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Abstract: Let n be a positive integer and k be a non-negative integer. We define

p(n, k) =

n(n+ k), if k ≡ 0 (mod 2);
n(n+k)

2
, if k ≡ 1 (mod 2),

and D(n, k) to be the number of ways n can be expressed as a difference of two elements from
the sequence p(n, k). Nyblom found closed expressions for D(n, 0) and D(n, 1) in terms of
some restricted number-of-divisors functions. Here we re-establish these two results of Nyblom
in a relatively simple way. Along with the other interpretations for D(n, k), an expression for
D(n, k) is presented in terms of restricted form ofD(n, 0) andD(n, 1). Also we consider another
function due to Nyblom, denoted pD(n), which counts the number of partitions of n with parts
in arithmetic progression having common difference D. Nyblom and Evan found a simple
expression for p2(n) and put pD(n) in terms of a divisor-counting functions when D ≥ 3. Here
we re-establish Nyblom’s expression for p2(n), and find equinumerous expressions for pD(n)
when D ≥ 3. Finally, we present the following generalised version of D(n, k): given a set
of positive integers say, A, we denote by D(n,A), the number of ways n can be written as
a difference of two elements from the set A. And we express D(n,A) in terms of partition
enumerations when some restrictions are imposed upon the elements of A. We close with the hint

that, boundedness ofD(n,A) together with the divergence of
∑

a∈A
1

a
disproves Erdős arithmetic

progression conjecture.
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1 Introduction

Nyblom [6] converted the problem of finding the number of representation of integers as a
difference of two squares to a system of linear Diophantine equation and thereby got the
following expression:

S(n) =
1

2

(
τe(n) + (−1)n+1τo(n) +

1 + (−1)τ(n)+1

2

)
, (1)

where S(n) denote the number of ways n can be expressed as a difference of two square numbers,
τe(n)(resp. τo(n)) denote the number of even (resp. odd) positive divisors of n and τ(n) denote
the number of positive divisors of n. In Section 2, we establish this expression in a simple and
different way by counting a particular kind of divisors of n; this counting has already been done
in a paper by the author [2].

In one of the other paper of Nyblom [5] following expression was derived:

T (n) = τo(n), (2)

where T (n) denote the number of ways n can be expressed as a difference of two triangular
numbers. Even to derive this expression, Nyblom employed a technique similar to the one used
in deriving (1). In Section 2, we establish (2) by counting another kind of divisors of n; essentials
of this counting has been derived already in the same paper of the author [2].

Now, we define a sequence which is a common generalisation of square number sequence
and triangular number sequence and find the expression of the above kind when elements of this
sequence come into play.

Definition 1.1. Let n be a positive integer and k be a non-negative integer. We define

p(n, k) =


n(n+ k), if k ≡ 0 (mod 2);

n(n+ k)

2
, if k ≡ 1 (mod 2),

and D(n, k) to be the number of ways n can be expressed as a difference of two elements from
the sequence p(n, k).

From this definition, it follows that:

S(n) =

D(n, 0)− 1, if δ(n) = 1;

D(n, 0), if δ(n) = 0,
(3)

where δ denotes the characteristic function of square numbers. Moreover, we have

T (n) = D(n, 1). (4)

The sequences p(n, k) for the initial cases k = 2, 3, 4, 5, 6 (with comments) can be found,
respectively, in A005563, A000096, A028347, A055998 and A028560 of Online Encyclopedia
of Integer Sequences. Following result concerning p(n, k) is straightforward.
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Lemma 1.2. Let n be a positive integer and let k be a non-negative integer. Then

p(n, k) =


p(n+ 1, k − 2)− (k − 1), if k ≡ 0 (mod 2);

p(n+ 1, k − 2)− k − 1

2
, if k ≡ 1 (mod 2).

(5)

This lemma is instrumental in deriving expressions (which are presented in Section 2) for
D(n, k) in a restricted form of D(n, 0) and D(n, 1).

Next we are concerned with another result of Nyblom and Evan. The following definition is
essential for mentioning that result.

Definition 1.3. Let n and D be two positive integers. Then the function pD(n) is defined to be
the number of partitions of n with parts in arithmetic progression having common difference D.

Note that, in the above definition, we consider the partition (n) of n as a partition in an
arithmetic progression.

R. Cook and D. Sharp [1] found a necessary and sufficient condition for an integer n to be
written as a sum of arithmetic progression. In this sequence, Nyblom and Evans [7] defined the
function pD(n) and obtained that:

p2(n) =
1

2

(
τ(n)− 2 +

(−1)τ(n)+1 + 1

2

)
+ 1, (6)

and also they have obtained an interpretation for the term pD(n) in terms of a divisor-counting
function. A. O. Munagi [4] pointed out that such an expression for pD(n) by Nyblom and Evans
is a complicated one. In Section 2 we re-establish (6) and also we find alternative interpretation
for pD(n) which is relatively simple to that of Nyblom and Evans.

Section 3 is concerned with a generalisation of the above problem, that is, we are concerned
with the number of ways a positive integer n can be expressed as a difference of two elements of
a given set of positive integers. Following definition forms a basis for Section 3.

Definition 1.4. Let n be a positive integer and let A be a set of positive integers. Then we define
the functionD(n,A) to be the number of ways n can be expressed as a difference of two elements
from the the set A.

In Section 3 we found that the function D(n,A) is equinumerous with a kind of partitions
involving the set A with some additional constraints. We close by mentioning a connection
between boundedness of D(n,A) and Erdős arithmetic progression conjecture.

Notations and definitions in this section bears the same meaning throughout the article when
used.

2 Proof and an Extension of Nyblom’s results

2.1 Alernative proof of Nyblom’s results

In this section we give an alternative and simple proofs of Nyblom’s expressions [5, 6].
Let n be a positive integer. Suppose that n can be written as a difference of two squares; both

non-zero. Then we have the following equalities:
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n = y2 − x2

= (x+ d)2 − x2

= 2dx+ d2.

This gives the following congruence:
n

d
− d ≡ 0 (mod 2) (7)

with n

d
− d ≥ 1.

Conversely, every solution to the congruence above gives a representation of n as a difference
of two squares; both non-zero.

In [2] to conclude Theorem 5, the number of divisors d of n satisfying the congruence (7) was
counted. Now in view of the above observations, we equate that counting with D(n, 0).

D(n, 0) =



τ(n)

2
if n ≡ 1 (mod 2) and δ(n) = 1;

τ(n)− 1

2
if n ≡ 1 (mod 2) and δ(n) = 0;

(β − 1)τ( n
2β
)− 1

2
if n ≡ 0 (mod 2) and δ(n) = 1;

(β − 1)τ( n
2β
)

2
if n ≡ 0 (mod 2) and δ(n) = 0,

(8)

where β is the highest power of 2 that divides n.
Now we observe that (8) is a disguised form of (1).

Case i. When n ≡ 1 (mod 2) and δ(n) = 0, in accordance with (1), we can write

D(n, 0) =
1

2

(
τe(n) + τo(n) +

1 + 1

2

)
− 1

=
1

2
(τ(n) + 1)− 1

=
τ(n)− 1

2
.

Case ii. When n ≡ 1 (mod 2) and δ(n) = 1, in accordance with (1), we can write

D(n, 0) =
1

2

(
τe(n) + τo(n) +

1− 1

2

)
=

1

2
τ(n).

Case iii. When n ≡ 0 (mod 2) and δ(n) = 1, by (1), we have

D(n, 0) =
1

2
(τe(n)− τo(n) + 1)− 1

=
1

2

(
βτ
( n
2β
)
− τ
( n
2β
)
+ 1
)
− 1

=
1

2

(
(β − 1)τ

( n
2β
)
− 1
)
.
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Case iv. When n ≡ 0 (mod 2) and δ(n) = 0, as before, we have

D(n, 0) =
1

2
(τe(n)− τo(n))

=
1

2

(
(β − 1)τ

( n
2β
))
.

Thus we have obtained a proof of (1).
Now we turn to the derivation of (2). Suppose that n can be written as a difference of two

triangular numbers. Then we have

n =
y(y + 1)

2
− x(x+ 1)

2

=
(x+ d)(x+ d+ 1)

2
− x(x+ 1)

2
.

This gives
2n

d
− d = 2x+ 1

for some non-negative integer x.
From this, we observe that T (n) equals the number of divisors d of 2n which satisfies the

following:

1. d <
√
2n;

2. Either d is odd or d = 2β+1k for some integer k, where β as before denotes the highest
power of 2 that divides n.

Now again from the lines of proof of Theorem 5 in [2] we can write

T (n) =


τ(2n)

2
−

(β + 1− 1)τ
(

2n
2β+1

)
2

if δ(2n) = 0;

τ(2n)− 1

2
−

(β + 1− 1)τ
(

2n
2β+1

)
− 1

2
if δ(2n) = 1.

Above equality is equivalent to

T (n) =


τe(2n) + τo(2n)− (τe(2n)− τo(2n))

2
if δ(2n) = 0;

τe(2n) + τo(2n)− 1

2
− τe(2n)− τo(2n)− 1

2
if δ(2n) = 1.

Consequently, we get

T (n) =τo(2n)

=τo(n).

Thus Nyblom’s expression for T (n) is re-established.

Now we turn to another result of Nyblom and Evans about p2(n) mentioned in (6). Our
derivation is based upon the following observation: if n can be written as a sum of the terms
in arithmetic progression with common difference D, then we have:
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n = a+ (a+D) + · · ·+ (a+ (m− 1)D)

= ma+
m(m− 1)

2
D.

This gives
2n = 2ma+m2D −mD. (9)

When D = 2, we have
n

m
−m = a− 1.

Thus p2(n) equals the number of divisors of n satisfying the above equation. Since a is positive,
p2(n) equals the number of divisors m of n satisfying the inequality m ≤

√
n. One can see that

if n is a non-square then the mapping m→ n

m
is one-one and non-fixed. If n is a square number

then the mapping m → n

m
is again one-one and non-fixed when m <

√
n and m fixes to itself

under the map m→ n

m
if m =

√
n. These observations lead to the conclusion that

p2(n) =


τ(n)

2
if δ(n) = 0;

τ(n)− 1

2
+ 1 if δ(n) = 1.

(10)

Thus the expression for p2(n) due to Nyblom and Evans [7] follows.

Next we give an alternative interpretation for p2D(n) and p2D+1(n) in terms of a divisor-
counting function which is the contention of the following result.

Theorem 2.1. Let n and D be positive integers. Then we have

1. p2D(n) equals the number of divisors m of n such that m <
D +

√
D2 + 4Dn

2D
.

2. p2D−1(n) equals the number of divisors m of 2n such that m <
(D− 1

2
)+
√

(D− 1
2
)2+2(2D−1)n

2D−1 .

Proof. If common difference is 2D then from (9) it follows that

n

m
− (m− 1)D = a > 0. (11)

This can be put as a quadratic inequality

m2D −mD − n < 0.

After factoring we get(
m− D −

√
D2 + 4Dn

2D

)(
m− D +

√
D2 + 4Dn

2D

)
< 0.

Since the first factor is always positive we have(
m− D +

√
D2 + 4Dn

2D

)
< 0.

121



Also from (9) we conclude thatmmust be a divisor of n. Moreover every divisorm of n satisfying
the above inequality contribute to the equality (11). Hence first part of the result follows. Similar
approach will settle the second part.

Definition 2.2. Let n be a positive integer. By unrestricted partition of n, we mean a non-
increasing sequence of integers say (a1, a2, . . . , ak) such that a1 + a2 + · · · + ak = n. We
use puD(n) to denote the number of unrestricted partitions of n whose parts follows arithmetic
progression with common difference D.

Theorem 2.3. Let n be a positive integer. Then we have

puD(n) =

τ(n) if D ≡ 0 (mod 2);

2τo(n) if D ≡ 1 (mod 2).
(12)

Proof. Assume that the common difference is 2D, an even integer. Then from (9) it follows that
n

m
− (m− 1)D = a. (13)

Since a can be any integer, each divisor m of n contribute an a. Consequently, corresponding to
each divisor m of n there exists an unrestricted partition of the said type and vice versa. Hence
the first part of the result follows.

Assume that the common difference is 2D + 1, an odd integer. Then from (9) it follows that

2n

m
− (2D + 1)(m− 1) = 2a. (14)

Choosing divisors m of 2n such that either m is odd or m is of the form m = 2β(2r + 1), where
β is the highest power of 2 that divides 2n will alone contribute an even integer 2a at the right
side of (14). As one can see, the number of such divisors is τo(2n) + τo(2n), which is equal to
2τo(n). Now the result follows.

Remark 2.4. It is interesting to note that the function pD(n) is independent of the value of D,
whereas it is dependent on the parity of D and the factorisation of n.

2.2 Other interpretations of the term D(n, k)

Now we confine to the expression D(n, k) when k exceeds 1.

Case i. Assume that k ≡ 1 (mod 2). If n can be written as a difference of two members from
the sequence p(n, k), then we have

n = p(y, k)− p(x, k)
= p(x+ d, k)− p(x, k)

=
(x+ d)(x+ d+ k)

2
− x(x+ k)

2
.

This implies that
2n

d
− d = 2x+ k. (15)

From this observation, we have the following result.
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Theorem 2.5. Let k ≡ 1 (mod 2) be a positive integer and let n be a positive integer. Then
D(n, k) counts the divisors d of 2n such that 2n

d
− d is an odd integer not less than k.

Corollary 2.6. Let k ≡ 1 (mod 2) be a positive integer and let n be a positive integer such that:
for each divisor d of 2n, 2n

d
− d is an odd integer not less than k. Then D(n, k) = D(n, 1).

Case ii. Assume that k ≡ 0 (mod 2). If n can be written as a difference of two members from
the sequence p(n, k), then we have

n = p(y, k)− p(x, k)
= p(x+ d, k)− p(x, k)
= (x+ d)(x+ d+ k)− x(x+ k).

This implies that
n

d
− d = 2x+ k. (16)

From this observation, we have the following result.

Theorem 2.7. Let k ≡ 0 (mod 2) be a positive integer and let n be a positive integer. Then
D(n, k) counts the divisors d of n such that n

d
− d is an even integer not less than k.

Corollary 2.8. Let k ≡ 0 (mod 2) be a positive integer and let n be a positive integer such that:
for each divisor d of n, n

d
− d is an even integer not less than k. Then D(n, k) = D(n, 0).

To mention some of the forthcoming results, some basic terminologies from partition theory
are required.

Definition 2.9. Let n be a positive integer. By a partition of n, we mean a sequence of non-
increasing positive integers say π = (a1, a2, . . . , ak) such that a1 + a2 + · · ·+ ak = n. Each ai is
called a part of π and the number of times part ai occurs is referred as the frequency of ai. Each
element in the set of parts of π is called a size of π.

We observe that (15) can be put in the form: 2n = (f1 + f2)f1 + f1(f2 + k) for some positive
integers f1 and f2. This leads to the following result.

Theorem 2.10. Let n be a positive integer and let k ≡ 1 (mod 2) be a positive integer. Then
D(n, k) equals the number of partitions of 2n with sizes f1 + f2 and f1 with their respective
frequencies f1 and f2 + k.

Similar observation on (16) gives the following result.

Theorem 2.11. Let n be a positive integer and let k ≡ 0 (mod 2) be a positive integer. Then
D(n, k) equals the number of partitions of n with sizes f1 + f2 and f1 with their respective
frequencies f1 and f2 + k.

We observe that: p(m, 2k − 1) = k + (k + 1) + · · · + (k +m − 1). Therefore, if n can be
written as a difference of two elements from p(m, 2k − 1), then this difference gives a partition
of n with consecutive integers as parts with least part not less than k and vice versa. This gives
the following result.
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Theorem 2.12. Let n be a positive integer. Then D(n, 2k− 1) equals the number of partitions of
n with consecutive integers as parts with least part not less than k.

Since p(m, 2k) = (2k + 1) + (2k + 3) + · · · + (2k + 2m − 1), as in the previous case, we
have the following result.

Theorem 2.13. Let n be a positive integer. Then D(n, 2k) equals the number of partitions of n
with consecutive odd integers as parts with least part not less than 2k + 1.

Remark 2.14. From the above results we see that the following enumerations are equivalent and
are equal with D(n, k) when k is an odd integer:

1. Number of divisors d of 2n such that 2n

d
− d is an odd integer not less than k.

2. Number of partitions of 2n with sizes f1 + f2 and f1 with their respective frequencies f1
and f2 + k.

3. Number of partitions of n with consecutive integers as parts with least part not less than
k + 1

2
.

Similarly following enumerations are equivalent and are equal with D(n, k) when k is even:

1. Number of divisors d of n such that n

d
− d is an even integer not less than k.

2. Number of partitions of n with sizes f1+ f2 and f1 with their respective frequencies f1 and
f2 + k.

3. Number of partitions of n with consecutive odd integers as parts with least part not less
than k + 1.

To realise the essence of Lemma 1.2 we need the following definition.

Definition 2.15. Let n and r be two positive integers and k be a non-negative integer. Denote
by D(n, k, r), the number of ways n can be expressed as a difference of two elements from the
sequence {p(n, k)}n≥r+1.

As a consequence of Lemma 1.2, the function D(n, k) can be written in terms of D(n, k, r)

which is the contention of the following result.

Theorem 2.16. Let n be a positive integer and k be a non-negative integer. Then we have

D(n, k) =


D
(
n, 1,

k − 1

2

)
if k ≡ 1 (mod 2);

D
(
n, 0,

k

2

)
if k ≡ 0 (mod 2).

(17)

Proof. Assume k ≡ 1 (mod 2). In view of Lemma 1.2 we can write

D(n, k) = D(n, k − 2, 1)

= D(n, k − 4, 2)

and so on. Then after the k − 1

2
times of repeated application of Lemma 1.2 as above we get

D(n, k) = D
(
n, 1,

k − 1

2

)
,

which is the expected end. Similar application of Lemma 1.2 serves good in odd case.
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3 Generalised version of Nyblom’s results

3.1 An interpretation for D(n,A)

Recall from Definition 1.4 that D(n,A) is the number of ways n can be written as a difference of
two elements from the set A. We presumably take gcd(A) = 1. For otherwise, integer n which
are non-multiples of gcd(A) cannot be expressed as a difference of elements from A. Following
theorem gives an interpretation for D(n,A) in terms of an integer partition enumeration.

Theorem 3.1. Let n be a positive integer and let P = {a1, a2, . . . } be a set of positive integers
with gcd(P ) = 1 and a1 < a2 < · · · . Define sn = a1 + a2 + · · · + an for every n ≥ 1 and
A = {s1, s2, . . . }. Then D(n,A) equals the number of partitions of n with parts as consecutive
elements of P .

Proof. If n can be written as difference of two elements from A then we have

n = sk − sr
= ar+1 + ar+2 + · · ·+ ak

for some k > r. Thus this difference gives a representation of n as a sum of consecutive members
of P .

On the other side, if
n = ar+1 + ar+2 + · · ·+ ak

with k > r, then we can write
n = sk − sr.

Hence, the representation as a sum of consecutive elements of P gives a representation of n as a
difference of elements of A. This correspondence establishes the result.

Corollary 3.2. Let n be a positive integer. Then we have

1. The number of ways n can be written as a difference of squares of triangular numbers
equals the number of ways n can be written as the sum of consecutive cubes.

2. No prime can be expressed as a sum of consecutive cubes.

3. The number of ways n can be expressed as a difference of two Fibonacci numbers equals
the number partitions of n with parts as consecutive Fibonacci numbers.

Proof. Statements 1. and 2. follows from the identity

13 + 23 + · · ·+ n3 =
(n(n+ 1)

2

)2
.

Statement 3. follows from the identity:

F0 + F1 + · · ·+ Fn = Fn+2 − 1.
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3.2 Boundedness ofD(n,A) and Erdős Arithmetic Progression Conjecture

Erdős conjectured that, if
∑

a∈A
1

a
diverges then A contains arithmetic progression of arbitrary

length. Now if we assume that the conjecture is true then the boundedness of D(n,A) implies
the convergence of

∑
a∈A

1

a
. For if

∑
a∈A

1

a
is diverging, then since we assume the truthness of

Erdős conjecture, for any given positive integer k we have

{a, a+ d, a+ 2d, · · · , a+ kd} ⊂ A

for some positive integers a and d. Consequently, D(d,A) ≥ k. That is for any given positive
integer k we can find a positive integer d such that D(d,A) ≥ k. Thus D(n,A) is unbounded.

Next we observe that the converse of the above statement need not be true; for we have the
converging series

∑∞
n=1

1

n2
butD(n, {12, 22, · · · }) is not bounded. Based upon this discussion we

state our closing result.

Theorem 3.3. If there exist a set of positive integer, say A, such that
∑

a∈A
1

a
diverges and

D(n,A) is bounded, then the Erdős arithmetic progression conjecture fails.

Remark 3.4. If one finds a set of positive integers satisfying the hypothesis of the above theorem,
then the Erdős conjecture will be laid to rest.
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