Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 26, 2020, No. 2, 105-115

DOI: 10.7546/nntdm.2020.26.2.105-115

The linear combination of two polygonal numbers
is a perfect square

Mei Jiang' and Yangcheng Li**

! School of Mathematics and Statistics, Changsha University of Science and Technology,
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,
Changsha, 410114, China

e-mail: jiangmeicsust@163.com

2 School of Mathematics and Statistics, Changsha University of Science and Technology,
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,
Changsha, 410114, China
e-mail: 1iyangchengmlx@163.com

* Corresponding author

Received: 7 December 2019 Revised: 19 April 2020 Accepted: 21 April 2020

Abstract: By the theory of Pell equation and congruence, we study the problem about the linear
combination of two polygonal numbers is a perfect square. Let Py (x) denote the x-th k-gonal
number. We show that if & > 5, 2(k — 2)n is not a perfect square, and there is a positive integer
solution (Y, Z') of Y? — 2(k — 2)nZ? = (k — 4)?n* — 8(k — 2)n satisfying

Y+ (k—4)n=0 (mod2(k—2)n), Z'=0 (mod 2),

then the Diophantine equation 14+n P, (y) = 2 has infinitely many positive integer solutions (y, z).
Moreover, we give conditions about m, n such that the Diophantine equation m Py (x) +nPy(y) =
2? has infinitely many positive integer solutions (z,y, z).
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1 Introduction

A polygonal number [4] is a positive number, corresponding to an arrangement of points on the

plane, which forms a regular polygon.
105



The z-th k-gonal number [4, p. 5] is

Pu(r) = z((k — 2)(5 —-1)+ 2)7

where x > 1,k > 3. There are many papers about the polygonal numbers and many properties

of them have been studied, we can refer to the first chapter of [5] and D3 of [8].
In 2005, Bencze [1] raised a problem: find all positive integers n for which

1+ gn(n +1)=1+9P5(n)

is a perfect square. In 2007, Le [11] gave a complete answer to Bencze’s problem and showed

that all such n are given by

Lol ok | jort

=—(= b —1

where a = 3 +/8,b =3 — /8, and k € Z*. In 2011, Guan [7] proved that all positive integers

2
n for which 1+ ;%Pg(ﬂ) is a perfect square are given by

Lol oprn | g2k
— —(— b +1y 1
n= (g ™+ —1),
where a = s + v/s2 — 1,b = s — v/s? — 1, and s is a positive odd integer with s > 1, k € Z*.
In 2013, Hu [9] used the theory of Pell equation to study the positive integer solutions of the
Diophantine equation

L+nPs(y—1) = 2%

where 24
(t
5 t=1 (mod2),t>3,
242
n = 5 t=0 (mod2),t> 2,
=1 t>2
\ 2 ’ -

In 2019, Peng [12] showed that if 2n is not a perfect square, then the Diophantine equation
1+ nP3(y — 1) = 22 has infinitely many positive integer solutions, and if n = @, then the
Diophantine equation 1 + nP3(y — 1) = 22 has infinitely many positive integer solutions, where

d(t) are some special polynomials. Meanwhile, she studied the Diophantine equation

mPs(z — 1) + nPy(y — 1) = 2%,

1 . . . 1
mim+1) _ 42 n — 1, there exist infinitely many pairs

where m,n € Z*, and proved that when
(a,b) of integer numbers such that mPs(z —1)+nPs(y—1) = 22 has integer parametric solutions
(t,at + b,u(ct 4+ d)), where t is a positive integer greater than 1.

Moreover, she got two general results:

1) If 2(m + n) is not a perfect square, r € Z, and the Pell equation

2
X?—2(m+n)Z* = (m;n) —r*mn
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has a positive integer solution satisfying

m-+n

Xo—rn+ =0 (mod m+n),

then the Diophantine equation mP3(z — 1) + nPs(y — 1) = 22 has infinitely many positive
integer solutions.

2) Letu, v be integers with u > /20, and u being a positive even integer. If m = (u? — 2v?)?,
n = 8u?v?, then the Diophantine equation mPs(x — 1) + nP3(y — 1) = 22 has infinitely
many positive integer solutions.

For more related results, we refer to [2, 13—15].

2 Main results

In this paper, we continue the study of [12], and consider the positive integer solutions of the
Diophantine equations
1+ nPy(y) = 2° 2.1

and
mPy(z) + nP(y) = 2%, (2.2)

where k > 5, and k,m,n € ZT. When k = 4, there are general results (see [3, p. 345,
Corollary 6.3.6]).

By the theory of Pell equation, we give a positive answer to Question 4.1 of [12] and have the
following theorems.

Theorem 2.1. Ifk > 5, 2(k — 2)n is not a perfect square, and there is a positive integer solution
(Y, Z") of Y? — 2(k — 2)nZ? = (k — 4)*n? — 8(k — 2)n satisfying

Y+ (k—4)n=0 (mod2(k—2)n), Z =0 (mod 2),
then Eq. (2.1) has infinitely many positive integer solutions (y, z).

Theorem 2.2. When k > 5 and m = (r(k —2) — 1)n, if (rtk=2) = Ynr perfect square,

then there exist infinitely many pairs (a,b) of positive integers such that Eq. (2.2) has integer
parametric solutions (x,ax + b, u(cx + d)), where r is a positive integers.

Moreover, we get
Theorem 2.3. [fk > 5, 2(k — 2)(m + n) is not a perfect square, r € Z, and the Pell equation
X2 2k =2)(m+n)Z? = (k —4)*(m +n)? — 4(k — 2)*mns?
has a positive integer solution (X, Zy) satisfying
Xo—2(k—=2nr+(k—4)(m+n)=0 (mod 2(k—2)(m+mn)), Zy=0 (mod 2),

then Eq. (2.2) has infinitely many positive integer solutions (z,y, z).
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In particular,

Theorem 2.4. Let k > 5, m = 2(u? — du —4)%, n = 2(u® + 4u — 4)%. If 2(k — 2) is not a perfect
square, and the Pell equation X* — 8(k — 2)(u® + 4)>Z? = 1 has a positive integer solution
(Uo, Vo) satisfying Uy—1 = 0 (mod 2(k —2)), then Eq. (2.2) has infinitely many positive integer
solutions (z,vy, z).

Remark 2.5. When k = 3, these are the cases studied by Peng [12].

3 Preliminaries

To prove the above results, we give the following well-known lemmas (for example, see [10]).

Lemma 3.1 ([10]). Let D be a positive integer which is not a perfect square, then the Pell
equation x* — Dy? = 1 has infinitely many positive integer solutions. If (U, V) is the least
positive integer solution of the Pell equation x* — Dy? = 1, then all positive integer solutions are
given by

25+ ysVD = (U +VVD)*,
where s is an arbitrary integer.

Lemma 3.2 ([10]). Let D be a positive integer which is not a perfect square, N be a nonzero
integer, and (U, V') is the least positive integer solution of x> — Dy? = 1. If (x¢, o) is a positive
integer solution of x> — Dy* = N, then an infinity of positive integer solutions are given by

s +ysV'D = (zg + yoVD)(U + VVD)*,
where s is an arbitrary integer.

Lemma 3.3 ([6]). Let D be a positive integer which is not a perfect square, my, msy are positive
integers, and N be a nonzero integer. If the Pell equation > — Dy?> = N has a positive integer
solution satisfying

up=a (modmy), vo=0b (mod my),

then it has infinitely many positive integer solutions satisfying

u=a (modmy), v=0>b (modmsy).

4 Proofs of the Theorems
Proof of Theorem 2.1. Multiplying Eq. (2.1) by 8(k — 2)n, we have
(n(2(k —2)y — (k —4)))* = 2(k — 2)n(22)* = (k — 4)’n* — 8(k — 2)n.
Setting Y = n(2(k — 2)y — (k — 4)), Z = 2z, we get the Pell equation
Y2 —2(k—2)nZ* = (k—4)°n*> — 8(k — 2)n. 4.1)
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By Lemma 3.1, if & > 5 and 2(k — 2)n is not a perfect square, the Pell equation
Y? — 2(k — 2)nZ* = 1 always has an infinite number of positive integer solutions. And
suppose (u,v) is the least positive integer solution of Y? — 2(k — 2)nZ? = 1. It is easy to
see that (Yy, Zy) = ((k — 4)n,2) is a positive integer solution of Eq. (4.1). By Lemma 3.2, an
infinity of positive integer solutions of Eq. (4.1) are given by

Yo+ Zs/2(k — 2)n = ((k — 9n+ 2v/2(k — 2)n) (u + v/2(k — 2)n)", s > 0.

If there is a positive integer solution (Y’, Z) of Y2 — 2(k — 2)nZ? = (k — 4)*n* — 8(k — 2)n
satisfying
Y'+(k—4)n=0 (mod2(k—2)n), Z'=0 (mod 2).

Lemma 3.3 guarantees that Eq. (4.1) has infinitely many positive integer solutions (Y, Z) with
the above condition. Then there are infinitely many

Y + (k—4)n Z
S\ AN -y 3
20k — 2)n ' FT

Thus, if £ > 5 and 2(k — 2)n is not a perfect square, and there is a positive integer solution
(Y, Z") of Y2 — 2(k — 2)nZ? = (k — 4)*n? — 8(k — 2)n satisfying

Y+(k—4)n=0 (mod2(k—2)n), Z=0 (mod 2),
Eq. (2.1) has infinitely many positive integer solutions (y, 2). [

Remark 4.1. In Theorem 2.1, (u,v) is the least positive integer solution of Y —2(k—2)nZ* = 1
and (Yo, Zo) = ((k — 4)n, 2) is a positive integer solution of Eq. (4.1), so we have

Yy =2uY, 1 — Y o, Yo=(k—4)n, Y1 = ((k—4u+4(k — 2)v)n,
Zy =l — Zos, Zo=2, Zy = (k—4)nv+ 2u.

When (k —4)(u+ 1) =0 (mod 2(k — 2)) and v =0 (mod 2), it is easy to check that
Y,=0 (modn),Z;=0 (mod2) and Y1+ (k—4)n=0 (mod 2(k —2)n).
Let Yy = nY/, then
Y = ouY!  — Y, Y.=k—4, Y!=(k—4)u+4k -2,

it is easy to prove that

S

(k—4) (mod 2(k —2)), s=0 (mod 2),
— (k—4) (mod 2(k —2)), s=1 (mod 2).

Hence, when s =1 (mod 2), we have

Yo+ (k—4)n=0 (mod2(k—2)n), Z;=0 (mod 2).
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Example 4.2. When k =5, n = 3, then 2(k — 2)n = 18 is not a perfect square. (u,v) = (17,4)
is the least positive integer solution of Y? — 1872 =1, so

u+1=0 (mod6), v=0 (mod 2).
(Yo, Zo) = (3,2) is the least positive integer solution of Y? — 18Z% = —63, then
Y =34Y51 — Yoo, Yo =3, Y1 =195,
{ZS 347, = s, Zo—=2, 7y —46.
By Remark 4.1, when s =1 (mod 2), we have

Zs

Y, +3
— i €Z+,ZS:7GZ+.

18

Ys
Therefore, Eq. (2.1) has infinitely many positive integer solutions (ys, ).

Proof of Theorem 2.2. 1f we let m = tn and y = ax + b, then Eq. (2.2) reduces to

n(k —2)(a® +t) 2 n(2(k — 2)ab —2(k —4)(a+ t))aH— nb((k — 2)1;— (k—4) _ 2. (42)
Consider
o(z) = n(k —2)(a* +1t) 2y n(2(k — 2)ab — (k — 4)(a + t)):r N nb((k —2)b — (k —4))

2 2

as a quadratic polynomial of x, if g(z) = 0 has a root with multiplicity 2, the discriminant of g(x)
18 zero, i.e.,

n2

Z((k—4)2a2—2t(k:—4)(2(k—2)b—(k:—4))a—t(4(k—2)2b2—4(]{—2)(k—4)b—t(k—4)2)) =0.

It implies

. 2t(k —2)b — (k — 4)t + 2/b(k — 2)t(t + 1)((k — 2)b — (k — 4)) “3)
k—4 ‘ '

To find a € Z*, we take b(k — 2)t(t + 1)((k — 2)b — (k — 4)) = v?, then
(20)? —t(t + 1)(2(k — 2)b — (k — 4))* = —(k — 4)*t(t + 1).
Letting X = 2v,Y = 2(k — 2)b — (k — 4), we obtain the Pell equation
X2 —tt+1)Y? = —(k—4)°tt+1). (4.4)

It is easy to see that the pair (Xo, Yy) = (2(k—4)t(t+1), (k—4)(2t+1)) is a positive integer solu-
tion of Eq. (4.4), and the pair (U, V) = (2t + 1, 2) solves the Pell equation X% — #(t + 1)Y? = 1.
So an infinity of positive integer solutions of Eq. (4.4) are given by

XY /tt+1) = <2(k—4)t(t+1)+(k—4)(2t+1)\/t(t + 1)) (2t+1+2\/t(t ¥ 1))5,5 > 0.
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Thus

Y, =22t +1)Y, ; — Y, o, Yo=(k—4)2t+1), Y7 = (k—4)(8t* + 8t +1).

According to the above recurrence relations, we have
X;=0 (mod (k—4)), Ys=0 (mod (k—4)).
By Eq. (4.3), we get

X2k -2t — (k—A)t Yo+ X,
s = —4 T Tk_4

So aj is a positive integer. From Y, = 2(k — 2)b, — (k — 4), we obtain

b Yo+ (k—4)
T 2(k—2)
Further, we get
as = 2(2t + 1)a,_1 — a,_o, ap = (4t + 3)t, a; = (16t + 20t + 5)t,
B 2t(k — 4) (=4t +1) (B —4)(2t+ 1)
b5—2(2t+1)bs_1—b5_2—ﬂ, bQ—T, bl = k’—2 .

In order for b, to be a positive integer, we need Y; + (k — 4) =0 (mod 2(k — 2)).
When t = —1 (mod (k — 2)), we have Yy + (k — 4) = 0 (mod 2(k — 2)), and the above
recurrence relations imply that

v — —(k—4) (mod 2(k —2)), s=0 (mod 2),
R U (mod 2(k —2)), s=1 (mod2).

Therefore, when s = 0 (mod 2), we have
Yi+(k—4)=0 (mod 2(k — 2)),

so by 1s a positive integer.
Taking t = r(k — 2) — 1, Eq. (4.2) now becomes

(r(k —2)—1)nr
2

(cx +d)?* = 2%

It (r(k=2) = Lnr is a perfect square, there exist infinitely many pairs (a, b) of positive integers
such that Eq. (2.2) has positive integer parametric solutions (z, ax + b, u(cx + d)), where r is a

positive integers. [

Example 4.3. When k =5, r =1, m =2, n = 1, w = 1 is a perfect square.
Taking ag = 22, by = 1, Eq. (2.2) has positive integer parametric solutions (x,22x+ 1,27z + 1),

where x is a positive integer.
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Proof of Theorem 2.3. Lettingy = x + r,r € Z, Eq. (2.2) equals
(2(k —2)(m +n)x 4+ 2(k — 2)nr — (k — 4)(m +n))? — 2(k — 2)(m + n)(22)?
= (k—4)*(m +n)* — 4(k — 2)*mnr>.
Taking X = 2(k — 2)(m +n)x +2(k — 2)nr — (k —4)(m +n), Z = 2z, we get
X2 2k —=2)(m+n)Z% = (k —4)*(m +n)? — 4(k — 2)*mnr?, 4.5)
By Lemma 3.1, if 2(k — 2)(m + n) is not a perfect square, the Pell equation
X?=2(k—2)(m+n)Z*=1

has infinitely many positive integer solutions. By Lemma 3.2, if Eq. (4.5) has a positive integer
solution, it has infinitely many positive integer solutions. Assume that Eq. (4.5) has a positive
integer solution (X, Z) satisfying

Xo—2(k=2)nr+(k—4)(m+n)=0 (mod 2(k—2)(m+n)), Zy=0 (mod 2).

By Lemma 3.3, Eq. (4.5) has infinitely many positive integer solutions (X, Z) satisfying the
above condition, which leads to infinitely many x,z € Z%. Then there are infinitely many
y = x +r € Z*. Hence, Eq. (2.2) has infinitely many positive integer solutions (z, y, z). [

Example 44. When k =5, r =34, m =2, n =1, Eq. (4.5) becomes
X? —182% = —83223. (4.6)
It has a positive integer solution (Xo, Zy) = (237, 88) satisfying
Xo—201=0 (mod 18), Zo=0 (mod 2).

Note that (u,v) = (17,4) is the least positive integer solution of X* — 187? = 1. By Lemma
3.3, Eq. (4.6) has infinitely many positive integer solutions (X, Z) satisfying the above condition,
which leads to infinitely many x, z € 7. Then there are infinitely many y = v+ 34 € Z*. Hence,
Eq. (2.2) has infinitely many positive integer solutions (x,y, z).

Proof of Theorem 2.4. By Theorem 2.3, we need to find a positive integer solution (X, Zy)
satisfying

Xo—2(k—2)nr+(k—4)(m+n)=0 (mod 2(k—2)(m+n)), Zo=0 (mod 2).
Suppose that Xy = k(m + n) and r = —t(m + n), then Z, satisfies
72 = 2(m +n)((k — 2)mnt* + 2).

From X, = 2(k — 2)(m + n)xo + 2(k — 2)nr — (k — 4)(m + n), we have xy = 1 + nt. Since
we require Z; to be a positive integer, 2(m + n)((k — 2)mnt? + 2) should be a perfect square. In
order to get a concrete expression of m, n, we let
o2 P 2
m = 2a°, n—?, m4+n =7,
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where «, 5,7 € Z*. Then we get a quadratic equation
20° + %2 =,
which has a positive integer solution
a=|u®—4u—4], B=2w+4u—4), yv=2u’+38,
where u € ZT. Hence,
m = 2(u? — 4u —4), n =2(u® + 4u — 4)*.

Now Egq. (4.5) becomes
Zg = 16(u” + 4)*w?,
where
w? =1+ 2(k — 2)(u? — 4u — 4)*(u* + 4u — 4)*%.

By Lemma 3.1, if 2(k — 2) is not a perfect square, the Pell equation
w? —2(k — 2)(u? — 4u — 4)*(u? + 4u — 4)** =1 4.7)

has infinitely many positive integer solutions. And suppose (wy, to) is a positive integer solution
of Eq. (4.7). Hence,
Xo = 4k(u® +4)%, Zy = 4(u® + Dwy, r = —dto(u® + 4)%.

Note that 2(k — 2)(m + n) = 2(k — 2)7? is not a perfect square, by Lemma 3.1, the Pell
equation X2 — 8(k — 2)(u® + 4)°Z? = 1 has infinitely many positive integer solutions. Let
(Up, Vi) be the least positive integer solution of X? — 8(k — 2)(u* 4+ 4)2Z% = 1. And the Pell
equation

X2 —8(k —2)(u* +4)*Z =16(k — 4)*(u® + 4)* i3
— 25612 (k — 2)%(u? 4+ 4)* (u? — 4u — 4)*(u® + 4u — 4)? 9

has a positive integer solution (X, Zy) = (4k(u® + 4)%,4(u® + 4)wy). It is easy to prove that
Xo+4(u® +4)*(4(k — 2)to(u® +4u —4)* + (k—4)) =0  (mod 8(k — 2)(u® + 4)?),
Zy=0 (mod 2).
By Lemma 2.2, an infinity of positive integer solutions of Eq. (4.8) are given by
Xs + Zsn/8(k — 2)(u2 + 4)2 = (4k(u® 4+ 4)* + 4(u® + 4)wo/8(k — 2)(u2 + 4)?)
x (U + Vo/8(k — 2)(u? + 4)2)%,5 > 0.

Thus,
X, =2Up X1 — X,  Xo = 4k(u® +4)?,
X; = 4(u® 4+ 4)*(Swo(k — 2)(u* + 4)Vy + kUp),
Zy = 2UgZy_1 — Zy_o, Zo = 4(u* + 4)wy,
7y = 4(u* + 4) (k(u® + 4)V + wollp).
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Then

o = 2UpTs1 — o — gy - (8(k — 2)to(u” + 4u — 4)% + 2(k — 4)),
Yo = g — 4tg(u? + 4)2, (4.9)

2s = 2Upzs-1 — s—2)

where
k(U — 1
zo =14 2to(u® + du — 4)%, 21 = 2to(u” + 4u — 4)* + dwo(u® + 4)Vo + 1 + —2((k° 2)),
k(Uo — 1)

o =1 —2to(u? — du — 4)*, y1 = —2to(u® — du — 4)* + dwo(u® + 4)Vp + 1 + 2E—2)

20 =2(u® + 4wy, 2 = 2(u* + 4)(k(u® + 4)Vy + welp).

For k > 5, u € ZT, by Eq. (4.7), we get wg > 2|u® — 4u — 4|(u® + 4u — 4)t, it is easy to
check that y; > 1.

If Uy — 1 =0 (mod 2(k — 2)), for any s > 1, we deduce that x, ys, 25 are positive integers
greater than 1. Thus, Eq. (2.2) has infinitely many positive integer solutions (s, ys, 25). O]

Example 4.5. When k =5, uw =1, we get m = 98, n = 2, and Eq. (4.8) becomes
X? —600Z* = —5531903990000.
It has a positive integer solution (Xo, Zy) = (500, 96020) satisfying
Xo+ 336100 =0 (mod 600), Zo =0 (mod 2).

Note that (Uy, Vo) = (49,2) is the least positive integer solution of Y* — 600Z% = 1, and
Up—1=0 (mod 6). By (4.9), we have

Ty = 98x,_1 — xs_9 — D376, ro = 561, x1 = 192641,

ys = x5 — 28000, Yo = —27439, y; = 164641,
Zs = 98251 — 250, 2o = 48010, 2 = 2352990.

Thus, for any s > 1, Eq. (2.2) has infinitely many positive integer solutions (s, ys, Zs).
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