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1 Introduction

The subject of q-calculus started appearing in the nineteenth century due to its applications in
various fields of mathematics, physics and engineering. One of the most popular studies in
q-calculus is the q-extension of the some special polynomials such as Bernoulli, Eulerian,
Genocchi, Euler polynomials (cf. [1–23] and the references cited therein). The classical Eulerian
polynomials are firstly considered by Leonhard Euler in his Remarques sur un beau rapport entre
les séries des puissances tant directes que réciproques in 1749 (first printed in 1765) in which
he defined a method of computing values of the zeta function at negative integers. Then, the
foregoing polynomials have been studied and investigated extensively until now, cf. [3, 4, 12, 13].
Moreover, the Frobenius-type Eulerian polynomials are introduced and studied in [22]. Kim [9]
studied new q-extensions of Euler numbers and polynomials and investigated some properties
of symmetries of these q-Euler polynomials by using q-derivatives and q-integrals. Kim [10]
introduced a Daehee constant, the so-called q-extension of the Napier constant, and considered
the Daehee formula associated with the q-extensions of trigonometric functions, and then
derived the q-extensions of sine and cosine functions from this Daehee formula and the q-calculus
related to the q-extensions of sine and cosine functions. In this paper, we perform to give a
novel class of q-generalization of the Hermite-based Frobenius-type Eulerian polynomials and to
derive multifarious correlation, implicit summation formula, identities, explicit formulas and
recurrence relations for the mentioned polynomials by means of the series manipulation
methods. Furthermore, we investigate some correlations covering the q-Apostol–Bernoulli
polynomials, q-Apostol-Euler polynomials, q-Apostol-Genocchi polynomials and q-Stirling
numbers of the second kind for the q-Hermite-based Frobenius-type Eulerian polynomials. The
definitions and notations of q-calculus reviewed here are taken from the references [5–10,14–17,
20]:

The q-analogue of the shifted factorial (a)n is given by

(a; q)0 = 1, (a; q)n =
n−1∏
m=0

(1− qma), n ∈ N.

The q-analogues of a complex number a and of the factorial function are given by

[a]q =
1− qa

1− q
, q ∈ C; 0 < |q| < 1; a ∈ C,

and

[n]q! =
n∏

m=1

[m]q = [1]q[2]q · · · [n]q =
(q; q)n
(1− q)n

; n ∈ N, q ∈ C; 0 < |q| < 1

with [0]q! = 1. The Gauss q-binomial coefficient
(
n
k

)
q

is given by(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
=

(q; q)n
(q; q)k(q; q)n−k

, k = 0, 1, . . . , n.

The q-analogue of the function (x+ y)nq is given by

(x+ y)nq =
n∑
k=0

(
n

k

)
q

qk(k−1)/2xn−kyk, n ∈ N0. (1.1)
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The q-analogues of exponential function are given by

eq(x) =
∞∑
n=0

xn

[n]q!
=

1

((1− q)x; q)∞
, 0 < |q| < 1; |x| < |1− q|−1 (1.2)

and

Eq(x) =
∞∑
n=0

qn(n−1)/2
xn

[n]q!
= (−(1− q)x; q)∞ , 0 < |q| < 1;x ∈ C. (1.3)

Moreover, the functions eq(x) and Eq(x) satisfy the following properties:

Dqeq(x) = eq(x), DqEq(x) = Eq(qx), (1.4)

where the q-derivative Dqf(x) of a function f at a point 0 6= x ∈ C is defined as follows:

Dqf(x) =
f(qx)− f(x)

qx− x
, 0 < |q| < 1.

For any two arbitrary functions f(x) and g(x), the q-derivative operatorDq satisfies the following
product and quotient relations:

Dq,x(f(x)g(x)) = f(x)Dq,xg(x) + g(qx)Dq,xf(x) (1.5)

and

Dq,x

(
f(x)

g(x)

)
=
g(qx)Dq,xf(x)− f(qx)Dq,xg(x)

g(x)g(qx)
. (1.6)

The Apostol-type q-Bernoulli polynomials B(α)
n,q (x, y;λ) of order α, the Apostol-type q-Euler

polynomials E(α)
n,q (x, y;λ) of order α and the Apostol-type q-Genocchi polynomials G(α)

n,q(x, y;λ)

of order α are defined by means of the following generating function (see [7, 8, 14–17]):(
t

λeq(t)− 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

B(α)
n,q (x, y;λ)

tn

n!
, (|t+ log λ|) < 2π, 1α = 1, (1.7)

(
2

λeq(t) + 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

E(α)
n,q (x, y;λ)

tn

n!
, (|t+ log λ|) < π, 1α = 1 (1.8)

and (
2t

λeq(t) + 1

)α
eq(xt)Eq(yt) =

∞∑
n=0

G(α)
n,q(x, y;λ)

tn

n!
, |t+ log λ|) < π, 1α = 1. (1.9)

Clearly, we have

B(α)
n,q (λ) = B(α)

n,q (0, 0;λ), E
(α)
n,q (λ) = E(α)

n,q (0, 0;λ), G
(α)
n,q(λ) = G(α)

n,q(0, 0;λ).

The Frobenius-type Eulerian polynomials A(α)
n (x;λ) of order α ∈ C are defined by means of

the following generating function as follows (see [22]):(
1− λ

et(λ−1) − λ

)α
ext =

∞∑
n=0

A(α)
n (x;λ)

tn

n!
, (1.10)
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where λ is a complex number with λ 6= 1. The number An is given by

A(α)
n (λ) = A(α)

n (0;λ)

are called the Frobenius-type Eulerian numbers (see [21, 22]). Clearly, we have

A(α)
n (x;λ) =

n∑
m=0

(
n

m

)
A(α)
m (λ)xn−m. (1.11)

In recent days, a new type of q-Hermite polynomials are considered in [16, 20], which is a
particular member of the q-Appell family [1]. The q-Appell polynomials are defined by means of
the following generating function:

1

gq(t)
eq(xt) =

∞∑
n=0

An,q(x)
tn

[n]q!
, An,q = An,q(0).

Definition 1.1. The continuous q-Hermite polynomials H(s)
n,q(x) are defined by

eq

(
xt− st2

1 + q

)
=
∞∑
n=0

H(s)
n,q(x)

tn

[n]q!
, (0 < q < 1, 0 6= s ∈ R) (1.12)

where H(s)
n,q = H

(s)
n,q(0) are the continuous q-Hermite numbers defined by

eq

(
st2

1 + q

)
=
∞∑
n=0

H(s)
n,q(0)

tn

[n]q!
.

2 q-Hermite-based Frobenius-type Eulerian polynomials
HA

(α,s)
n,q (x, y;λ)

In this section, we define q-Hermite-based Frobenius-type Eulerian polynomials (qHbFtEp)

HA
(α,s)
n,q (x, y;λ) by means of the generating function and series representation. Certain relations

for these polynomials are also derived by using various identities. We now ready to start in con-
junction with the following definition.

Definition 2.1. Let q, λ ∈ C, α ∈ N, 0 < |q| < 1. The generalized q-Hermite-based Frobenius-
type Eulerian polynomials HA

(α,s)
n,q (x, y;λ) of order α are defined by means of the following

generating function:(
1− λ

e
t(λ−1)
q − λ

)α

eq

(
xt− st2

1 + q

)
Eq(yt) =

∞∑
n=0

HA
(α,s)
n,q (x, y;λ)

tn

[n]q!
. (2.1)

When x = y = s = 0 in (2.1), HA
(α,0)
n (0, 0;λ) := A

(α)
n (λ) are called the n-th Frobenius-type

Eulerian numbers of order α.
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Remark 2.1. For x = y = 0 in (2.1), HA
(α,s)
n,q (λ) = HA

(α,s)
n,q (0, 0;λ) are the the q-Hermite-based

Frobenius-type Eulerian numbers defined by(
1− λ

e
t(λ−1)
q − λ

)α

eq

(
st2

1 + q

)
=
∞∑
n=0

HA
(α,s)
n,q (λ)

tn

[n]q!
. (2.2)

Theorem 2.1. The following identity for HA
(α,s)
n,q (x, y;λ)

(λ− 1)−nHA
(α,(λ−1)2s))
n,q

(
(λ− 1)x, (λ− 1)2y;λ

)
= HH

(α,s)
n,q (x, y;λ) (2.3)

holds true.

Proof. Consider the generating function (2.1), we have

∞∑
n=0

HA
(α,(λ−1)2s)
n,q ((λ− 1)x, (λ− 1)y;λ)

n!

tn

(λ− 1)n

=

(
1− λ

eq(t)− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt) =

∞∑
n=0

HH
(α,s)
n,q (x, y;λ)

tn

[n]q!
,

where HH
(α,s)
n,q (x, y;λ) are called the q-Hermite based Frobenius polynomials, which is defined

by Riyasat and Khan [20] and comparing the coefficients of tn, we arrive at the required result
(2.3).

Theorem 2.2. The following summation representation for the q-Hermite-based Frobenius-type
Eulerian polynomials HA

(α,s)
n,q (x, y;λ) of order α

HA
(α,s)
n,q (x, y;λ) =

n∑
m=0

(
n

m

)
q

A
(α)
n−m,q(y;λ)(λ)H

(s)
m,q (x) (2.4)

holds true.

Proof. Using equation (1.10) and (1.12) in the left-hand side of equation (2.1) and then applying
the Cauchy product rule and equating the coefficients of same powers of t in both sides of resultant
equation, we get representation (2.4).

Theorem 2.3. The following summation formulae

HA
(α,s)
n,q (x, y;λ) =

n∑
m=0

(
n

m

)
q

HA
(α,s)
m,q (0, 0;λ)(x+ y)n−mq , (2.5)

HA
(α,s)
n,q (x, y;λ) =

n∑
m=0

(
n

m

)
q

HA
(α,s)
m,q (0, y;λ)xn−m (2.6)

and

HA
(α,s)
n,q (x, y;λ) =

n∑
m=0

(
n

m

)
q

q(n−k)(n−k−1)/2HA
(α,s)
m,q (x, 0;λ)yn−m (2.7)

hold true for the q-Hermite-based Frobenius-type Eulerian polynomials of order α.
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Proof. We suitably use equations (1.1)–(1.3) in generating function (2.1) to get three different
forms. Further making use of the Cauchy product rule in the resultant expressions and then
comparing the like powers of t in both sides of resultant equation, we find formulas
(2.5)–(2.7).

Theorem 2.4. The following recursive formulas for the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

Dq,xHA
(α,s)
n,q (x, y;λ) = [n]qHA

(α,s)
n−1,q(x, y;λ) (2.8)

and
Dq,yHA

(α,s)
n,q (x, y;λ) = [n]qHA

(α,s)
n−1,q(x, qy;λ). (2.9)

Proof. Differentiating generating function (2.1) with respect to x and y with the help of equation
(1.4) and then simplifying with the help of the Cauchy product rule formulas (2.8) and (2.9) are
obtained.

Theorem 2.5. The following relation for the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y; ;λ) of order α holds true:

(2λ−1)
n∑
k=0

(
n

k

)
q

Ak,q(0, y;λ)HA
(s)
n−k,q(x, 0; 1−λ) = λHA

(s)
n,q(x, y;λ)−(1−λ)HA(s)

n,q(x, y; 1−λ).

(2.10)

Proof. We set

(2λ− 1)

(e
t(λ−1)
q − λ)(et(λ−1)q − (1− λ))

=
1

e
t(λ−1)
q − λ

− 1

e
t(λ−1)
q − (1− λ)

.

From the above equation, we see that

(2λ− 1)
(1− λ)eq

(
xt− st2

1+q

)
(1− (1− λ))Eq(yt)

(e
t(λ−1)
q − λ)(et(λ−1)q − (1− λ))

=
(1− λ)eq

(
xt− st2

1+q

)
λEq(yt)

e
t(λ−1)
q − λ

−
(1− λ)eq

(
xt− st2

1+q

)
Eq(yt)(1− (1− λ))

e
t(λ−1)
q − (1− λ)

,

which on using equations (1.10) and (2.1) in both sides, we have

(2λ− 1)

(
∞∑
n=0

HAk,q(0, y;λ)
tk

[k]q!

)(
∞∑
n=0

HA
(s)
n,q(x, 0; 1− λ)

tn

[n]q!

)

= λ

∞∑
n=0

HA
(s)
n,q(x, y;λ)

tn

[n]q!
− (1− λ)

∞∑
n=0

HA
(s)
n,q(x, y; 1− λ)

tn

[n]q!
.

Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of t in both sides of the resultant equation, assertion (2.10) follows.
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Theorem 2.6. The following relation for the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

λHA
(s)
n,q(x, y;λ) =

n∑
k=0

(
n

k

)
q

HA
(s)
n−k,q(x, y;λ)(1− λ)

k − (1− λ)H(s)
n,q(x, y). (2.11)

Proof. Consider the following identity

λ

(e
t(λ−1)
q − λ)et(λ−1)q

=
1

(e
t(λ−1)
q − λ)

− 1

e
t(λ−1)
q

.

Evaluating the following fraction using above identity, we find

λ(1− λ)eq
(
xt− st2

1+q

)
Eq(yt)

(e
t(λ−1)
q − λ)et(λ−1)q

=
(1− λ)eq

(
xt− st2

1+q

)
Eq(yt)

(e
t(λ−1)
q − λ)

−
(1− λ)eq

(
xt− st2

1+q

)
Eq(yt)

e
t(λ−1)
q

λ

∞∑
n=0

HA
(s)
n,q(x, y;λ)

tn

[n]q!
=
∞∑
n=0

HA
(s)
n,q(x, y;λ)

tn

n!

∞∑
k=0

(1−λ)k tk

[k]q!
− (1−λ)

∞∑
n=0

H(s)
n,q(x, y)

tn

[n]q!
.

Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of t in both sides of the resultant equation, assertion (2.11) follows.

Theorem 2.7. The following relation for the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(α,s)
n,q (x, y;λ) =

1

1− λ

n∑
k=0

(
n

k

)
q

[
An−k,q(0, y;λ)HA

(α,s)
k,q ((λ− 1)x, 0;λ)

−λAn−k,q(0, y;λ)HA(α,s)
k,q (x, 0;λ)

]
. (2.12)

Proof. Consider generating function (2.1), we have
∞∑
n=0

HA
(α,s)
n,q (x, y;λ)

tn

[n]q!

=

(
1− λ

e
t(λ−1)
q − λ

)(
e
t(λ−1)
q − λ
1− λ

)(
1− λ

e
t(λ−1)
q − λ

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
1

1− λ

(
1− λ

e
t(λ−1)
q − λ

)
e(λ−1)tq

(
1− λ

e
t(λ−1)
q − λ

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

− λ

1− λ

(
1− λ

e
t(λ−1)
q − λ

)(
1− λ

e
t(λ−1)
q − λ

)α

eq

(
xt− st2

1 + q

)
Eq(yt)

=
1

1− λ

∞∑
n=0

An,q(0, y;λ)
tn

[n]q!

∞∑
k=0

HA
(α,s)
k,q ((λ− 1)x, 0;λ)

tk

[k]q!

− λ

1− λ

∞∑
n=0

An,q(0, y;λ)
tn

[n]q!

∞∑
k=0

HA
(α,s)
k,q (x, 0;λ)

tk

[k]q!
.

Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of t in both sides of the resultant equation, assertion (2.12) follows.
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Theorem 2.8. The following recurrence relation for the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(s)
n+1,q(x, y;λ) = −

(
2s

1 + q

)
[n]qHA

(s)
n−1,q(qx, qy;λ) + xHA

(s)
n,q(x, y;λ)

+yHA
(s)
n,q(qx, qy;λ) +

1

(λ− 1)2

n∑
k=0

(
n

k

)
q

HA
(s)
n−k,q(x, y;λ)q

n−kAk,q(1, λ− 1;λ). (2.13)

Proof. Taking α = 1 and then applying q-derivative on both sides of generating function (2.1), it
follows that

∞∑
n=0

HA
(s)
n+1,q(x, y;λ)

tn

[n]q!
= (1− λ)Dq,t

eq
(
xt− st2

1+q

)
Eq(yt)

e
t(λ−1)
q − λ

 ,

which on performing differentiation in left-hand side, using formula (1.6), yields

∞∑
n=0

HA
(s)
n+1,q(x, y;λ)

tn

[n]q !

= (1− λ)

(eqt(λ−1)q − λ)Dq,t

(
eq(xt)eq

(
− st2

1+q

)
Eq(yt)

)
(e
t(λ−1)
q − λ)(eqt(λ−1)q − λ)


−
eq(qxt)Eq(yqt)eq

(
− sq2t2

1+q

)
Dq,t(e

t(λ−1)
q − λ)

(e
t(λ−1)
q − λ)(eqt(λ−1)q − λ)

= −
(

2s

1 + q

)(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)t

+ x

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
xt− st2

1 + q

)
Eq(yt) + y

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)

+
1

(λ− 1)2

(
1− λ

e
t(λ−1)
q − λ

)
eq

(
qxt− st2

1 + q

)
Eq(qyt)

(
1− λ

e
t(λ−1)
q − λ

)
e(λ−1)tq ,

which on making use of the Cauchy product rule in the right-hand side and comparing the
coefficients of tn

n!
on both sides of the resultant equation gives recurrence relation (2.13).

3 Summation formulae for q-Hermite-based
Frobenius-type Eulerian polynomials

In this section, we provide implicit formulae, Stirling numbers of the second kind and some
relationships for q-Hermite-based Frobenius-type Eulerian polynomials of order α related to
Apostol-type Bernoulli polynomials, Apostol-type Euler polynomials and Apostol-type
Genocchi polynomials. We now begin with the following theorem.
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Theorem 3.1. The following summation formulae for q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(α,s)
k+l,q(z, y;λ) =

k,l∑
n,m=0

(
l

m

)
q

(
k

n

)
q

(z − x)n+mHA(α,s)
k+l−n−m,q(x, y;λ). (3.1)

Proof. We replace t by t+ w and rewrite the generating function (2.1) as(
1− λ

eq((λ− 1)(t+ w)− λ)

)α
Eq(y(t+ w))eq

(
−s(t+ u)2

1 + q

)
= eq(−x(t+ w))

∞∑
k,l=0

HA
(α,s)
k+l,q(x, y;λ)

tk

[k]q!

wl

[l]q!
, (see [18, 19]). (3.2)

Replacing x by z in the above equation and equating the resulting equation to the above
equation, we get

eq ((z − x)(t+ w))
∞∑

k,l=0

HA
(α,s)
k+l,q(x, y;λ)

tk

[k]q!

wl

[l]q!

=
∞∑

k,l=0

HA
(α,s)
k+l,q(z, y;λ)

tk

[k]q!

wl

[l]q!
. (3.3)

On expanding exponential function (3.3) gives
∞∑
N=0

[(z − x)(t+ w)]N

[N ]q!

∞∑
k,l=0

HA
(α,s)
k+l,q(x, y;λ)

tk

[k]q!

wl

[l]q!

=
∞∑

k,l=0

HA
(α,s)
k+l,q(z, y;λ)

tk

[k]q!

wl

[l]q!
, (3.4)

which on using formula [23, p.52(2)]
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (3.5)

in the left-hand side becomes
∞∑

n,m=0

(z − x)n+mtnwm

[n]q![m]q!

∞∑
k,l=0

HA
(α,s)
k+l,q(x, y;λ)

tk

[k]q!

wl

[l]q!

=
∞∑

k,l=0

HA
(α,s)
k+l,q(z, y;λ)

tk

[k]q!

wl

[l]q!
. (3.6)

Now replacing k by k − n, and l by l −m in the left-hand side of (3.6), we get
∞∑

k,l=0

k,l∑
n,m=0

(z − x)n+m

[n]q![m]q!
HA

(α,s)
k+l−n−m,q(x, y;λ)

tk

(k − n)q!
wl

(l −m)q!

=
∞∑

k,l=0

HA
(α)
k+l,q(z, y;λ)

tk

[k]q!

wl

[l]q!
. (3.7)

Finally on equating the coefficients of the like powers of t and w in the above equation, we get
the required result.
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Remark 3.1. By taking l = 0 in Eq. (3.1), we immediately deduce the following result.

Corollary 3.1. The following summation formula for q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(α,s)
k+l,q(z, y;λ) =

k∑
n=0

(
k

n

)
q

(z − x)nHA(α,s)
k−n,q(x, y;λ). (3.8)

Remark 3.2. On replacing z by z + x and setting y = 0 in Theorem 3.1, we get the following
result involving q-Hermite-based Frobenius-type Eulerian polynomials HA

(α,s)
n,q (x, y;λ) of one

variable

HA
(α,s)
k+l,q(z + x;λ) =

k,l∑
n,m=0

(
l

m

)
q

(
k

n

)
q

zn+mHA
(α,s)
k+l−n−m,q(x;λ), (3.9)

whereas by setting z = 0 in Theorem 3.1, we get another result involving q-Hermite-based
Frobenius-type Eulerian polynomials HA

(α,s)
n,q (x, y;λ) of one and two variables

HA
(α,s)
k+l,q(y;λ) =

k,l∑
n,m=0

(
l

m

)
q

(
k

n

)
q

(−x)n+mHA(α,s)
k+l−n−m,q(x, y;λ). (3.10)

Theorem 3.2. The following summation formulae for q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(α+1,s)
n,q (x, y;λ) =

n∑
m=0

(
n

m

)
q

An−m,q(λ)HA
(α,s)
m,q (x, y;λ). (3.11)

Proof. From (2.1), we have

1− λ
eq((λ− 1)t)− λ

(
1− λ

eq((λ− 1)t)− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

=
1− λ

eq((λ− 1)t)− λ

∞∑
m=0

HA
(α,s)
m,q (x, y;λ)

tm

[m]q!

∞∑
n=0

HA
(α+1,s)
n,q (x, y;λ)

tn

[n]q!
=
∞∑
n=0

An,q(λ)
tn

[n]q!

∞∑
m=0

HA
(α,s)
m,q (x, y;λ)

tm

[m]q!
.

Now replacing n by n−m and equating the coefficients of tn leads to formula (3.11).

Theorem 3.3. The following summation formulae for q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) of order α holds true:

HA
(α,s)
n,q (x+ 1, y;λ) =

n∑
k=0

(
n

k

)
q

HA
(α,s)
k,q (x, y;λ).. (3.12)
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Proof. Using Definition 2.1, we have

∞∑
n=0

HA
(α,s)
n (x+ 1, y;λ)

tn

n!
=

(
1− λ

eq((λ− 1)t)− λ

)α
eq

(
(x+ 1) t− st2

1 + q

)
Eq(yt)

=

(
1− λ

eq((λ− 1)t)− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)eq (t)

=

(
∞∑
k=0

HA
(α,s)
k,q (x, y;λ)

tk

[k]q!

)(
∞∑
n=0

tn

[n]q!

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
q

HA
(α,s)
k,q (x, y;λ)

)
tn

[n]q!
.

Finally, equating the coefficients of the like powers of tn, we get (3.12).

The q-Stirling numbers of the second kind are defined by

∞∑
n=0

S2,q(k, n)
tn

[n]q!
=

(eq(t)− 1)k

[k]q!
, see [14–17, 20].

Theorem 3.4. The following relationship

HA
(α,s)
n,q (x, y;λ) =

n∑
u=0

n∑
k=0

(
n

u

)
q

[k]q!

(
−α
k

)
q

(1− λ)k S2,q(k, u)(λ− 1)uH
(s)
n−u,q(x, y) (3.13)

holds true.

Proof. From (2.1), we have

∞∑
n=0

HA
(α,s)
n,q (x, y;λ)

tn

[n]q!

=

(
1− λ

eq((λ− 1)t)− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

= eq

(
xt− st2

1 + q

)
Eq(yt)

(
1 +

eq((λ− 1)t)− 1

1− λ

)−α
=
∞∑
k=0

(
−α
k

)(
eq((λ− 1)t)− 1

1− λ

)k ∞∑
n=0

H(s)
n,q(x, y)

tn

[n]q!

=
∞∑
n=0

(
n∑
u=0

n∑
k=0

(
n

u

)
q

[k]q!

(
−α
k

)
(1− λ)k S2,q(k, u)(λ− 1)uH

(s)
n−u,q(x, y)

)
tn

[n]q!

On comparing the coefficients of tn in both sides, we get (3.13).

Theorem 3.5. The following relationship

HA
(α,s)
n,q (x, y;λ) =

n∑
u=0

n∑
k=0

(
n

u

)
q

[k]q!

(
α + k − 1

k

)
S2,q(k, u)(λ− 1)u+kH

(s)
n−u,q(x, y) (3.14)

holds true.
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Proof. By using the generating function (2.1), we have

∞∑
n=0

HA
(α,s)
n,q (x, y;λ)

tn

[n]q!
=

(
1− λ

eq((λ− 1)t)− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

= eq

(
xt− st2

1 + q

)
Eq(yt)

(
1 +

eq((λ− 1)t)− 1

1− λ

)−α
=
∞∑
k=0

(−1)k
(
α + k − 1

k

)(
eq((λ− 1)t)− 1

1− λ

)k ∞∑
n=0

H(s)
n,q(x, y)

tn

[n]q!

=
∞∑
n=0

(
n∑
u=0

n∑
k=0

(
n

u

)
q

[k]q!

(
α + k − 1

k

)
S2,q(k, u)(λ− 1)u+kH

(s)
n−u,q(x, y)

)
tn

[n]q!

Comparing the coefficients of tn in both sides, we arrive at the required result (3.14).

Theorem 3.6. The following relation between the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) and Apostol-type q-Bernoulli polynomials Bn,q(x;λ) holds true:

HA
(α,s)
n,q (x, y;λ) =

1

[n+ 1]q

n+1∑
k=0

(
n+ 1

k

)
q

(
λ

k∑
r=0

(
k

r

)
q

Bk−r,q(x;λ)−Bk,q(x;λ)

)

×HA(α,s)
n−k+1,q(0, y;λ). (3.15)

Proof. Consider the generating function (2.1), we have

∞∑
n=0

HA
(α,s)
n,q (x, y;λ)

tn

[n]q!

=

(
1− λ

eq(t(λ− 1))− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

(
t

λeq(t)− 1

)(
λeq(t)− 1

t

)
=

1

t

(
λ
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Bk,q(x;λ)
tk

[k]q!

∞∑
r=0

tr

[r]q!

−
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Bk,q(x;λ)
tk

[k]q!

)
. (3.16)

On equating the coefficients of same powers of t after using Cauchy product rule in (3.16),
assertion (3.15) follows.

Theorem 3.7. The following relation between the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) and Apostol-type Euler polynomials En,q(x;λ) holds true:

HA
(α,s)
n,q (x, y;λ) =

1

2

n∑
k=0

(
n

k

)
q

(
λ

k∑
r=0

(
k

r

)
q

Ek−r,q(x;λ) + Ek,q(x;λ)

)

×HA(α,s)
n−k,q(0, y;λ). (3.17)
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Proof. Consider the generating function (2.1), we have
∞∑
n=0

HA
(α)
n,q(x, y;λ)

tn

[n]q!

=

(
1− λ

eq(t(λ− 1))− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

(
2

λeq(t) + 1

)(
λeq(t) + 1

2

)
=

1

2

(
λ
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Ek,q(x;λ)
tk

[k]q!

∞∑
r=0

tr

[r]q!

+
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Ek,q(x;λ)
tk

[k]q!

)
. (3.18)

On equating the coefficients of same powers of t after using Cauchy product rule in (3.18),
assertion (3.17) follows.

Theorem 3.8. The following relation between the q-Hermite-based Frobenius-type Eulerian
polynomials HA

(α,s)
n,q (x, y;λ) and Apostol-type Genocchi polynomials Gn,q(x;λ) holds true:

HA
(α,s)
n,q (x, y;λ) =

1

2 [n+ 1]q

n+1∑
k=0

(
n+ 1

k

)
q

(
λ

k∑
r=0

(
k

r

)
q

Gk−r,q(x;λ) +Gk,q(x;λ)

)

×HA(α,s)
n−k+1,q(0, y;λ). (3.19)

Proof. Consider the generating function (2.1), we have
∞∑
n=0

HA
(α)
n,q(x, y;λ)

tn

[n]q!

=

(
1− λ

eq(t(λ− 1))− λ

)α
eq

(
xt− st2

1 + q

)
Eq(yt)

(
2t

λeq(t) + 1

)(
λeq(t) + 1

2t

)
=

1

2t

(
λ
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Gk,q(x;λ)
tk

[k]q!

∞∑
r=0

tr

[r]q!

+
∞∑
n=0

HA
(α,s)
n,q (0, y;λ)

tn

[n]q!

∞∑
k=0

Gk,q(x;λ)
tk

[k]q!

)
. (3.20)

On equating the coefficients of same powers of t after using Cauchy product rule in (3.20),
assertion (3.19) follows.

4 Conclusion

In the present paper, we have initially considered a novel kind of the Hermite-based Frobenius-
type Eulerian polynomials based on q-numbers and then have provided multifarious correlation,
implicit summation formula, identities, explicit formulas and recurrence relations for the
aforementioned polynomials by means of the series manipulation methods and some special
techniques. The aforegoing polynomials involves a lot of well known special polynomials in
literature.
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Furthermore, we have given several relationships covering the q-Apostol–Bernoulli
polynomials, q-Apostol-Euler polynomials, q-Apostol-Genocchi polynomials and q-Stirling
numbers of the second kind associated with the q-Hermite-based Frobenius-type Eulerian
polynomials.
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