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Abstract: By the theory of Pell equation and congruence, we study the problem about the linear
combination of two polygonal numbers is a perfect square. Let Pk(x) denote the x-th k-gonal
number. We show that if k ≥ 5, 2(k − 2)n is not a perfect square, and there is a positive integer
solution (Y ′, Z ′) of Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n satisfying

Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2),

then the Diophantine equation 1+nPk(y) = z2 has infinitely many positive integer solutions (y, z).
Moreover, we give conditions aboutm,n such that the Diophantine equationmPk(x)+nPk(y) =

z2 has infinitely many positive integer solutions (x, y, z).
Keywords: Polygonal number, Diophantine equation, Pell equation, Positive integer solution.
2010 Mathematics Subject Classification: 11D09, 11D72.

1 Introduction

A polygonal number [4] is a positive number, corresponding to an arrangement of points on the
plane, which forms a regular polygon.
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The x-th k-gonal number [4, p. 5] is

Pk(x) =
x
(
(k − 2)(x− 1) + 2

)
2

,

where x ≥ 1, k ≥ 3. There are many papers about the polygonal numbers and many properties
of them have been studied, we can refer to the first chapter of [5] and D3 of [8].

In 2005, Bencze [1] raised a problem: find all positive integers n for which

1 +
9

2
n(n+ 1) = 1 + 9P3(n)

is a perfect square. In 2007, Le [11] gave a complete answer to Bencze’s problem and showed
that all such n are given by

n =
1

2

(1
6
(a2k+1 + b2k+1)− 1

)
,

where a = 3 +
√
8, b = 3−

√
8, and k ∈ Z+. In 2011, Guan [7] proved that all positive integers

n for which 1+
8s2

s2 − 1
P3(n) is a perfect square are given by

n =
1

2

( 1
2s

(a2k+1 + b2k+1)− 1
)
,

where a = s +
√
s2 − 1, b = s −

√
s2 − 1, and s is a positive odd integer with s > 1, k ∈ Z+.

In 2013, Hu [9] used the theory of Pell equation to study the positive integer solutions of the
Diophantine equation

1 + nP3(y − 1) = z2,

where

n =



t2 ± 1

2
, t ≡ 1 (mod 2), t ≥ 3,

t2 ± 2

2
, t ≡ 0 (mod 2), t ≥ 2,

t(t− 1)

2
, t ≥ 2.

In 2019, Peng [12] showed that if 2n is not a perfect square, then the Diophantine equation
1 + nP3(y − 1) = z2 has infinitely many positive integer solutions, and if n =

d(t)

2
, then the

Diophantine equation 1 + nP3(y − 1) = z2 has infinitely many positive integer solutions, where
d(t) are some special polynomials. Meanwhile, she studied the Diophantine equation

mP3(x− 1) + nP3(y − 1) = z2,

where m,n ∈ Z+, and proved that when m(m+ 1)

2
= u2, n = 1, there exist infinitely many pairs

(a, b) of integer numbers such thatmP3(x−1)+nP3(y−1) = z2 has integer parametric solutions
(t, at+ b, u(ct+ d)), where t is a positive integer greater than 1.

Moreover, she got two general results:

1) If 2(m+ n) is not a perfect square, r ∈ Z, and the Pell equation

X2 − 2(m+ n)Z2 =

(
m+ n

2

)2

− r2mn
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has a positive integer solution satisfying

X0 − rn+
m+ n

2
≡ 0 (mod m+ n),

then the Diophantine equation mP3(x− 1) + nP3(y− 1) = z2 has infinitely many positive
integer solutions.

2) Let u, v be integers with u >
√
2v, and u being a positive even integer. If m = (u2−2v2)2,

n = 8u2v2, then the Diophantine equation mP3(x − 1) + nP3(y − 1) = z2 has infinitely
many positive integer solutions.

For more related results, we refer to [2, 13–15].

2 Main results

In this paper, we continue the study of [12], and consider the positive integer solutions of the
Diophantine equations

1 + nPk(y) = z2 (2.1)

and
mPk(x) + nPk(y) = z2, (2.2)

where k ≥ 5, and k,m, n ∈ Z+. When k = 4, there are general results (see [3, p. 345,
Corollary 6.3.6]).

By the theory of Pell equation, we give a positive answer to Question 4.1 of [12] and have the
following theorems.

Theorem 2.1. If k ≥ 5, 2(k− 2)n is not a perfect square, and there is a positive integer solution
(Y ′, Z ′) of Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n satisfying

Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2),

then Eq. (2.1) has infinitely many positive integer solutions (y, z).

Theorem 2.2. When k ≥ 5 and m = (r(k − 2) − 1)n, if (r(k − 2)− 1)nr

2
is a perfect square,

then there exist infinitely many pairs (a, b) of positive integers such that Eq. (2.2) has integer
parametric solutions (x, ax+ b, u(cx+ d)), where r is a positive integers.

Moreover, we get

Theorem 2.3. If k ≥ 5, 2(k − 2)(m+ n) is not a perfect square, r ∈ Z, and the Pell equation

X2 − 2(k − 2)(m+ n)Z2 = (k − 4)2(m+ n)2 − 4(k − 2)2mnr2

has a positive integer solution (X0, Z0) satisfying

X0 − 2(k − 2)nr + (k − 4)(m+ n) ≡ 0 (mod 2(k − 2)(m+ n)), Z0 ≡ 0 (mod 2),

then Eq. (2.2) has infinitely many positive integer solutions (x, y, z).
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In particular,

Theorem 2.4. Let k ≥ 5, m = 2(u2− 4u− 4)2, n = 2(u2+4u− 4)2. If 2(k− 2) is not a perfect
square, and the Pell equation X2 − 8(k − 2)(u2 + 4)2Z2 = 1 has a positive integer solution
(U0, V0) satisfying U0−1 ≡ 0 (mod 2(k−2)), then Eq. (2.2) has infinitely many positive integer
solutions (x, y, z).

Remark 2.5. When k = 3, these are the cases studied by Peng [12].

3 Preliminaries

To prove the above results, we give the following well-known lemmas (for example, see [10]).

Lemma 3.1 ( [10]). Let D be a positive integer which is not a perfect square, then the Pell
equation x2 − Dy2 = 1 has infinitely many positive integer solutions. If (U, V ) is the least
positive integer solution of the Pell equation x2−Dy2 = 1, then all positive integer solutions are
given by

xs + ys
√
D = (U + V

√
D)s,

where s is an arbitrary integer.

Lemma 3.2 ( [10]). Let D be a positive integer which is not a perfect square, N be a nonzero
integer, and (U, V ) is the least positive integer solution of x2 −Dy2 = 1. If (x0, y0) is a positive
integer solution of x2 −Dy2 = N, then an infinity of positive integer solutions are given by

xs + ys
√
D = (x0 + y0

√
D)(U + V

√
D)s,

where s is an arbitrary integer.

Lemma 3.3 ([6]). Let D be a positive integer which is not a perfect square, m1,m2 are positive
integers, and N be a nonzero integer. If the Pell equation x2 − Dy2 = N has a positive integer
solution satisfying

u0 ≡ a (mod m1), v0 ≡ b (mod m2),

then it has infinitely many positive integer solutions satisfying

u ≡ a (mod m1), v ≡ b (mod m2).

4 Proofs of the Theorems

Proof of Theorem 2.1. Multiplying Eq. (2.1) by 8(k − 2)n, we have

(n(2(k − 2)y − (k − 4)))2 − 2(k − 2)n(2z)2 = (k − 4)2n2 − 8(k − 2)n.

Setting Y = n(2(k − 2)y − (k − 4)), Z = 2z, we get the Pell equation

Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n. (4.1)
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By Lemma 3.1, if k ≥ 5 and 2(k − 2)n is not a perfect square, the Pell equation
Y 2 − 2(k − 2)nZ2 = 1 always has an infinite number of positive integer solutions. And
suppose (u, v) is the least positive integer solution of Y 2 − 2(k − 2)nZ2 = 1. It is easy to
see that (Y0, Z0) = ((k − 4)n, 2) is a positive integer solution of Eq. (4.1). By Lemma 3.2, an
infinity of positive integer solutions of Eq. (4.1) are given by

Ys + Zs

√
2(k − 2)n =

(
(k − 4)n+ 2

√
2(k − 2)n

)(
u+ v

√
2(k − 2)n

)s
, s ≥ 0.

If there is a positive integer solution (Y ′, Z ′) of Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n

satisfying
Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2).

Lemma 3.3 guarantees that Eq. (4.1) has infinitely many positive integer solutions (Y, Z) with
the above condition. Then there are infinitely many

y =
Y + (k − 4)n

2(k − 2)n
∈ Z+, z =

Z

2
∈ Z+.

Thus, if k ≥ 5 and 2(k − 2)n is not a perfect square, and there is a positive integer solution
(Y ′, Z ′) of Y 2 − 2(k − 2)nZ2 = (k − 4)2n2 − 8(k − 2)n satisfying

Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2),

Eq. (2.1) has infinitely many positive integer solutions (y, z).

Remark 4.1. In Theorem 2.1, (u, v) is the least positive integer solution of Y 2−2(k−2)nZ2 = 1

and (Y0, Z0) = ((k − 4)n, 2) is a positive integer solution of Eq. (4.1), so we have{
Ys = 2uYs−1 − Ys−2, Y0 = (k − 4)n, Y1 = ((k − 4)u+ 4(k − 2)v)n,

Zs = 2uZs−1 − Zs−2, Z0 = 2, Z1 = (k − 4)nv + 2u.

When (k − 4)(u+ 1) ≡ 0 (mod 2(k − 2)) and v ≡ 0 (mod 2), it is easy to check that

Ys ≡ 0 (mod n), Zs ≡ 0 (mod 2) and Y1 + (k − 4)n ≡ 0 (mod 2(k − 2)n).

Let Ys = nY ′s , then

Y ′s = 2uY ′s−1 − Y ′s−2, Y ′0 = k − 4, Y ′1 = (k − 4)u+ 4(k − 2)v,

it is easy to prove that

Ys ≡

{
(k − 4) (mod 2(k − 2)), s ≡ 0 (mod 2),

− (k − 4) (mod 2(k − 2)), s ≡ 1 (mod 2).

Hence, when s ≡ 1 (mod 2), we have

Ys + (k − 4)n ≡ 0 (mod 2(k − 2)n), Zs ≡ 0 (mod 2).
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Example 4.2. When k = 5, n = 3, then 2(k − 2)n = 18 is not a perfect square. (u, v) = (17, 4)

is the least positive integer solution of Y 2 − 18Z2 = 1, so

u+ 1 ≡ 0 (mod 6), v ≡ 0 (mod 2).

(Y0, Z0) = (3, 2) is the least positive integer solution of Y 2 − 18Z2 = −63, then{
Ys = 34Ys−1 − Ys−2, Y0 = 3, Y1 = 195,

Zs = 34Zs−1 − Zs−2, Z0 = 2, Z1 = 46.

By Remark 4.1, when s ≡ 1 (mod 2), we have

ys =
Ys + 3

18
∈ Z+, zs =

Zs

2
∈ Z+.

Therefore, Eq. (2.1) has infinitely many positive integer solutions (ys, zs).

Proof of Theorem 2.2. If we let m = tn and y = ax+ b, then Eq. (2.2) reduces to

n(k − 2)(a2 + t)

2
x2+

n(2(k − 2)ab− (k − 4)(a+ t))

2
x+

nb((k − 2)b− (k − 4))

2
= z2. (4.2)

Consider

g(x) =
n(k − 2)(a2 + t)

2
x2 +

n(2(k − 2)ab− (k − 4)(a+ t))

2
x+

nb((k − 2)b− (k − 4))

2

as a quadratic polynomial of x, if g(x) = 0 has a root with multiplicity 2, the discriminant of g(x)
is zero, i.e.,

n2

4
((k−4)2a2−2t(k−4)(2(k−2)b−(k−4))a−t(4(k−2)2b2−4(k−2)(k−4)b−t(k−4)2)) = 0.

It implies

a =
2t(k − 2)b− (k − 4)t+ 2

√
b(k − 2)t(t+ 1)((k − 2)b− (k − 4))

k − 4
. (4.3)

To find a ∈ Z+, we take b(k − 2)t(t+ 1)((k − 2)b− (k − 4)) = v2, then

(2v)2 − t(t+ 1)(2(k − 2)b− (k − 4))2 = −(k − 4)2t(t+ 1).

Letting X = 2v, Y = 2(k − 2)b− (k − 4), we obtain the Pell equation

X2 − t(t+ 1)Y 2 = −(k − 4)2t(t+ 1). (4.4)

It is easy to see that the pair (X0, Y0) = (2(k−4)t(t+1), (k−4)(2t+1)) is a positive integer solu-
tion of Eq. (4.4), and the pair (U, V ) = (2t+1, 2) solves the Pell equation X2 − t(t+ 1)Y 2 = 1.

So an infinity of positive integer solutions of Eq. (4.4) are given by

Xs+Ys
√
t(t+ 1) =

(
2(k−4)t(t+1)+(k−4)(2t+1)

√
t(t+ 1)

)(
2t+1+2

√
t(t+ 1)

)s

, s ≥ 0.
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Thus{
Xs = 2(2t+ 1)Xs−1 −Xs−2, X0 = 2(k − 4)t(t+ 1), X1 = 4(k − 4)t(t+ 1)(2t+ 1),

Ys = 2(2t+ 1)Ys−1 − Ys−2, Y0 = (k − 4)(2t+ 1), Y1 = (k − 4)(8t2 + 8t+ 1).

According to the above recurrence relations, we have

Xs ≡ 0 (mod (k − 4)), Ys ≡ 0 (mod (k − 4)).

By Eq. (4.3), we get

as =
Xs + 2(k − 2)bt− (k − 4)t

k − 4
=
tYs +Xs

k − 4
.

So as is a positive integer. From Ys = 2(k − 2)bs − (k − 4), we obtain

bs =
Ys + (k − 4)

2(k − 2)
.

Further, we get
as = 2(2t+ 1)as−1 − as−2, a0 = (4t+ 3)t, a1 = (16t2 + 20t+ 5)t,

bs = 2(2t+ 1)bs−1 − bs−2 −
2t(k − 4)

k − 2
, b0 =

(k − 4)(t+ 1)

k − 2
, b1 =

(k − 4)(2t+ 1)2

k − 2
.

In order for bs to be a positive integer, we need Ys + (k − 4) ≡ 0 (mod 2(k − 2)).
When t ≡ −1 (mod (k − 2)), we have Y0 + (k − 4) ≡ 0 (mod 2(k − 2)), and the above

recurrence relations imply that

Ys ≡

{
− (k − 4) (mod 2(k − 2)), s ≡ 0 (mod 2),

(k − 4) (mod 2(k − 2)), s ≡ 1 (mod 2).

Therefore, when s ≡ 0 (mod 2), we have

Ys + (k − 4) ≡ 0 (mod 2(k − 2)),

so bs is a positive integer.
Taking t = r(k − 2)− 1, Eq. (4.2) now becomes

(r(k − 2)− 1)nr

2
(cx+ d)2 = z2.

If (r(k − 2)− 1)nr

2
is a perfect square, there exist infinitely many pairs (a, b) of positive integers

such that Eq. (2.2) has positive integer parametric solutions (x, ax + b, u(cx + d)), where r is a
positive integers.

Example 4.3. When k = 5, r = 1, m = 2, n = 1, (r(k − 2)− 1)nr

2
= 1 is a perfect square.

Taking a0 = 22, b0 = 1, Eq. (2.2) has positive integer parametric solutions (x, 22x+1, 27x+1),

where x is a positive integer.
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Proof of Theorem 2.3. Letting y = x+ r, r ∈ Z, Eq. (2.2) equals

(2(k − 2)(m+ n)x+ 2(k − 2)nr − (k − 4)(m+ n))2 − 2(k − 2)(m+ n)(2z)2

= (k − 4)2(m+ n)2 − 4(k − 2)2mnr2.

Taking X = 2(k − 2)(m+ n)x+ 2(k − 2)nr − (k − 4)(m+ n), Z = 2z, we get

X2 − 2(k − 2)(m+ n)Z2 = (k − 4)2(m+ n)2 − 4(k − 2)2mnr2. (4.5)

By Lemma 3.1, if 2(k − 2)(m+ n) is not a perfect square, the Pell equation

X2 − 2(k − 2)(m+ n)Z2 = 1

has infinitely many positive integer solutions. By Lemma 3.2, if Eq. (4.5) has a positive integer
solution, it has infinitely many positive integer solutions. Assume that Eq. (4.5) has a positive
integer solution (X0, Z0) satisfying

X0 − 2(k − 2)nr + (k − 4)(m+ n) ≡ 0 (mod 2(k − 2)(m+ n)), Z0 ≡ 0 (mod 2).

By Lemma 3.3, Eq. (4.5) has infinitely many positive integer solutions (X,Z) satisfying the
above condition, which leads to infinitely many x, z ∈ Z+. Then there are infinitely many
y = x+ r ∈ Z+. Hence, Eq. (2.2) has infinitely many positive integer solutions (x, y, z).

Example 4.4. When k = 5, r = 34, m = 2, n = 1, Eq. (4.5) becomes

X2 − 18Z2 = −83223. (4.6)

It has a positive integer solution (X0, Z0) = (237, 88) satisfying

X0 − 201 ≡ 0 (mod 18), Z0 ≡ 0 (mod 2).

Note that (u, v) = (17, 4) is the least positive integer solution of X2 − 18Z2 = 1. By Lemma
3.3, Eq. (4.6) has infinitely many positive integer solutions (X,Z) satisfying the above condition,
which leads to infinitely many x, z ∈ Z+. Then there are infinitely many y = x+34 ∈ Z+. Hence,
Eq. (2.2) has infinitely many positive integer solutions (x, y, z).

Proof of Theorem 2.4. By Theorem 2.3, we need to find a positive integer solution (X0, Z0)

satisfying

X0 − 2(k − 2)nr + (k − 4)(m+ n) ≡ 0 (mod 2(k − 2)(m+ n)), Z0 ≡ 0 (mod 2).

Suppose that X0 = k(m+ n) and r = −t(m+ n), then Z0 satisfies

Z2
0 = 2(m+ n)((k − 2)mnt2 + 2).

From X0 = 2(k − 2)(m + n)x0 + 2(k − 2)nr − (k − 4)(m + n), we have x0 = 1 + nt. Since
we require Z0 to be a positive integer, 2(m+ n)((k− 2)mnt2 + 2) should be a perfect square. In
order to get a concrete expression of m,n, we let

m = 2α2, n =
β2

2
, m+ n = γ2,
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where α, β, γ ∈ Z+. Then we get a quadratic equation

2α2 +
β2

2
= γ2,

which has a positive integer solution

α = |u2 − 4u− 4|, β = 2(u2 + 4u− 4), γ = 2u2 + 8,

where u ∈ Z+. Hence,

m = 2(u2 − 4u− 4)2, n = 2(u2 + 4u− 4)2.

Now Eq. (4.5) becomes
Z2

0 = 16(u2 + 4)2w2,

where
w2 = 1 + 2(k − 2)(u2 − 4u− 4)2(u2 + 4u− 4)2t2.

By Lemma 3.1, if 2(k − 2) is not a perfect square, the Pell equation

w2 − 2(k − 2)(u2 − 4u− 4)2(u2 + 4u− 4)2t2 = 1 (4.7)

has infinitely many positive integer solutions. And suppose (w0, t0) is a positive integer solution
of Eq. (4.7). Hence,

X0 = 4k(u2 + 4)2, Z0 = 4(u2 + 4)w0, r = −4t0(u2 + 4)2.

Note that 2(k − 2)(m + n) = 2(k − 2)γ2 is not a perfect square, by Lemma 3.1, the Pell
equation X2 − 8(k − 2)(u2 + 4)2Z2 = 1 has infinitely many positive integer solutions. Let
(U0, V0) be the least positive integer solution of X2 − 8(k − 2)(u2 + 4)2Z2 = 1. And the Pell
equation

X2 − 8(k − 2)(u2 + 4)2Z2 =16(k − 4)2(u2 + 4)4

− 256t20(k − 2)2(u2 + 4)4(u2 − 4u− 4)2(u2 + 4u− 4)2
(4.8)

has a positive integer solution (X0, Z0) = (4k(u2 + 4)2, 4(u2 + 4)w0). It is easy to prove that

X0 + 4(u2 + 4)2(4(k − 2)t0(u
2 + 4u− 4)2 + (k − 4)) ≡ 0 (mod 8(k − 2)(u2 + 4)2),

Z0 ≡ 0 (mod 2).

By Lemma 2.2, an infinity of positive integer solutions of Eq. (4.8) are given by

Xs + Zs

√
8(k − 2)(u2 + 4)2 =

(
4k(u2 + 4)2 + 4(u2 + 4)w0

√
8(k − 2)(u2 + 4)2

)
× (U0 + V0

√
8(k − 2)(u2 + 4)2)s, s ≥ 0.

Thus, 
Xs = 2U0Xs−1 −Xs−2, X0 = 4k(u2 + 4)2,

X1 = 4(u2 + 4)2(8w0(k − 2)(u2 + 4)V0 + kU0),

Zs = 2U0Zs−1 − Zs−2, Z0 = 4(u2 + 4)w0,

Z1 = 4(u2 + 4)(k(u2 + 4)V0 + w0U0).
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Then 
xs = 2U0xs−1 − xs−2 − U0−1

2(k−2) · (8(k − 2)t0(u
2 + 4u− 4)2 + 2(k − 4)),

ys = xs − 4t0(u
2 + 4)2,

zs = 2U0zs−1 − zs−2,

(4.9)

where

x0 =1 + 2t0(u
2 + 4u− 4)2, x1 = 2t0(u

2 + 4u− 4)2 + 4w0(u
2 + 4)V0 + 1 +

k(U0 − 1)

2(k − 2)
,

y0 =1− 2t0(u
2 − 4u− 4)2, y1 = −2t0(u2 − 4u− 4)2 + 4w0(u

2 + 4)V0 + 1 +
k(U0 − 1)

2(k − 2)
,

z0 =2(u2 + 4)w0, z1 = 2(u2 + 4)(k(u2 + 4)V0 + w0U0).

For k ≥ 5, u ∈ Z+, by Eq. (4.7), we get w0 > 2|u2 − 4u − 4|(u2 + 4u − 4)t0, it is easy to
check that y1 > 1.

If U0 − 1 ≡ 0 (mod 2(k − 2)), for any s ≥ 1, we deduce that xs, ys, zs are positive integers
greater than 1. Thus, Eq. (2.2) has infinitely many positive integer solutions (xs, ys, zs).

Example 4.5. When k = 5, u = 1, we get m = 98, n = 2, and Eq. (4.8) becomes

X2 − 600Z2 = −5531903990000.

It has a positive integer solution (X0, Z0) = (500, 96020) satisfying

X0 + 336100 ≡ 0 (mod 600), Z0 ≡ 0 (mod 2).

Note that (U0, V0) = (49, 2) is the least positive integer solution of Y 2 − 600Z2 = 1, and
U0 − 1 ≡ 0 (mod 6). By (4.9), we have

xs = 98xs−1 − xs−2 − 53776, x0 = 561, x1 = 192641,

ys = xs − 28000, y0 = −27439, y1 = 164641,

zs = 98zs−1 − zs−2, z0 = 48010, z1 = 2352990.

Thus, for any s ≥ 1, Eq. (2.2) has infinitely many positive integer solutions (xs, ys, zs).
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