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1 Introduction

Let N be the set of all positive integers, and N0 be the set of all nonnegative integers. For
m,n ∈ N, z ∈ C with z 6= −1,−2, . . . ,−n, the generalized harmonic functions [5,7] are defined
by H(m)

n (z) =
∑n

k=1

1

(k + z)m
. The generalized harmonic function H(m)

n (z) is a generalization of

the generalized harmonic number H(m)
n (0) = H

(m)
n . Also we have

O(m)
n =

n∑
k=1

1

(2k − 1)m
= 2−mH(m)

n (−1/2).
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It is known that
H(1)
n = Hn = γ + ψ(n+ 1), (1.1)

where γ is Euler’s constant and ψ is the digamma function given by

ψ(x) = −γ +
∞∑
k=0

{
1

k + 1
− 1

k + x

}
. (1.2)

In physics, the computation of Feynman integrals in massive higher order perturbative
calculations in renormalizable quantum field theories requires extensions of multiplying nested
harmonic sums [1, 14]. Binomial, inverse binomial and harmonic number series have been
studied in order to perform calculations of higher order corrections to scattering processes in
particle physics [2, 9, 10, 13, 26]. Hence, there is a great motivation to study the representation of
the following Euler series in closed forms:

∞∑
n=1

(H
(p)
n )m

(n+ a)(n+ a+ 1)
,

∞∑
n=1

(H
(p)
n )m(
n+k
k

) , and
∞∑
n=1

(H
(p)
n )m

n
(
n+k
k

) . (1.3)

In the literature there exists a lot of results on these series; for example, Sofo [20] studied the
case m = 1 and p ∈ N, the cases with m, p ≤ 2 were surveyed in [8, 18, 19, 21, 24, 25], and Xu,
Zhang, Zhu [27] investigated the cases m = 3, p = 1 and m = 2, p ∈ N, etc. The interested
reader should refer to Hoffman’s webpage [12] for more references.

Abel’s summation formula is given by [23, Theorem 6.30]

n∑
k=m

akbk = An,mbn −
n−1∑
k=m

Ak,m(bk+1 − bk),

where {ak}, {bk} are two sequences, and An,m =
∑n

k=m ak. This formula is often employed
in studies dealing with the convergence of sequences. Abel’s summation formula is modified
by Chu [8] to derive many infinite series identities involving the harmonic numbers and their
variants. We require Abel’s summation formula in the following form: For an arbitrary complex
sequence {τk}, define the backward and forward difference operators∇ and ∆· , respectively, by

∇τk = τk − τk−1 and ∆· τk = τk − τk+1.

Then we have
∞∑
k=ε

Vk∇Uk = [UV ]+ − Uε−1Vε +
∞∑
k=ε

Uk ∆· Vk (1.4)

provided that one of both series is convergent and the limit [UV ]+ = limn→∞ UnVn+1 exists.
Using Abel’s summation formula, Wang [24] recently established infinite series involving

generalized harmonic numbers of order 2 and order 3. For example, for any two positive real
numbers a and b [24, Theorem 1],

∑
k≥1

ah
(2)
k (a, b)

(ak + b)(ak − a+ b)
=
∑
k≥0

1

(ak + b)3
,
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where the harmonic numbers of order m is defined by h(m)
n (a, b) =

∑n
k=1

1

(ak − a+ b)m
. In fact,

all results in [24] are special values of our formulas. In 2018, Wang & Chu [25] obtained infinite
series involving quadratic and cubic harmonic numbers, for example [25, Eq. (6)],∑

k≥1

a2h2k(a, b)

(ak + b)(ak + a+ b)
=

1

ab
+
∑
k≥0

1

(ak + b)2
.

Note that the generalized harmonic function H(m)
n (z) is related to h(m)

n (a, b) by

H(m)
n (z) = amh(m)

n (a, b),

with z = (b − a)/a. Following Wang and Chu, we find that if we apply the method of partial
fraction decomposition additionally, we can then obtain infinite series involving generalized
harmonic numbers of any positive integral order, with any positive integral power, for example
(ref. Eq. (3.3))

∞∑
n=1

(
H

(s)
n (z)

)2
(n+ z + a)(n+ z + a+ 1)

=
−1

a2s
Ha(z) +

2

as

a∑
k=1

Hk(z)

ks
+ 2

s−2∑
k=0

(−1)k

ak+1
ζ(s, s− k; z)

+
2s−2∑
k=0

(−1)k

ak+1
ζ(2s− k; z) + 2

s−2∑
k=0

(−1)k+s+1H
(k+1)
a

as
ζ(s− k; z),

where the multiple Hurwitz zeta function of depth k and weight s1 + · · · + sk is defined by
[3, 5, 15, 17]

ζ(s1, . . . , sk; z) =
∑

1≤n1<n2<···<nk

1

(n1 + z)s1(n2 + z)s2 · · · (nk + z)sk
.

It is known that multiple zeta values (MZVs) ζ(s1, . . . , sk) = ζ(s1, . . . , sk; 0) and multiple
t-values (MtVs) t(s1, . . . , sk) = 2−(s1+···+sk)ζ(s1, . . . , sk;−1/2).

Here we highlight one new infinite series expression (ref. Example 5.3): for s, k any two
positive integers,

∞∑
n=1

O
(s)
n

n
(
n+k
k

) =
k−1∑
r=0

(
k − 1

r

)
(−1)r+s+1(Hr + 2 log(2))

(2r + 1)s

+ 2
s−2∑
`=0

(−1)`t(s− `)
k−1∑
r=0

(
k − 1

r

)
(−1)r

(2r + 1)`+1
.

This result can be compared with the following formula in [5, Example 5.2], [20, Eq.(2.3)].

∞∑
n=1

H
(s)
n

n
(
n+k
k

) = ζ(s+ 1) +
k∑
r=1

(−1)r+1

(
k

r

)

×

[
r−1∑
j=1

(−1)s+1

js
Hj +

s∑
`=2

(−1)s − `H(s+1−`)
r−1 ζ(`)

]
.
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2 Preliminaries

Let Q[[x1, x2, . . .]] be the set of formal power series of bounded degree. An element
u ∈ Q[[x1, x2, . . .]] such that the coefficient in u of any monomial xα1

a1
xα2
a2
· · ·xαkak with

a1 < a2 < · · · < ak is the same as that of xα1
1 x

α2
2 · · ·x

αk
k is called quasi-symmetric [11, 16, 22].

Let QSym be the subring of all the quasi-symmetric functions. For any composition (ordered
partition) α = (α1, α2, . . . , αk) of n, we call the number of parts k as the length of I; and the
sum of parts |α| = α1 + α2 + · · ·+ αk as the weight of α.

The “smallest” quasi-symmetric function containing the term xα1
1 x

α2
2 · · ·x

αk
k is denoted by

M(α1,α2,...,αk). It is convenient to denote M0 = 1. These elements form a basis for QSym.
For positive integers n, s, we set xi = 1/(i+ z)s, for 1 ≤ i ≤ n; xi = 0, for i > n. Then

M(α1,α2,...,αk) = ζn(sα1, sα2, . . . , sαk; z)

forms a basis for this particular QSym, which we denote by Q. By the well-known identity
[5, 6, 16] (

M(1)

)k
=
∑
λ`k

(
k

λ

)
Mλ,

where λ ` k means that λ is a partition of k, or from an elementary result in the harmonic algebra
(Hoffman’s harmonic algebra) [6, Eq. (5)], we know that

H(s)
n (z)k =

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, α2, . . . , αr

)
ζn(sα1, sα2, . . . , sαr; z), (2.1)

where α = (α1, α2, . . . , αr) and |α| = α1 + α2 + · · ·+ αr.

Lemma 2.1. [4, Proposition 3.2] For m,n ∈ N0, and x ∈ C\{0,−1, . . . ,−n}, we have
n∑
k=0

(
n

k

)
(−1)k

(x+ k)m
= B(n+ 1, x)Pm−1(H

(1)
n+1(1, x), H

(2)
n+1(1, x), . . . , H

(m−1)
n+1 (1, x)),

whereB(x, y) is Euler beta function, Pm(x1, x2, . . . , xm) is the modified Bell polynomials defined
by

exp

(
∞∑
k=1

xk
k
zk

)
=

∞∑
m=0

Pm(x1, x2, . . . , xm)zm,

and the finite Hurwitz–Lerch function H(s)
n (x, y) is defined by

H(s)
n (x, y) =

n−1∑
k=0

xk

(k + y)s
.

Since
∞∑
n=0

znPn(ax1, a
2x2, . . . , a

nxn) = exp

(
∞∑
k=1

akxk
k

zk

)

= exp

(
∞∑
k=1

xk
k

(az)k

)
=
∞∑
n=0

znanPn(x1, x2, . . . , xn),

88



the modified Bell polynomials Pm have the following property:

Pn(ax1, a
2x2, . . . , a

nxn) = anPn(x1, x2, . . . , xn). (2.2)

For a complex number z, positive integers k, `, and (s1, . . . , sk) ∈ Nk
0, with z +

j

`
6= 0, for

1 ≤ j ≤ k, we denote the symbol ηs1,...,sk(z; `) as follows:

ηs1,...,sk(z; `) =
1

(z + 1
`
)s1(z + 2

`
)s2 · · · (z + k

`
)sk
.

If we do not change the variables z and ` of ηs1,...,sk(z; `), then we would abbreviate it as
ηs1,...,sk . For convenience, we denote the k repetitions of a in the subscript of the η function by
ak, for example, η1,0,0,0,2,2 = η1,03,22 .

Lemma 2.2. [5, Lemma 2.2] Let s1, . . . , sk be a nonnegative integer sequence with si, sj ≥ 1 for
1 ≤ i < j ≤ k. If s1 + · · ·+ sk ≥ 3, then

ηs1,...,si,...,sj ,...,sk(z; `) =
`

j − i
(
ηs1,...,si,...,sj−1,...,sk(z; `)− ηs1,...,si−1,...,sj ,...,sk(z; `)

)
.

In this paper we will use the following four basic partial fraction decomposition formulas.

Lemma 2.3. For integers a ≥ 0 and s ≥ 1, we have

ηs,0a,1(z; `) =
(−`)s−1

(a+ 1)s−1
η1,0a,1(z; `)−

s−2∑
k=0

(−`)k+1

(a+ 1)k+1
ηs−k(z; `), (2.3)

η1,0a,1(z; `) =
1

a+ 1

a∑
k=0

η0k,12(z; `), (2.4)

η1,0a,s(z; `) =
`s−1

(a+ 1)s−1
η1,0a,1(z; `)−

s−2∑
k=0

`k+1

(a+ 1)k+1
η0a+1,s−k(z; `), (2.5)

η1a+2(z; `) =
`a

(a+ 1)!

a∑
r=0

(−1)r
(
a

r

)
η0r,12(z; `). (2.6)

Proof. We use induction on the positive integer s to prove Eq. (2.3) and Eq. (2.5). Lemma 2.2
gives

ηs,0a,1 =
`

a+ 1
(ηs − ηs−1,0a,1) , and η1,0a,s =

`

a+ 1
(η1,0a,s−1 − η0a+1,s) ,

from which the results follow when we invoke the induction hypothesis.
We use Lemma 2.2 to obtain two expressions for η1,0a,12(z; `):

`(η1,0a,1 − η1,0a+1,1) = η1,0a,12(z; `) =
`

a+ 2
(η1,0a,1 − η0a,12).

Therefore we have
η1,0a+1,1 =

a+ 1

a+ 2
η1,0a,1 +

1

a+ 2
η0a,12 .
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We use this identity and use induction on the positive integer a, then we can obtain the result
of Eq. (2.4).

Eq. (2.6) is clearly true for a = 0. Assume that

η1a+1(z; `) =
`a−1

a!

a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r,12(z; `)

is true for a ≥ 1. We use Lemma 2.2 to obtain

η1a+2(z; `) =
`

a+ 1
(η1a+1(z; `)− η0,1a+1(z; `)).

Since η0,1a+1(z; `) = η1a+1(z +
1

`
; `), we can apply the inductive hypothesis to these two terms

of the right-hand side of the above identity.

η1a+2(z; `) =
`

a+ 1

(
`a−1

a!

a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r,12(z; `)

)

− `

a+ 1

(
`a−1

a!

a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r,12(z +

1

`
; `)

)

=
`a

(a+ 1)!

a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r,12(z; `)

− `a

(a+ 1)!

a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r+1,12(z; `)

=
`a

(a+ 1)!

(
a−1∑
r=0

(−1)r
(
a− 1

r

)
η0r,12(z; `)−

a∑
r=1

(−1)r−1
(
a− 1

r − 1

)
η0r,12(z; `)

)
.

Using the fact
(
a−1
r

)
+
(
a−1
r−1

)
=
(
a
r

)
we get the desired result. By the mathematical induction

we get Eq. (2.6).

Using Eq.(2.6) the last two Euler series in Eq. (1.3) can be represented as

∞∑
n=1

(H
(p)
n )m(
n+k
k

) = k

k−2∑
r=0

(−1)r
(
k − 2

r

) ∞∑
n=1

(H
(p)
n )m

(n+ r + 1)(n+ r + 2)
, if k ≥ 2;

∞∑
n=1

(H
(p)
n )m

n
(
n+k
k

) =
k−1∑
r=0

(−1)r
(
k − 1

r

) ∞∑
n=1

(H
(p)
n )m

(n+ r + 1)(n+ r + 2)
, if k ≥ 1.

Therefore we investigate the following series in this paper

Y (s)
a (m; z) =

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z + a)(n+ z + a+ 1)

,

where s, m are positive integers and a ∈ Z, z ∈ (−1, 0] in order to give them some simple
representations in terms of multiple Hurwitz zeta functions and generalized harmonic functions.
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3 Infinite series of Y (s)
a (m; z) with a ∈ N0

Theorem 3.1. Let s,m, a be three positive integers and z ∈ (−1, 0]. Then we have

Y (s)
a (m; z) =

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z + a)(n+ z + a+ 1)

=
(−1)ms−1

ams
Ha(z)−

ms−2∑
k=0

(−1)k+1

ak+1
ζ(ms− k; z)

+
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

(−1)`

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(sα1, . . . , sαr, (m− k)s− `; z)

+
m−1∑
k=1

(
m

k

)
(−1)(m−k)s−1

a(m−k)s

a∑
r=1

Y (s)
r (k; z).

Proof. Consider two sequences Vn and Un, given by

Vn =
(
H(s)
n (z)

)m
, and Un =

−1

n+ z + a+ 1
. (3.1)

Then it is easy to check that

∆· Vn = −
m−1∑
`=0

(
m

`

) (
H

(s)
n (z)

)`
(n+ 1 + z)(m−`)s

, and ∇Un =
1

(n+ z + a)(n+ z + a+ 1)

as well as the relations

[UV ]+ = 0, and U0V1 =
−1

(1 + z)sm(z + a+ 1)
.

Applying Abel’s summation formula Eq. (1.4) with ε = 1, we can reformulate

Y (s)
a (m; z) =

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z + a)(n+ z + a+ 1)

=
∞∑
n=1

Vn∇Un =
1

(1 + z)sm(z + a+ 1)
+
∞∑
n=1

Un ∆· Vn

=
∞∑
n=1

1

(n+ z)ms(n+ z + a)
+

m−1∑
k=1

(
m

k

) ∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s(n+ z + a+ 1)

.

Using Eq. (2.3), the first term of the last equation can be rewritten as
∞∑
n=1

1

(n+ z)ms(n+ z + a)
=
∞∑
n=1

ηms,0a−1,1(n+ z − 1; 1)

=
∞∑
n=1

[
(−1)ms−1

ams−1
η1,0a−1,1(n+ z − 1; 1)−

ms−2∑
k=0

(−1)k+1

ak+1
ηms−k(n+ z − 1; 1)

]

=
(−1)ms−1

ams−1

∞∑
n=1

1

(n+ z)(n+ z + a)
−

ms−2∑
k=0

(−1)k+1

ak+1
ζ(ms− k; z).
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Using a similar trick, the second term can be written as

m−1∑
k=1

(
m

k

)
(−1)(m−k)s−1

a(m−k)s−1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(n+ z + a+ 1)

+
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

(−1)`

a`+1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s−`

.

The series
∑∞

n=1

1

(n+ z)(n+ z + a)
can be simplifed as 1

a
Ha(z). By Eq. (2.1), the last term in

the above equation can be rewritten as

m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

(−1)`

a`+1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s−`

=
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

(−1)`

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(sα1, . . . , sαr, (m− k)s− `; z).

We use Eq. (2.4) to reformula the term
∑∞

n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(n+ z + a+ 1)

into the following

a−1∑
r=0

1

a

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ r + z + 1)(n+ r + z + 2)

=
a∑
r=1

1

a
Y (s)
r (k; z).

Therefore, we finally obtain

Y (s)
a (m; z)

=
(−1)ms−1

ams
Ha(z)−

ms−2∑
k=0

(−1)k+1

ak+1
ζ(ms− k; z)

+
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

(−1)`

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(sα1, . . . , sαr, (m− k)s− `; z)

+
m−1∑
k=1

(
m

k

)
(−1)(m−k)s−1

a(m−k)s

a∑
r=1

Y (s)
r (k; z).

For any fixed positive integer a, the formula in Theorem 3.1 is a recursive formula for
Y

(s)
a (m; z). The initial value Y (s)

a (1; z) is also obtainable from this recursive formula. Therefore
we use this recursive relation of Y (s)

a (m; z), we can find all the explicit formula for Y (s)
a (m; z).

We state the explicit formulas of Y (s)
a (m; z) for the first two values m = 1, 2 as follows.
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Corollary 3.2. Let s, a be two positive integers, and z ∈ (−1, 0]. Then we have

∞∑
n=1

H
(s)
n (z)

(n+ z + a)(n+ z + a+ 1)
=

(−1)s−1

as
Ha(z)−

s−2∑
k=0

(−1)k+1

ak+1
ζ(s− k; z), (3.2)

∞∑
n=1

(
H

(s)
n (z)

)2
(n+ z + a)(n+ z + a+ 1)

=
−1

a2s
Ha(z) +

2

as

a∑
k=1

Hk(z)

ks
+ 2

s−2∑
k=0

(−1)k

ak+1
ζ(s, s− k; z)

+
2s−2∑
k=0

(−1)k

ak+1
ζ(2s− k; z) + 2

s−2∑
k=0

(−1)k+s+1H
(k+1)
a

as
ζ(s− k; z). (3.3)

Substituting a = 1, z = (d− c)/c, and s = 2 into Eq. (3.2) we have [24, Theorem 4]

∞∑
n=1

ch
(2)
n (c, d)

(cn+ d)(cn+ c+ d)
=

1

c

∞∑
n=0

1

(cn+ d)2
− 1

c2d
,

where c, d are positive integers. If we substitute a = 2, z = (d − c)/c, and s = 2 into Eq. (3.2),
then the resulted identity is the main identity appeared in [24, Theorem 7]. Furthermore, if we set
s = 3 and z = (d−c)/c in Eq. (3.2), then we have [24, Theorem 28] with a = 1 and [24, Theorem
32] with a = 2.

Moreover, if we substitue s = 1 = a and z = (d− c)/c into Eq. (3.3), then we have (see [25,
Eq. (6)])

∞∑
n=1

c2h2n(c, d)

(cn+ d)(cn+ c+ d)
=

1

cd
+
∞∑
n=0

1

(cn+ d)2
. (3.4)

Applying s = 1, a = 2, and z = (d− c)/c in Eq. (3.3) we have the following new identity

∞∑
n=1

c2h2n(c, d)

(cn+ c+ d)(cn+ 2c+ d)
=

5c+ 6d

4cd(c+ d)
+

1

2

∞∑
n=0

1

(cn+ d)2
.

Using Eq. (2.6) we know that η111 = 1
2
(η11 − η011). Therefore

∞∑
n=1

4c3h2n(c, d)

(cn+ d)(cn+ c+ d)(cn+ 2c+ d)

=
1

2

(
∞∑
n=1

4c2h2n(c, d)

(cn+ d)(cn+ c+ d)
−
∞∑
n=1

4c2h2n(c, d)

(cn+ c+ d)(cn+ 2c+ d)

)

= − c+ 2d

2cd(c+ d)
+
∞∑
n=0

1

(cn+ d)2
.

The above identity is the same as [25, Eq. (7)].
Following the same method of the above theorem we derive the closed form of Y (s)

0 (m; z) as
the following.
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Theorem 3.3. For positive integers s,m and z ∈ (−1, 0], we have

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z)(n+ z + 1)

= ζ(ms+ 1; z)

+
m−1∑
k=1

(
m

k

) k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(sα1, . . . , sαr, (m− k)s+ 1; z).

(3.5)

Proof. Using the same sequences Vk and Uk as Eq. (3.1), we again apply Abel’s summation
formula Eq. (1.4) with ε = 1. Then Y (s)

0 (m; z) becomes

∞∑
n=1

1

(n+ z)ms+1
+

m−1∑
k=1

(
m

k

) ∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s+1

.

From the known result Eq. (2.1), we get the desired identity.

If we put m = 1 and z = (d− c)/c in Eq. (3.5), then we have

∞∑
n=1

ch
(s)
n (c, d)

(cn− c+ d)(cn+ d)
=
∞∑
n=0

1

(cn+ d)s+1
. (3.6)

In particular, [8, Proposition 1] is the identity with s = 1, [24, Theorem 1] is the identity with
s = 2, and [24, Theorem 25] is the identity with s = 3.

4 Infinite series of Y (s)
−a (m; z) with a ∈ N

Theorem 4.1. Let s,m, a be three positive integers and z ∈ (−1, 0). Then we have

Y
(s)
−a (m; z) =

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z − a)(n+ z − a+ 1)

=
Ha(z − a)

ams
−

ms−2∑
k=0

1

ak+1
ζ(ms− k; z)

−
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζ(sα1, . . . , sαr, (m− k)s− `; z)

+
m−1∑
k=1

(
m

k

)
1

a(m−k)s

a−1∑
r=0

Y
(s)
−r (k; z).

Proof. We let the two sequences Vn and Un be as follows:

Vn =
(
H(s)
n (z)

)m
, and Un =

−1

n+ z − a+ 1
.
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Then it is easy to check that

∆· Vn = −
m−1∑
`=0

(
m

`

) (
H

(s)
n (z)

)`
(n+ 1 + z)(m−`)s

, and ∇Un =
1

(n+ z − a)(n+ z − a+ 1)

as well as the relations

[UV ]+ = 0, and U0V1 =
−1

(1 + z)sm(z − a+ 1)
.

Applying Abel’s summation formula Eq. (1.4) with ε = 1, we can reformulate

Y
(s)
−a (m; z) =

∞∑
n=1

(
H

(s)
n (z)

)m
(n+ z − a)(n+ z − a+ 1)

=
∞∑
n=1

Vn∇Un =
1

(1 + z)sm(z − a+ 1)
+
∞∑
n=1

Un ∆· Vn

=
∞∑
n=1

1

(n+ z)ms(n+ z − a)
+

m−1∑
k=1

(
m

k

) ∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s(n+ z − a+ 1)

.

Using Eq. (2.5), the above last equation becomes
∞∑
n=1

1

ams−1
1

(n+ z)(n+ z − a)
−

ms−2∑
k=0

1

ak+1
ζ(ms− k; z)

+
m−1∑
k=1

(
m

k

)
1

a(m−k)s−1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(n+ z − a+ 1)

−
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s−`

.

The series
∑∞

n=1

1

(n+ z)(n+ z − a)
can be simplifed as 1

a
Ha(z − a). Applying Eq. (2.1), we

can rewrite the last term in the above equation as

m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(m−k)s−`

=
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
ζn(sα1, . . . , sαr, (m− k)s− `; z).

We use Eq. (2.4) to reformula the term
∑∞

n=1

(
H

(s)
n (z)

)k
(n+ 1 + z)(n+ z − a+ 1)

into the following

a−1∑
r=0

1

a

∞∑
n=1

(
H

(s)
n (z)

)k
(n+ r + z + 1− a)(n+ r + z + 2− a)

=
a−1∑
r=0

1

a
Y

(s)
−r (k; z).

Therefore we finally get the desired form.
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For any fixed positive integer a, the formula in Theorem 4.1 is a recursive formula for
Y

(s)
−a (m; z). Note that we use Theorem 3.3 to give the value of Y (s)

0 (1; z) = ζ(s + 1; z). In
what follows, we list the explicit formulas of Y (s)

−a (m; z) for the first two values m = 1 and
m = 2.

Corollary 4.2. Let s, a be two positive integers, and z ∈ (−1, 0). Then we have

∞∑
n=1

H
(s)
n (z)

(n+ z − a)(n+ z − a+ 1)
=
Ha(z − a)

as
−

s−2∑
k=0

ζ(s− k; z)

ak+1
, (4.1)

∞∑
n=1

(
H

(s)
n (z)

)2
(n+ z − a)(n+ z − a+ 1)

=
Ha(z − a)

a2s
+

2

as
ζ(s+ 1; z) +

2

as

a−1∑
k=1

Hk(z − k)

ks

−
2s−2∑
k=0

ζ(2s− k; z)

ak+1
−

s−2∑
k=0

2

ak+1
ζ(s, s− k; z)− 2

as

s−2∑
k=0

H
(k+1)
a−1 ζ(s− k; z). (4.2)

Substituting a = 1, z = (d− c)/c into Eq. (4.1) we have

∞∑
n=1

ch
(s)
n (c, d)

(cn+ d− 2c)(cn+ d− c)
=

1

cs(d− c)
−

s−2∑
k=0

1

ck+1

∞∑
n=0

1

(cn+ d)s−k
.

It is clear that if we set s = 2, then the above identity becomes the identity in [24, Theorem
10]. If we set s = 3, then it gives the identity in [24, Theorem 34].

Moreover, if we substitute s = a = 1 and z = (d− c)/c in Eq. (4.2) we have
∞∑
n=1

h2n(c, d)

(cn+ d− c)(cn+ d− 2c)
=

1

c3(d− c)
+
∞∑
n=0

1

c2(cn+ d)2
. (4.3)

We substract Eq. (3.4) from Eq. (4.3), we have
∞∑
n=1

h2n(c, d)

(cn+ d− c)(cn+ d− 2c)
−
∞∑
n=1

h2n(c, d)

(cn+ d)(cn+ c+ d)

=
1

c3(d− c)
+
∞∑
n=0

1

c2(cn+ d)2
−
∞∑
n=0

1

c2(cn+ d)2
− 1

c3d
=

1

c2d(d− c)
.

We rewrite the lefthand side of the above identity, then we have
∞∑
n=1

2c(2cn− c+ 2d)h2n(c, d)

(cn− 2c+ d)(cn− c+ d)(cn+ d)(cn+ c+ d)
=

1

c2d(d− c)
.

This gives a correct form of [8, Theorem 3], where the original statement is imprecise. Also
the result of [8, Corollary 4] should be corrected as the following.

∞∑
n=1

nO2
n

(2n− 3)(2n− 1)(2n+ 1)(2n+ 3)
=
−1

64
.

When we allow the variable z = 0, the number n should begin from a + 1 to avoid the
denominator in the infinite series Y (s)

−a (m; z) being zero. Therefore we consider the infinite series∑∞
n=a+1

(
H

(s)
n

)m
(n− a)(n+ 1− a)

instead of Y (s)
−a (m; z).
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Theorem 4.3. For any positive integers a,m, s, we have

∞∑
n=a+1

(
H

(s)
n

)m
(n− a)(n− a+ 1)

=
(
H

(s)
a+1

)m
+
Ha+1 − 1

ams
−

ms−2∑
k=0

ζ(ms− k)−H(ms−k)
a+1

ak+1

−
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

)
× [ζ(sα1, . . . , sαr, (m− k)s− `)− ζa+1(sα1, . . . , sαr, (m− k)s− `)]

+
m−1∑
k=1

(
m

k

)
1

a(m−k)s

a∑
r=1

∞∑
n=a+1

(
H

(s)
n

)k
(n+ r − a)(n+ r − a+ 1)

.

Proof. We let the two sequences Vn and Un as

Vn =
(
H(s)
n

)m
, and Un =

−1

n− a+ 1
.

Then it is easy to check that

∆· Vn = −
m−1∑
`=0

(
m

`

) (
H

(s)
n

)`
(n+ 1)(m−`)s

, and ∇Un =
1

(n− a)(n− a+ 1)

as well as the relations

[UV ]+ = 0, and UaVa+1 = −
(
H

(s)
a+1

)m
.

Applying Abel’s summation formula Eq. (1.4) with ε = a+ 1, we can reformulate

∞∑
n=a+1

(
H

(s)
n

)m
(n− a)(n− a+ 1)

=
∞∑

n=a+1

Vn∇Un =
(
H

(s)
a+1

)m
+

∞∑
n=a+1

Un ∆· Vn

=
(
H

(s)
a+1

)m
+

∞∑
n=a+1

1

(n+ 1− a)(n+ 1)ms
+

m−1∑
k=1

(
m

k

) ∞∑
n=a+1

(
H

(s)
n

)k
(n+ 1− a)(n+ 1)(m−k)s

.

Using Eq. (2.5), the above last equation becomes(
H

(s)
a+1

)m
+

1

ams−1

∞∑
n=a+1

1

(n+ 1− a)(n+ 1)
−

ms−2∑
k=0

1

ak+1

∞∑
n=a+1

1

(n+ 1)ms−k

+
m−1∑
k=1

(
m

k

)
1

a(m−k)s−1

∞∑
n=a+1

(
H

(s)
n

)k
(n+ 1− a)(n+ 1)

−
m−1∑
k=1

(
m

k

) (m−k)s−2∑
`=0

1

a`+1

∞∑
n=a+1

(
H

(s)
n

)k
(n+ 1)(m−k)s−`

.
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The second term and the third term can be simplified as follows.

∞∑
n=a+1

1

(n+ 1− a)(n+ 1)
=
Ha+1 − 1

a
, and

∞∑
n=a+1

1

(n+ 1)ms−k
= ζ(ms− k)−H(ms−k)

a+1 .

We use Eq. (2.4) to reformula the term
∑∞

n=a+1

(
H

(s)
n

)k
(n+ 1− a)(n+ 1)

in the fourth term as

a∑
r=1

1

a

∞∑
n=a+1

(
H

(s)
n

)k
(n+ r − a)(n+ r − a+ 1)

.

Moreover we apply Eq. (2.1) to the fifth term, we have

∞∑
n=a+1

(
H

(s)
n

)k
(n+ 1)(m−k)s−`

=
k∑
r=1

∑
|α|=k
αi≥1

(
k

α1, . . . , αr

) ∞∑
n=a+1

ζn(sα1, . . . , sαr)

(n+ 1)(m−k)s−`
.

The rightmost summation in the right-hand side of the above identity is

ζ(sα1, . . . , sαr, (m− k)s− `)− ζa+1(sα1, . . . , sαr, (m− k)s− `).

Thus we conclude our result.

The following identity is the identity in Theorem 4.3 with a = m = 1,

∞∑
n=2

H
(s)
n

(n− 1)n
= 1 + s−

s∑
k=2

ζ(k). (4.4)

It gives the result in [24, Corollary 12] with s = 2 and the result in [24, Corollary 36] with
s = 3. Furthermore, the result in [24, Corollary 24] can be derived by Eq. (3.6) (with special
values c = d = 1, s = 2) and Eq. (4.4) (with s = 2):

∞∑
n=2

2H
(2)
n

(n− 1)n(n+ 1)
=
∞∑
n=2

H
(2)
n

(n− 1)n
−
∞∑
n=2

H
(2)
n

n(n+ 1)

= 3− ζ(2) +
1

2
− ζ(3) =

7

2
− π2

6
− ζ(3).

5 Infinite series of Y (s)
a (1; z) with a ∈ Q+

In order to give formulas of
∑∞

n=1

O
(s)
n

n
(
n+k
k

) and
∑∞

n=1

O
(s)
n(

n+k
k

) , we present one simple identitiy

concerning Y (s)
a (1; z) with a ∈ Q+ in Theorem 5.1.
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Theorem 5.1. Let a, s, p, q be four integers with s ≥ 1, ap+ q ≥ 1, 0 ≤ q < p, and z ∈ (−1, 0].
Then we have

∞∑
n=1

H
(s)
n (z)

(n+ z + a+ q
p
)(n+ z + a+ 1 + q

p
)

=
(−p)s

(ap+ q)s

(
ψ(1 + z)− ψ(1 + z + a+

q

p
)

)
−

s−2∑
k=0

(−p)k+1

(ap+ q)k+1
ζ(s− k; z).

Proof. We let the two sequences Vn and Un as

Vn = H(s)
n (z), and Un =

−1

n+ z + a+ 1 + q
p

.

Then it is easy to check that

∆· Vn =
−1

(n+ z + 1)s
, and ∇Un =

1

(n+ z + a+ q
p
)(n+ z + a+ 1 + q

p
)

as well as the relations

[UV ]+ = 0, and U0V1 =
−1

(1 + z)s(z + a+ 1 + q
p
)
.

Applying Abel’s summation formula Eq. (1.4) with ε = 1, we can reformulate

∞∑
n=1

H
(s)
n (z)

(n+ z + a+ q
p
)(n+ z + a+ 1 + q

p
)

=
∞∑
n=1

Vn∇Un =
1

(1 + z)s(z + a+ 1 + q
p
)

+
∞∑
n=1

Un ∆· Vn

=
∞∑
n=1

1

(n+ z)s(n+ z + a+ q
p
)
.

Using Eq. (2.3), the above last equation becomes

(−p)s−1

(ap+ q)s−1

∞∑
n=1

1

(n+ z)(n+ z + a+ q
p
)
−

s−2∑
k=0

(−p)k+1

(ap+ q)k+1
ζ(s− k; z).

Using Eq. (1.2) we have

∞∑
n=1

1

(n+ z)(n+ z + a+ q
p
)

=
−p

ap+ q

(
ψ(1 + z)− ψ(1 + z + a+

q

p
)

)
,

therefore we conclude our result.

Applying a = 0, p = 2, q = 1 in Theorem 5.1 and using the fact

ψ

(
d

c

)
− ψ

(
d

c
+

1

2

)
=
∞∑
n=0

(−1)n+12c

nc+ 2d
,
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we have the following identity.

∞∑
n=1

2cs+2h
(s)
n (c, d)

(2cn− c+ 2d)(2cn+ c+ 2d)
=
∞∑
n=0

(−1)s+n+12sc

nc+ 2d
+

s−2∑
k=0

∞∑
n=0

(−1)k2kcs−k

(cn+ d)s−k
. (5.1)

Setting s = 2 yields identical result in [24, Theorem 13].

Example 5.2. For nonnegative integers a, s with s ≥ 1, we have

∞∑
n=1

O
(s)
n

(n+ a)(n+ a+ 1)
=

(−1)s+1(Ha + 2 log(2))

(2a+ 1)s
− 2

s−2∑
k=0

(−1)k+1

(2a+ 1)k+1
t(s− k).

Proof. We set z = −1/2, p = 2, and q = 1 in Theorem 5.1, then we have

∞∑
n=1

2sO
(s)
n

(n+ a)(n+ a+ 1)
=

(−2)s

(2a+ 1)s
(ψ(1/2)− ψ(a+ 1))−

s−2∑
k=0

(−2)s+1

(2a+ 1)k+1
t(s− k).

Since ψ(1/2) = −γ−2 log(2) and by Eq. (1.1) ψ(a+1) = Ha−γ, we conclude the result.

Example 5.3. Let s, k be two positive integers. Then

∞∑
n=1

O
(s)
n

n
(
n+k
k

) =
k−1∑
r=0

(
k − 1

r

)
(−1)r+s+1(Hr + 2 log(2))

(2r + 1)s
(5.2)

+ 2
s−2∑
`=0

(−1)`t(s− `)
k−1∑
r=0

(
k − 1

r

)
(−1)r

(2r + 1)`+1
.

Let s, k be two positive integers with k ≥ 2. Then

∞∑
n=1

O
(s)
n(

n+k
k

) = k
k−2∑
r=0

(
k − 2

r

)
(−1)r+s+1(Hr+1 + 2 log(2))

(2r + 3)s
(5.3)

+ 2k
s−2∑
`=0

(−1)`t(s− `)
k−2∑
r=0

(
k − 2

r

)
(−1)r

(2r + 3)`+1
.

Proof.

∞∑
n=1

O
(s)
n

n
(
n+k
k

) =
∞∑
n=1

k!O
(s)
n

n · (n+ 1) · · · (n+ k)
= k!

∞∑
n=1

O(s)
n η1k+1(n− 1; 1),

∞∑
n=1

O
(s)
n(

n+k
k

) =
∞∑
n=1

k!O
(s)
n

(n+ 1) · · · (n+ k)
= k!

∞∑
n=1

O(s)
n η1k(n; 1).

Using Eq. (2.6) with ` = 1,

η1a+2 =
1

(a+ 1)!

a∑
r=0

(−1)r
(
a

r

)
η0r,12 ,

and Example 5.2, we get the results.
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Applying Lemma 2.1 with x = 1/2, we have

n∑
k=0

(
n

k

)
(−1)k

(k + 1
2
)m

= B(n+ 1,
1

2
)Pm−1(Hn+1(1,

1

2
), . . . , Hn+1(1,

1

2
)).

Since

H(s)
n (1, 1/2) = 2sO

(s)
n+1, and B(n+ 1, 1/2) =

22n+1

(2n+ 1)
(
2n
n

) ,
we rewrtite the above identity as

n∑
k=0

(
n

k

)
(−1)k2m

(2k + 1)m
=

22n+1

(2n+ 1)
(
2n
n

)Pm−1(2O(1)
n , . . . , 2m−1O(m−1)

n ).

Using Eq. (2.2) we can simplify the identity as

n∑
k=0

(
n

k

)
(−1)k

(2k + 1)m
=

22n

(2n+ 1)
(
2n
n

)Pm−1(O(1)
n , . . . , O(m−1)

n ).

Therefore the summation in Eq. (5.2) can write as

k−1∑
r=0

(
k − 1

r

)
(−1)r

(2r + 1)`+1
=

22k−2

(2k − 1)
(
2k−2
k−1

)P`(O(1)
k , . . . , O

(`)
k ).

Similarly the summation in Eq. (5.3) can rewrite as

k−1∑
r=0

(
k − 2

r

)
(−1)r

(2r + 3)`+1
=

22k−3

k(k − 1)
(
2k−1
k−1

)P`(O′(1)k , . . . , O′
(`)
k ),

where O′(s)n = O
(s)
n − 1. Now we have a more efficient form for Example 5.3:

Corollary 5.4. Let s, k be two positive integers. Then

∞∑
n=1

O
(s)
n

n
(
n+k
k

) =
(−1)s+122k−1

(2k − 1)
(
2k−2
k−1

) log(2)Ps−1(O
(1)
k , . . . , O

(s−1)
k ) (5.4)

+
s−2∑
`=0

(−1)`22k−1

(2k − 1)
(
2k−2
k−1

)t(s− `)P`(O(1)
k , . . . , O

(`)
k ) +

k−1∑
r=0

(
k − 1

r

)
(−1)r+s+1

(2r + 1)s
Hr.

Let s, k be two positive integers with k ≥ 2. Then

∞∑
n=1

O
(s)
n(

n+k
k

) =
(−1)s+122k−2

(k − 1)
(
2k−1
k−1

) log(2)Ps−1(O
′(1)
k , . . . , O′

(s−1)
k ) (5.5)

+
s−2∑
`=0

(−1)`22k−2

(k − 1)
(
2k−1
k−1

)t(s− `)P`(O′(1)k , . . . , O′
(`)
k ) + k

k−2∑
r=0

(
k − 2

r

)
(−1)r+s+1

(2r + 3)s
Hr+1,

where O′(s)n = O
(s)
n − 1.
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At last we list some examples for special values of s = 1, 2:

∞∑
n=1

On

n
(
n+k
k

) =
22k−1 log(2)

(2k − 1)
(
2k−2
k−1

) +
k−1∑
r=0

(
k − 1

r

)
(−1)rHr

2r + 1
, (5.6)

∞∑
n=1

O
(2)
n

n
(
n+k
k

) =
22k−4π2

(2k − 1)
(
2k−2
k−1

) − 22k−1 log(2)

(2k − 1)
(
2k−2
k−1

)Ok +
k−1∑
r=0

(
k − 1

r

)
(−1)r+1Hr

(2r + 1)2
, (5.7)

∞∑
n=1

On(
n+k
k

) =
22k−2 log(2)

(k − 1)
(
2k−1
k−1

) + k
k−2∑
r=0

(
k − 2

r

)
(−1)rHr+1

2r + 3
, (5.8)

∞∑
n=1

O
(2)
n(

n+k
k

) =
22k−5π2

(k − 1)
(
2k−1
k−1

) − 22k−2 log(2)

(k − 1)
(
2k−1
k−1

)O′k + k

k−2∑
r=0

(
k − 2

r

)
(−1)r+1Hr+1

(2r + 3)2
. (5.9)

Using a similar method, we can derive closed forms for
∑∞

n=1

H
(s)
n

n
(
n+k
k

) and
∑∞

n=1

H
(s)
n(

n+k
k

) . Since

our explicit formulas are different from the known formulas in [20], we state them as our final
conclusions. For s, k ∈ N, we have two explicit formulas

∞∑
n=1

H
(s)
n

n
(
n+k
k

) = ζ(s+ 1) +
k−1∑
r=1

(
k − 1

r

)
(−1)r+s+1Hr

rs
+

s∑
`=2

ζ(`)
k−1∑
r=1

(
k − 1

r

)
(−1)r+s+`

rs+1−`

(5.10)

=
k−1∑
r=1

(
k − 1

r

)
(−1)r+s+1Hr

rs
+

s−1∑
`=0

(−1)`ζ(s+ 1− `)P`(H(1)
k−1, . . . , H

(`)
k−1).

(5.11)

Eq. (5.10) also appeared in [5, Example 5.2]. On the other hand, for positive integers s, k with
k ≥ 2, we have
∞∑
n=1

H
(s)
n(

n+k
k

) = k
k−2∑
r=0

(
k − 2

r

)
(−1)r+s+1Hr+1

(r + 1)s
+ k

s−2∑
`=0

ζ(s− `)
k−2∑
r=0

(
k − 2

r

)
(−1)r+`

(r + 1)`+1
(5.12)

= k

k−2∑
r=0

(
k − 2

r

)
(−1)r+s+1Hr+1

(r + 1)s
+

k

k − 1

s−2∑
`=0

(−1)`ζ(s− `)P`(H(1)
k−1, . . . , H

(`)
k−1).

(5.13)
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