =
U2
k

D

(
4− VkVk(4n−1)

)
and they are

−Vk
2
− D

4− VkVk(4n−1)

±
DVkUk(4n−1)

2Uk

(
4− VkVk(4n−1)

) .
Proof. The discriminant of (2) is

∆ = V 2
k n

2 + 4
(
U2
k − n

)2
.

Rational solutions of (2) exist if and only if ∆ is a perfect square. Hence,

n2V 2
k + 4

(
U2
k − n

)2
= V 2

k t
2

n2 + 4

(
U2
k

Vk
− n

Vk

)2

= t2.

Thus, the Pythagorean triplet has
[
n,

2(−n+U2
k)

Vk
, t

]
, not necessarily primitive. If we present the

triplet as [
g2 − h2, 2gh, g2 + h2

]
,

then

n = g2 − h2, U2
k

Vk
− n

Vk
= gh, t = g2 + h2,

and hence
g2 + Vkhg − h2 − U2

k = 0.
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From the discriminant of this equation, we have

Dh2 + 4U2
k = U2

ks
2.

Then this equation has positive solutions h = U2kn and s = V2kn with n ≥ 1 in Lemma 2.2.
Hence

g =
−hVk ± Uks

2
=
−U2knVk ± UkV2kn

2
,

and taking m = 1 and 2n instead of n in Lemma 2.1,

g =
−U2knVk + UkV2kn

2
= Uk(2n−1),

g =
−U2knVk − UkV2kn

2
= −Uk(2n+1).

Since only the first solution gives positive, considering Binet formulas and recurrence relations
of {Ukn} and {Vkn} , we write

n = g2 − h2 = U2
k(2n−1) − U2

2kn = −U
2
k

D

(
VkVk(4n−1) − 4

)
,

and using m = 1 in Lemma 2.1,

t = g2 + h2 = U2
k(2n−1) + U2

2kn =
U2
k

D

(
Vk(4n−2) + V4kn

)
= UkUk(4n−1).

Thus, using x = (−Vkn− 2U2
k ± t) /2n, we obtain the solutions as claimed.

For example, when k = p = 1 in Theorem 2.5, rational solutions to

nx2 + (n+ 2)x− (n− 3) = 0

exist if and only if n = 1
5

(4− L4n−1) and they are

L4n−1 + 5F4n−1 − 14

2 (4− L4n−1)
,
L4n−1 − 5F4n−1 − 14

2 (4− L4n−1)
.

We have the following theorem by using Lemma 2.3 and combinatoric identities.

Theorem 2.6. For odd number k, rational solutions to

nx2 +
(
Vkn− 2U2

k

)
x−

(
n+ (Vk + 2)U2

k

)
= 0

exist if and only if n =
U2
k

D

(
VkVk(4n+3) − 4

)
and they are

−Vk
2

+
D

VkVk(4n+3) − 4
±

DVkUk(4n+3)

2Uk

(
VkVk(4n+3) − 4

) .
For example, when k = p = 1 in Theorem 2.6, rational solutions to

nx2 + (n− 2)x− (n+ 3) = 0

exist if and only if n =
1

5
(L4n−3 − 4) and they are

10F4n+3 − L4n+3 + 14

2 (L4n+3 − 4)
,
−10F4n+3 − L4n+3 + 14

2 (L4n+3 − 4)
.
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Theorem 2.7. For odd number k, rational solutions to

nx2 +
(
nVk − 2U2

kD
)
x−

(
n+DU2

k (Vk + 2)
)

= 0 (3)

exist if and only if n = U2
k

(
VkVk(4n+1) − 4

)
and they are

x1 =
2Vk +D − VkVk(4n+2)(

VkVk(4n+1) − 4
) and x2 =

2Vk +D + VkV4kn(
VkVk(4n+1) − 4

) .
Proof. The discriminant of (3) is

∆1 = V 2
k n

2 + 4
(
n+ U2

kD
)2
.

Rational solutions of (3) exist if and only if ∆1 is a perfect square, ∆1 = V 2
k t

2. Hence,

n2 + 4

(
U2
kD

Vk
+

n

Vk

)2

= t2.

Thus,
[
n,

2(n+U2
kD)

Vk
, t

]
form Pythagorean triplet. Considering the triplet as

[
g2 − h2, 2gh, g2 + h2

]
,

we have

n = g2 − h2, U2
k

Vk
D +

n

Vk
= gh, t = g2 + h2,

and hence
g2 − Vkhg − h2 + U2

kD = 0.

From the discriminant of this equation, taking h = Ukh1, we get

U2
kD
(
h21 − 4

)
= s2

which has positive solutions h1 = V2kn and s = DU2kn in Lemma 2.4. Hence

h = UkV2kn,

g =
hVk ± s

2
=
V2knUkVk ±DU2kn

2

=
Vk (V2knUk ± VkU2kn)

2
+ 2U2kn.

Taking m = 1 and 2n, 2n − 1 instead of n in Lemma 2.1, respectively, and Binet formula
of {Ukn} ,

g = VkUk(2n+1) + 2U2kn = UkVk(2n+1),

g = VkUk(2n−1) − 2U2kn = −VkUk(2n−1).

Only the first solution gives positive n. Using Lemma 2.1 and Binet formula, recurrence relation
of {Vkn} , we write

n = g2 − h2 = U2
kV

2
k(2n+1) − U2

kV
2
2kn = U2

k

(
VkVk(4n+1) − 4

)
.
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and by (1)

t = g2 + h2 = U2
kV

2
k(2n+1) + U2

kV
2
2kn

= U2
k

(
V 2
k(2n+1) + V 2

2kn

)
= U2

k

(
Vk(4n+2) + V4kn

)
= DUkUk(4n+1).

Thus, from x = (−nVk + 2U2
kD ± t) /2n, we obtain the solutions as claimed.

For example, when k = p = 1 in Theorem 2.7, rational solutions to

nx2 + (n− 10)x− (n+ 15) = 0

exist if and only if n = L(4n+1) − 4 and they are

x1 =
7− L4n+2

L4n+1 − 4
and x2 =

7 + L4n

L4n+1 − 4
.

We have the following theorem by using Lemma 2.4 and combinatoric identities.

Theorem 2.8. For odd number k, rational solutions to

nx2 +
(
Vkn+ 2U2

kD
)
x−

(
n− U2

kD (Vk − 2)
)

= 0

exist if and only if n = U2
k

(
VkVk(4n+1) − 4

)
and they are

x1 =
2Vk −D − VkVk(4n+2)

VkVk(4n+1) − 4
and x2 =

2Vk −D + VkV4kn
VkVk(4n+1) − 4

.

For example, rational solutions to

nx2 + (n+ 10)x− (n+ 5) = 0

exist if and only if n = L4n+1 − 4 and they are

x1 =
−3− L4n+2

L4n+1 − 4
and x2 =

−3 + L4n

L4n+1 − 4
.
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[2] Kılıç, E., & Ömür, N. (2010). Conics characterizing the generalized Fibonacci and Lucas
sequences with indices in arithmetic progressions, Ars Com., 94, 459–464.
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