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1 Introduction

Fibonacci numbers Fn and Lucas numbers Ln are defined for n ≥ 0 as Fn+2 = Fn+1 + Fn and
Ln+2 = Ln+1 + Ln with initial conditions F0 = 0, F1 = 1, L0 = 2 and L1 = 1, respectively. The
Binet forms are given by

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α and β are roots of the quadratic equation x2−x−1 = 0, i.e. α =
1 +
√
5

2
and β =

1−
√
5

2
.

The sequences (Fn)n≥0 and (Ln)n≥0 possess many beautiful properties. They are indexed in the
On-Line Encyclopedia of Integer Sequences [8] with entries A000045 and A000032, respectively.

The Riemann zeta function ζ(s), s ∈ C, is defined by the series (see [1, 6] or [7]):

∗ Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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ζ(s) =
∞∑
k=1

1

ks
, <(s) > 1.

The analytical continuation to all s ∈ C with <(s) > 0, s 6= 1, is given by

ζ(s) = (1− 21−s)−1
∞∑
k=1

(−1)k+1

ks
.

For more information about ζ(s) consult the textbooks [6] and [7]. Some recent results involving
the Riemann zeta function are contained in the articles [2] and [3]. In [4] (problem proposal
and solution) the author presents the following two new infinite series evaluations involving the
Riemann zeta function at positive even integer arguments and Fibonacci (Lucas) numbers

∞∑
n=1

ζ(2n)
F2n

5n
=

π

2
√

5
tan

(
π

2
√

5

)
, (1.1)

and
∞∑
n=1

ζ(2n)
L2n

5n
=

π

2
√

5
tan

(
π

2
√

5

)
+ 1. (1.2)

Moreover, in [5] the author derives the following beautiful identity involving ζ(s) at odd integer
arguments

∞∑
n=1

ζ(2n+ 1)
F2n

5n
=

1

2
. (1.3)

The goal of this short article is to evaluate exactly two additional infinite series involving
Fn and ζ(n). To prove the results, we will work with generating functions and some series
evaluations applying methods from complex analysis. In addition, we will apply properties of
the digamma function ψ(z), z ∈ C. Recall that [1] ψ(z) is the first logarithmic derivative of the
Gamma function, i.e.,

ψ(z) = (ln Γ(z))′ =
Γ′(z)

Γ(z)
,

where Γ(z) is the complex gamma function. The digamma function possesses the following
properties:

ψ(z + 1) = ψ(z) +
1

z
, (1.4)

ψ(z + 1) = −γ +
∞∑
n=1

( 1

n
− 1

n+ z

)
, z 6= −1,−2, . . . , (1.5)

and the reflection property
ψ(1− z)− ψ(z) = π cot(πz), (1.6)

where cot(z) is the complex cotangent and γ is the famous Euler–Mascheroni constant

γ = lim
n→∞

( n∑
k=1

1

k
− lnn

)
= 0, 5772156649...

These properties will be employed in the proofs below.
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2 Results

The first main result of this paper are the following evaluations involving the zeta function at even
integer arguments and odd (scaled) Fibonacci (Lucas) numbers:

Theorem 2.1. We have the following identity

∞∑
n=1

ζ(2n)
F2n−1

5
2n−1

2

=
1

2
− β =

√
5

2
. (2.1)

The companion identity with Lucas numbers is

∞∑
n=1

ζ(2n)
L2n−1

5
2n−1

2

= π tan
( π

2
√

5

)
−
√

5

2
. (2.2)

The second achievement of this paper are the following identities:

Theorem 2.2. We have
∞∑
n=2

(ζ(n)− 1)Fn−1 =
1

5

(
5 +
√

5π tan
(√5π

2

))
. (2.3)

The corresponding Lucas series can be evaluated as

∞∑
n=2

(ζ(n)− 1)Ln−1 = 3−
∞∑
n=1

n

(n+ 2)(n2 + 5n+ 5)
. (2.4)

The author did not succeed in deriving a closed form for (2.4). The analysis below shows that
an equivalent expression is given by

∞∑
n=2

(ζ(n)− 1)Ln−1 = 3− π tan
(√5π

2

)
+ 2α

∞∑
n=1

1

n(n− α)
. (2.5)

An evaluation of the sum on the RHS of (2.4) in terms of radicals, known constants and/or
elementary functions seems be difficult to establish. It could be possible using more advanced
methods than employed here. It would be pleasing to see this problem solved.

3 Proofs

3.1 Proof of Theorem 2.1

The next lemma will play a key role in the proof.

Lemma 3.1. We have
∞∑
n=0

1

5n2 + 5n+ 1
=

π√
5

tan
( π

2
√

5

)
. (3.1)
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Proof : We use the residue theorem to prove the sum identity. First, note that since

5(n+ 1)2 − 5(n+ 1) + 1 = 5n2 + 5n+ 1,

it follows that

∞∑
n=−∞

1

5n2 + 5n+ 1
=

−1∑
n=−∞

1

5n2 + 5n+ 1
+
∞∑
n=0

1

5n2 + 5n+ 1

=
∞∑
n=1

1

5n2 − 5n+ 1
+
∞∑
n=0

1

5n2 + 5n+ 1

=
∞∑
n=0

1

5(n+ 1)2 − 5(n+ 1) + 1
+
∞∑
n=0

1

5n2 + 5n+ 1
,

and therefore
∞∑
n=0

1

5n2 + 5n+ 1
=

1

2

∞∑
n=−∞

1

5n2 + 5n+ 1
.

Setting f(z) = 5z2 + 5z + 1, we proceed as follows

1

2

∞∑
n=−∞

1

5n2 + 5n+ 1
= −π

2

∑
z∗

Res
(cot(πz)

f(z)

∣∣∣z∗ is a pole of 1/f(z)
)

= − π

2
√

5

(
cot
(πβ√

5

)
− cot

(πα√
5

))
= − π

2
√

5

(
cot
(
−
(π

2
− π

2
√

5

))
− cot

(
−
(π

2
+

π

2
√

5

)))
= − π

2
√

5

(
− tan

( π

2
√

5

)
− tan

( π

2
√

5

))
=

π√
5

tan
( π

2
√

5

)
.

This completes the proof of Lemma 3.1. �

Proof of (2.1): From the paper [2] we know that

∞∑
n=1

ζ(2n)
z2n

n
= ln Γ(1 + z) + ln Γ(1− z), |z| < 1.

Differentiating gives immediately

∞∑
n=1

ζ(2n)z2n−1 =
1

2

(
ψ(1 + z)− ψ(1− z)

)
, |z| < 1,

and we can write
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∞∑
n=1

ζ(2n)
F2n−1

5
2n−1

2

=
1

2
√

5

(
ψ
(

1 +
α√
5

)
− ψ

(
1− α√

5

)
− ψ

(
1 +

β√
5

)
+ ψ

(
1− β√

5

))
=

1

2
√

5

(
ψ
(

1 +
β√
5

)
− ψ

(
1− α√

5

)
+ ψ

(
1− β√

5

)
− ψ

(
1 +

α√
5

)
−2ψ

(
1 +

β√
5

)
+ 2ψ

(
1 +

α√
5

))
=

π

2
√

5
cot
(
π
(

1− α√
5

))
+

1

2
√

5

(
ψ
(

1− β√
5

)
− ψ

(
1 +

α√
5

))
+

1√
5

(
ψ
(

1 +
α√
5

)
− ψ

(
1 +

β√
5

))
,

where in the last step the reflection principle for the digamma function was used. Next, we
observe that

cot
(
π
(

1− α√
5

))
= tan

( π

2
√

5

)
,

and

ψ
(

1 +
α√
5

)
− ψ

(
1− β√

5

)
=
√

5
∞∑
n=1

1

5n2 + 5n+ 1
.

In view of Lemma 3.1 we deduce that
∞∑
n=1

ζ(2n)
F2n−1

5
2n−1

2

=
1

2
+

1√
5

(
ψ
(

1 +
α√
5

)
− ψ

(
1 +

β√
5

))
.

Finally, we can evaluate the last expression as

ψ
(

1 +
α√
5

)
− ψ

(
1 +

β√
5

)
=

√
5

α
,

where we have applied

ψ(z)− ψ(z − 1) =
1

z − 1
,

with z = 1 + α/
√

5 and α − β =
√

5. This completes the proof of the first identity. The second
part is derived similarly:

∞∑
n=1

ζ(2n)
L2n−1

5
2n−1

2

=
1

2

(
ψ
(

1 +
α√
5

)
− ψ

(
1− α√

5

)
− ψ

(
1− β√

5

)
+ ψ

(
1 +

β√
5

))
=

π

2
tan
( π

2
√

5

)
+

1

2

(
ψ
(

1 +
α√
5

)
− ψ

(
1− β√

5

))
=

π

2
tan
( π

2
√

5

)
+

√
5

2

∞∑
n=1

1

5n2 + 5n+ 1
.

This completes the proof of Theorem 2.1. �
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3.2 Proof of Theorem 2.2

The central lemma in this proof is:

Lemma 3.2. It holds that
∞∑
n=1

1

n2 + n− 1
=

1

5

(
5 +
√

5π tan
(√5π

2

))
. (3.2)

Proof : Once more we use the residue theorem to prove the sum identity. First, note that since

∞∑
n=1

1

n2 + n− 1
= 1 +

∞∑
n=1

1

n2 + 3n+ 1
,

we have to show that
∞∑
n=1

1

n2 + 3n+ 1
=

π√
5

tan
(√5π

2

)
.

We have
∞∑
n=1

1

n2 + 3n+ 1
=

1

2

∞∑
n=−∞

1

n2 + 3n+ 1
,

and since g(z) = z2 + 3z + 1 = (z + α2)(z + β2), we conclude that

1

2

∞∑
n=−∞

1

n2 + 3n+ 1
= −π

2

∑
z∗

Res
(cot(πz)

g(z)

∣∣∣z∗ is a pole of 1/g(z)
)

= − π

2
√

5

(
cot(−πβ2)− cot(−πα2)

)
= − π

2
√

5

(
tan
(π

2
+ πβ2

)
− tan

(π
2

+ πα2
))

=
π√
5

tan
(√5π

2

)
,

where we used the fact that α2 − β2 =
√

5. �

Proof of (2.3): The generating function (see [6])

∞∑
n=2

(ζ(n)− 1)zn−1 = 1− γ − ψ(2− z), |z| < 2,

in combination with 2− α = α−2 and 2− β = α2 produces

∞∑
n=2

(ζ(n)− 1)Fn−1 =
1√
5

(
ψ(α2)− ψ(β2)

)
=

1√
5

(
ψ(α + 1)− ψ(β + 1)

)
=

∞∑
n=1

1

n2 + n− 1
.
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The result now follows from Lemma 3.2.
For the companion series with Lucas numbers we obtain analogously

∞∑
n=2

(ζ(n)− 1)Ln−1 = 2(1− γ)−
(
ψ(α + 1) + ψ(β + 1)

)
= 2−

∞∑
n=1

n− 2

n(n2 + n− 1)

= 3−
∞∑
n=3

n− 2

n(n2 + n− 1)

= 3−
∞∑
n=1

n

(n+ 2)(n2 + 5n+ 5)
.

The second expression for the Lucas sum is established as follows:

∞∑
n=2

(ζ(n)− 1)Ln−1 = 2(1− γ)−
(
ψ(α + 1) + ψ(β + 1)

)
= 2(1− γ)−

(
ψ(α + 1)− ψ(β + 1)

)
− 2ψ(β + 1)

= 2(1− γ)−
(
ψ(α + 1)− ψ(β + 1)

)
− 2
(
ψ(β) +

1

β

)
= 3− 2γ − π tan

(√5π

2

)
− 2ψ(β)

= 3− π tan
(√5π

2

)
− 2

∞∑
n=0

β − 1

(n+ 1)(n+ β)
.

This completes the proof of Theorem 2.2. �

4 Conclusion

In this article, the author investigated infinite series involving Fibonacci numbers and the Riemann
zeta function. He presented some new closed forms for these series. To prove the results, the
residue calculus was combined with properties of the psi function. It is desirable to seek for more
such relations. This is left for future research.
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