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1 Introduction

The Lucas sequence (Un)n≥1 and associated Lucas sequence (Vn)n≥1 are defined by

Un+1 = PUn −QUn−1, Vn+1 = PVn −QVn−1, (1)

where P,Q are integers such that ∆ = P 2 − 4Q > 0 and the initial terms are given by
(U0, U1) = (0, 1) and (V0, V1) = (2, P ) respectively. The sequence (Un)n≥1 and (Vn)n≥1 are
often called Lucas sequence of first and second kind respectively. The Binet formulas for these
sequences are given by

Un =
αn − βn

α− β
, Vn = αn + βn (2)
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where α, β =
P±
√

P 2−4Q
2

are roots of the characteristic equation X2 − PX + Q = 0 having
discriminant ∆ = P 2 − 4Q. Clearly, α + β = P, αβ = Q, α − β =

√
∆. These sequences can

be extended to negative indices n as U−n = −Q−nUn and V−n = Q−nVn respectively.
Farhi [4] obtained expressions for sums of certain infinite Lucas sequences. Some identities

for the sums, ratios, products and convolutions involving some second order recurrence sequences
have been explored in [1,3,5–11]. In the present work, we explore certain infinite sums involving
Lucas and associated Lucas sequences.

2 Preliminaries

This section deals with some identities which will be useful for the main results of this paper.

Lemma 2.1 ( [4, Lemma 2]). Let (xn)n≥1 be a convergent real sequence and let x ∈ R be its
limit. Then, for all k ∈ N, we have

∞∑
n=1

(xn+k − xn) = kx−
k∑

n=1

xn.

The following identities can be easily proved using the Binet formulas (2) and hence, we omit
the proof. Let m,n, r and t be integers. Then,

U2n = UnVn, (3)

αrUn − αnUr = QrUn−r = βrUn − βnUr, (4)

αrVn − αnVr = −
√

∆QrUn−r = βnVr − βrVn, (5)

αrVn −
√

∆αnUr = QrVn−r = βrVn +
√

∆βnUr, (6)

Un+t − αtUn = βnUt, (7)

αtVn −
√

∆Un+t = βnVt, (8)

αtVn − Vn+t =
√

∆βnUt, (9)

αtUn

√
∆ + Vn+t = βnVt, (10)

UnUm+r − UmUn+r = QmUrUn−m, (11)

VnVm+r − VmVn+r = ∆QnUrUm−n, (12)

UnVm+r − UmVn+r = QmVrUn−m, (13)

VnUm+r − VmUn+r = QnVrUm−n, (14)

lim
N→∞

UN+m

UN+n

= lim
N→∞

VN+m

VN+n

= αm−n, (15)

lim
N→∞

UN+m

VN+n

=
1

∆
lim

N→∞

VN+m

UN+n

=
αm−n
√

∆
. (16)
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3 Main results

In this section, we explore some infinite weighted sums with terms from Lucas and associated
Lucas sequences. Some of the results of this section are variants of results of Farhi [4].

Theorem 3.1. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, for any non zero integer t, we have

∞∑
n=1

Qan
Uan+k−an

Uan+k
Uan

=
1

Ut

( k∑
n=1

Uan+t

Uan

− kαt

)
Proof. In view of Eq. (11), QanUtUan+k−an = Uan+k

Uan+t − UanUan+k+t, which implies

Qan
Uan+k−an

Uan+k
Uan

=
1

Ut

(
Uan+t

Uan

−
Uan+k+t

Uan+k

)
.

Taking summation over n, from 1 to infinity on both sides of the above equation and then applying
Lemma 2.1 for xn = Uan+t

Uan
, the desired result follows from Eq. (15).

Theorem 3.2. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, for any non zero integer t, we have

∞∑
n=1

Qan
Uan+k−an

Uan+k
Uan

=
1

Vt

( k∑
n=1

Van+t

Uan

+ k
√

∆αt

)
Proof. Using Eq. (13) and (16) with xn = Van+t

Uan
in Lemma 2.1, the proof follows similar to that

of Theorem 3.1.

Remark 1. Use of Eq. (7) in the right hand side of the equality in Theorem 3.1 or use of Eq.
(10) in the right hand side of the equality in Theorem 3.2 gives

∞∑
n=1

Qan
Uan+k−an

Uan+k
Uan

=
k∑

n=1

βan

Uan

,

which appears in [4, Theorem 1].

Corollary 3.2.1. Let (an)n≥1 be an increasing arithmetic sequence of positive integers and let r
be its common difference. Then, for any positive integer k, we have

∞∑
n=1

Qr(n−1)

UanUan+k

=
Q−a1

Ukr

( k∑
n=1

Uan+1

Uan

− kα
)

=
Q−a1

PUkr

( k∑
n=1

Van+1

Uan

+ k
√

∆α

)
Proof. The result follows immediately by putting an = r(n− 1) + a1 and t = 1 in Theorem 3.1
and Theorem 3.2 respectively.

Remark 2. Using Eq. (7) or Eq. (10) in Corollary 3.2.1 gives

∞∑
n=1

Qr(n−1)

UanUan+k

=
Q−a1

Ukr

k∑
n=1

βan

Uan

,

which appears in [4, Corollary 4].
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Theorem 3.3. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, for any non zero integer t, we have

∞∑
n=1

Qan
Uan+k−an

Van+k
Van

=
1

∆Ut

(
kαt −

k∑
n=1

Van+t

Van

)
Proof. Using Eq. (12) and (15) with xn = Van+t

Van
in Lemma 2.1, the proof follows similarly to

that of Theorem 3.1.

Theorem 3.4. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, for any non zero integer t, we have

∞∑
n=1

Qan
Uan+k−an

Van+k
Van

=
1

Vt

(
kαt

√
∆
−

k∑
n=1

Uan+t

Van

)
Proof. Using Eq. (14) and (16) with xn = Uan+t

Van
in Lemma 2.1, the proof follows similar to that

of Theorem 3.3.

Theorem 3.5. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, for any non zero integer t, we have

∞∑
n=1

Qan
Uan+k−an

Van+k
Van

=
1√
∆

k∑
n=1

βan

Van

Proof. The proof of this theorem follows directly by using Eq. (9) in Theorem 3.3 or using Eq.
(8) in Theorem 3.4.

Corollary 3.5.1. Let (an)n≥1 be a sequence of positive integers tending to infinity with n. Then,
we have

∞∑
n=1

Qan
Uan+1−an

Van+1Van
=

βa1

√
∆Va1

.

Corollary 3.5.2. Let (an)n≥1 be an increasing arithmetic sequence of positive integers and let r
be its common difference. Then, for any positive integer k, we have

∞∑
n=1

Qr(n−1)

VanVan+k

=
Q−a1

∆Ukr

(
kα−

k∑
n=1

Van+1

Van

)
=
Q−a1

PUkr

(
kα√

∆
−

k∑
n=1

Uan+1

Van

)
=

Q−a1√
∆Ukr

k∑
n=1

βan

Van

In particular,
∞∑
n=1

Qr(n−1)

VanVan+1

=
(β/Q)a1√
∆UrVa1

Proof. The first result of this corollary follows immediately by putting un = r(n − 1) + u1 and
t = 1 in Theorem 3.3, 3.4 and 3.5, while the second result of this corollary can be obtained by
putting k = 1 in the first result.

With (P,Q) = (1,−1) we get the Fibonacci sequence Fn = Un(1,−1) and the Lucas
sequence Ln = Vn(1,−1). The following are some applications for Fibonacci and Lucas
numbers:
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• Putting suitable values in Corollary 3.5.2, we get

∞∑
n=1

1

L2n−1L2n+1

=
5−
√

5

2
,

∞∑
n=1

1

L2nL2n+2

=
3
√

5− 5

30
,

∞∑
n=1

(−1)n−1

LnLn+1

=
5−
√

5

2
,

∞∑
n=1

(−1)n−1

LnLn+2

=
40− 24

√
5

15
.

• Taking an = kan(k > 0, a ≥ 2) in Corollary 3.5.1, we obtain

∞∑
n=1

F(a−1)kan

LkanLkan+1

=
1√

5LkaΦka
, where Φ =

1 +
√

5

2
is the golden ratio.

In addition, taking a = 3 and using Eq. (3), we obtain the following formula of Bruckman
and Good [2]:

∞∑
n=1

Fk3n

Lk3n+1

=
1√

5L3kΦ3k
,

which gives
∞∑
n=1

F3n

L3n+1

=
5−
√

5

10

(which was also pointed out by Bruckman and Good [2]).

• Taking an = Fn and an = Ln respectively in Theorem 3.5, we obtain

∞∑
n=1

(−1)Fn
FFn−1

LFnLFn+1

=
1

4

(
1√
5
− 1

)
,

∞∑
n=1

(−1)Ln
FLn−1

LLnLLn+1

=
1

2

(
1√
5
− 1

3

)
.

Theorem 3.6. Let (an)n≥1 be a sequence of positive integers tending to infinity with n, and let k
be a positive integer. Then, we have

∞∑
n=1

(−1)nQan
Uan+2k−an

Van+2k
Van

= −
k∑

n=1

Qa2n−1
Ua2n−a2n−1

Va2nVa2n−1

Proof. The proof follows similar to that of [4, Corollary 5] by using Eq. (5).

Corollary 3.6.1. Let (an)n≥1 be an increasing arithmetic sequence of positive integers and let r
be its common difference. Then, for any positive integer k, we have

∞∑
n=1

(−1)n−1Qr(n−1)

VanVan+2k

=
Ur

U2kr

k∑
n=1

Q2r(n−1)

Va2nVa2n−1

In particular,
∞∑
n=1

(−1)n−1Qr(n−1)

VanVan+2

=
1

Va1Va2Vr

Proof. The proof is similar to that of [4, Corollary 6] and hence it is omitted.
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Theorem 3.7. Let r and k are natural numbers and Sr,k =
∞∑
n=1

(−1)n−1Qr(n−1)

VrnVr(n+k)

. Then for any

odd positive integer k, we have

Sr,k =
Ur

Urk

(
Sr,1 +Qr

(k−1)/2∑
n=1

Q2r(n−1)

V2nrV(2n+1)r

)
.

Proof. Using Eq. (13) and Corollary 3.6.1, proof of this theorem follows similarly to that of
[4, Theorem 8] and hence, it is omitted.

Theorem 3.8. Let (an)n≥1 be an increasing sequence of positive integers. Then, we have

∞∑
n=1

(−1)n−1
βan

Van
=
√

∆
∞∑
n=1

Qa2n−1
Va2n−a2n−1

Va2nVa2n−1

.

Proof. Using Eq. (5), the proof follows similar to that of [4, Theorem 11].

Theorem 3.8 can also be proved by using Eq. (15) in Theorem 3.6, when k tends to infinity.

Corollary 3.8.1. If n is any positive integer, then

∞∑
n=1

1√
∆
− Un

Vn
=

2√
∆

∞∑
n=1

|β|n

Vn
= 2|P |

∞∑
n=1

|Q|2n−1

V2nV2n−1

Proof. Putting an = n in Theorem 3.8, the result follows immediately using the identity
Vn −

√
∆Un = 2βn.

Corollary 3.8.2. If n is any positive integer, then

∞∑
n=1

1√
5
− Fn

Ln

=
2√
5

∞∑
n=1

1

LnΦn
= 2

∞∑
n=1

1

L2nL2n−1

• Further applying Theorem 3.8 for (P,Q) = (1,−1) with an = 2n, 2n − 1 and 2n + 1

respectively, we obtain the following summations involving Lucas numbers:

1√
5

∞∑
n=1

(−1)n−1

L2nΦ2n
=
∞∑
n=1

1

L4nL4n−2
,

1√
5

∞∑
n=1

(−1)n−1

L2n−1Φ2n−1 =
∞∑
n=1

1

L4n−1L4n−3
,

1√
5

∞∑
n=1

(−1)n−1

L2n+1Φ2n+1
=
∞∑
n=1

1

L4n+1L4n−1

Theorem 3.9. If r > 1 is any positive integer, then

∞∑
n=0

β2rn+2r−1

V2rn+2r−1

=
√

∆
∞∑
n=1

Q2r−1nU2r−1n

V2rnV2r−1n

.

Proof. The proof is similar to that of [4, Theorem 16] using Eq. (5) and hence, we omit the
proof.
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