Number of tuples with a given least common multiple

K. Siddharth Choudary1 and A. Satyanarayana Reddy2

1 Department of Mathematics, Shiv Nadar University
India-201314
e-mail: sk597@snu.edu.in

2 Department of Mathematics, Shiv Nadar University
India-201314
e-mail: satyanarayana.reddy@snu.edu.in

Received: 20 June 2019 Revised: 18 March 2020 Accepted: 20 April 2020

Abstract: In this paper, for a given natural number \(n \), we count the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) \in \mathbb{N}^k\) with certain conditions such that \(\text{lcm}(x_1, x_2, \ldots, x_k) = n \). In the process, we derived different arithmetic functions.

Keywords: Arithmetic function, Multiplicative function, Least common multiple, Stirling numbers of the second kind.

2010 Mathematics Subject Classification: 11A41, 11A51, 11A25.

1 Introduction and preliminaries

Let \(n = \prod_{i=1}^{m} p_i^{\alpha_i} \) be the prime factorization of positive integer \(n \) and

\[\Delta_n(k) = \{ (x_1, x_2, \ldots, x_k) \in \mathbb{N}^k \mid \forall j, x_j \mid n \}. \]

For a given \((x_1, x_2, \ldots, x_k) \in \Delta_n(k)\) we associate a \(k \)-tuple \((\beta_1, \beta_2, \ldots, \beta_k)\) such that \(p_i^{\beta_j} \mid x_j \) for each \(p_i \leq i \leq m \). Since \(0 \leq \beta_j \leq \alpha_i \), the total number of possible \(k \)-tuples \((x_1, x_2, \ldots, x_k)\) corresponding to \(p_i \) is \((\alpha_i + 1)^k\). Thus \(|\Delta_n(k)| = \prod_{i=1}^{m} (\alpha_i + 1)^k \). If \(k = 1 \), then \(\Delta_n(1) \subseteq \mathbb{N} \) is exactly the set of positive divisors of \(n \). We denote \(|\Delta_n(1)| \) as \(\tau(n) \), number of positive divisors of \(n \). Hence \(|\Delta_n(k)| = \tau(n)^k \).
The following result, also proved by O. Bagdasar [2] we are giving the proof for the sake of completeness. For elementary properties of divisor function, lcm, gcd refer any one of the following [1, 3, 6, 7].

Theorem 1.1 ([2]). Let $n = \prod_{i=1}^{m} p_i^{\alpha_i}$ and

$$A_n(k) = \{(x_1, x_2, \ldots, x_k) \in \mathbb{N}^k | \text{lcm}(x_1, x_2, \ldots, x_k) = n\}.$$

Then $|A_n(k)| = \prod_{i=1}^{m} (\alpha_i + 1) - (\alpha_i)^k$.

Proof. First note that $A_n(k) \subseteq \Delta_n(k)$. In order to have $\text{lcm}(x_1, x_2, \ldots, x_k) = n$, at least one of x_j should be equal to $p_i^{\alpha_i}$. Corresponding to each p_i, the number of elements in $\Delta_n(k) \setminus A_n(k)$ are α_i^k. Thus the total number of valid cases for p_i is $(\alpha_i + 1) - (\alpha_i)^k$. Hence the result follows from the product rule.

Example 1.2. If $n = 12$ and $k = 2$, then we have $A_{12}(2) = \{(1, 12), (2, 12), (3, 4), (3, 12), (4, 3), (4, 6), (4, 12), (6, 4), (6, 12), (12, 1), (12, 2), (12, 3), (12, 4), (12, 6), (12, 12)\}$ and

$$|A_{12}(2)| = ((2 + 1)^2 - 2^2)((1 + 1)^2 - 1^2).$$

Let P_k denote the product of first k primes. For example $P_1 = 2, P_2 = 6, P_3 = 30$. The sequence whose n-th term is P_n is called **primorial** and P_n is called n-th primorial number.

Corollary 1.3. Let P_n be the n-th primorial number. Then $|A_{P_n}(k)| = (2^k - 1)^n$.

It is easy to see that $\Delta_n(k)$ and $A_n(k)$ are multiplicative functions in n. Recall that a function $f : \mathbb{N} \to \mathbb{N}$ is multiplicative if $f(mn) = f(m)f(n)$ whenever $\gcd(m, n) = 1$.

Let $S_n(k) = \{(x_1, x_2, \ldots, x_k) \in A_n(k) | 1 < x_1 < \cdots < x_k < n\}$. Then it is clear that $S_{p^t}(k)$ is an empty set, where p is a prime number and $t \in \mathbb{N}$. Further, $2 \leq k \leq \tau(n) - 2$. For example

$$S_{30}(2) = \{(2, 15), (3, 10), (5, 6), (6, 10), (6, 15), (10, 15)\}.$$

Our goal is to find out $|S_n(k)|$ for a given n and k. Before stating main result, we state and prove a couple of results.

Lemma 1.4. Let $n = \prod_{i=1}^{m} p_i^{\alpha_i}$ and $B_n(k) = \{(x_1, x_2, \ldots, x_k) \in A_n(k) | \forall i \; x_i < n\}$. Then

$$|B_n(k)| = |A_n(k)| - (\tau(n)^k - (\tau(n) - 1)^k).$$

Proof. Let $\Delta_n^*(k) = \{(x_1, x_2, \ldots, x_k) \in \Delta_n(k) | x_j = n \text{ for some } j\}$. Then $\Delta_n^*(k) \subseteq A_n(k)$ and $B_n(k) = A_n(k) \setminus \Delta_n^*(k)$. It is easy to see that $|\Delta_n(k) \setminus \Delta_n^*(k)| = (\tau(n) - 1)^k$. Hence the result follows.

Example 1.5. Let $n = 12$ and $k = 2$. Then $B_{12}(2) = \{(3, 4), (4, 3), (4, 6), (6, 4)\}$.

$$|B_{12}(2)| = 15 - (6^2 - (6 - 1)^2).$$

The following result follows from Corollary 1.3 and $|B_{P_n}(2)| = |A_{P_n}(2)| - (2^{2n} - (2^n - 1)^2)$.

54
Corollary 1.6. Let P_n be the n-th primorial number. Then
\[|B_{P_n}(2)| = 3^n - 2^{n+1} + 1 = 2\left\{ \frac{n+1}{3} \right\}, \]
where $\left\{ \frac{n}{k} \right\}$ is the Stirling numbers of the second kind.

Lemma 1.7. Let $n = \prod_{i=1}^{m} p_i^{a_i}$ and $C_n(k) = \{ (x_1, x_2, \ldots, x_k) \in B_n(k) | \forall i, x_i > 1 \}$. Then
\[|C_n(k)| = \left(\sum_{i=0}^{k} (-1)^i \binom{k}{i} |A_n(k-i)| \right) - \left((\tau(n) - 1)^k - (\tau(n) - 2)^k \right). \]

Proof. We have that $|C_n(k)| = |B_n(k)|$ is the number of tuples in $B_n(k)$ that contain 1. Using the principle of inclusion and exclusion, we get that number of tuples in $B_n(k)$ that contain 1 is
\[\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |B_n(k-i)| \]
\[= \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |A_n(k-i)| \right) - \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} t^{k-i} \right) + \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} (t-1)^{k-i} \right) \]
\[= \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |A_n(k-i)| \right) + \left(\sum_{i=1}^{k} (-1)^{i} \binom{k}{i} t^{k-i} \right) - \left(\sum_{i=1}^{k} (-1)^{i} \binom{k}{i} (t-1)^{k-i} \right) \]
\[= \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |A_n(k-i)| \right) + (t-1)^k - (t-1)^k - (t-2)^k - (t-1)^k \]
\[= \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |A_n(k-i)| \right) - (t^k - 2(t-1)^k + (t-2)^k). \]

Therefore, $|C_n(k)|$
\[= |B_n(k)| - \left(\sum_{i=1}^{k} (-1)^{i-1} \binom{k}{i} |A_n(k-i)| \right) + (t^k - 2(t-1)^k + (t-2)^k) \]
\[= |A_n(k)| - (t^k - (t-1)^k) + \left(\sum_{i=1}^{k} (-1)^{i} \binom{k}{i} |A_n(k-i)| \right) + (t^k - 2(t-1)^k + (t-2)^k) \]
\[= \left(\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} |A_n(k-i)| \right) - ((t-1)^k - (t-2)^k). \]

This completes the proof. \qed

Example 1.8. Since $C_{12}(2) = \{ (3, 4), (4, 3), (4, 6), (6, 4) \}$, we have $|C_{12}(2)| = 4$. One can verify that $|C_{12}(2)| = (A_{12}(2) - 2A_{12}(1) + A_{12}(0)) - (5^2 - 4^2)$.

When $k = 2$, we have that $B_n(2) = C_n(2)$. Thus from Corollary 1.6 we have $|C_{P_n}(2)| = 2\left\{ \frac{n+1}{3} \right\}$.

55
2 Main results

Theorem 2.1. Let \(n = \prod_{i=1}^{m} p_i^{\alpha_i} \). Then

\[
|S_n(k)| = \binom{\tau(n) - 2}{k} + \sum_{d \mid n, d \neq 1} \left(\mu(d) \binom{\tau\left(\frac{n}{d}\right) - 1}{k} \right),
\]

where \(\mu(.) \) denotes well-known Möbius function.

We use the following lemma to prove above theorem. We omit the proof, as it is easy to derive.

Lemma 2.2. Let \(n \geq 2 \), \(G_n(k) = \{(x_1, x_2, \ldots, x_k) | 1 < x_1 < \cdots < x_k < n, \forall i x_i | n \} \) and \(H_n(k) = \{(x_1, x_2, \ldots, x_k) | 1 < x_1 < \cdots < x_k \leq n, \forall i x_i | n \} \). Then

\[
|G_n(k)| = \binom{\tau(n) - 2}{k}, \quad |H_n(k)| = \binom{\tau(n) - 1}{k}.
\]

Proof. Proof of Theorem 2.1. First note that \(S_n(k) \subseteq G_n(k) \). Let \((x_1, \ldots, x_k) \in G_n(k)\). If lcm\((x_1, x_2, \ldots, x_k) = n\), then \((x_1, \ldots, x_k) \in S_n(k)\). Let us assume that lcm\((x_1, \ldots, x_k) = l < n\). Then there exists a prime \(p \) such that \(p | \frac{n}{l} \). Hence \((x_1, \ldots, x_k) \in H_{\frac{n}{p}}(k)\) and for every \(p | n, H_{\frac{n}{p}}(k) \subseteq G_n(k) \). Hence

\[
S_n(k) = G_n(k) \setminus \left(\cup_{p | n} H_{\frac{n}{p}}(k) \right).
\]

Therefore,

\[
|S_n(k)| = |G_n(k)| - \left| \left(\cup_{p | n} H_{\frac{n}{p}}(k) \right) \right|.
\]

Since the prime factors of \(n \) are \(p_1, p_2, \ldots, p_m \), after applying principle of inclusion and exclusion, we get

\[
- \left| \left(\cup_{p | n} H_{\frac{n}{p}}(k) \right) \right| = - \sum_{p_i} \left| H_{\frac{n}{p_i}}(k) \right| + \cdots + (-1)^x \sum_{p_i < \cdots < p_x} \left| H_{\frac{n}{p_1 \cdots p_x}}(k) \right| + \cdots + (-1)^m \left| H_{\frac{n}{p_1 \cdots p_m}}(k) \right|
\]

\[
= \sum_{d \mid n, d \neq 1} (\mu(d) | H_{\frac{n}{d}}(k)|) = \sum_{d \mid n, d \neq 1} \left(\mu(d) \binom{\tau\left(\frac{n}{d}\right) - 1}{k} \right).
\]

Therefore

\[
|S_n(k)| = \binom{\tau(n) - 2}{k} + \sum_{d \mid n, d \neq 1} \left(\mu(d) \binom{\tau\left(\frac{n}{d}\right) - 1}{k} \right).
\]

Example 2.3. For \(n = 30 \) and \(k = 3 \), we have \(S_{30}(3) = \{(2, 3, 5), (2, 3, 10), (2, 3, 15), (2, 5, 6), (2, 5, 15), (2, 6, 10), (2, 6, 15), (2, 10, 15), (3, 5, 6), (3, 5, 10), (3, 6, 10), (3, 6, 15), (3, 10, 15), (5, 6, 10), (5, 6, 15), (5, 10, 15), (6, 10, 15)\}. Hence \(|S_{30}(3)| = 17 \).
Lemma 2.4. Let \(n \geq 2 \) and \(Q_n(k) = \{(x_1, x_2, \ldots, x_k) | 1 \leq x_1 < \cdots < x_k < n, \ \text{lcm}(x_1, \ldots, x_k) = n\} \). Then
\[
|Q_n(k)| = \left(\tau\left(\frac{n}{k}\right) - 1\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d} \right\rfloor \right)\right).
\]

Proof. If \(1 < x_1 \), then \((x_1, \ldots, x_k) \in S_n(k) \). If \(1 = x_1 \), then \((x_2, \ldots, x_k) \in S_n(k-1) \). Therefore,
\[
|Q_n(k)| = |S_n(k)| + |S_n(k-1)|
\]
\[
= \left(\tau\left(\frac{n}{k}\right) - 2\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d} \right\rfloor \right)\right) + \left(\tau\left(\frac{n}{k-1}\right) - 2\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d-1} \right\rfloor \right)\right)
\]
\[
= \left(\tau\left(\frac{n}{k}\right) - 2\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d} \right\rfloor \right)\right) + \left(\tau\left(\frac{n}{k-1}\right) - 1\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d-1} \right\rfloor \right)\right)
\]
\[
= \left(\tau\left(\frac{n}{k}\right) - 1\right) + \sum_{d|n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{n}{d} \right\rfloor \right)\right).
\]

Example 2.5. For \(n = 12 \) and \(k = 3 \), we have \(Q_{12}(3) = \{(1, 3, 4), (1, 4, 6), (2, 3, 4), (2, 4, 6), (3, 4, 6)\} \).
\[
|Q_{12}(3)| = 10 + (-4 - 1 + 0 + 0 + 0).
\]

Corollary 2.6. Let \(P_n \) denote the \(n \)-th primorial number. Then \(|Q_{P_n}(2)| = \left\{\binom{n+1}{3}\right\} \).

Proof. We have \(|Q_{P_n}(2)| = \left(\sum_{d|P_n, \ d \neq 1} \left(\mu(d)\left(\left\lfloor \frac{P_n}{d} \right\rfloor \right)\right)\right) \). Thus
\[
|Q_{P_n}(2)| = \left(\frac{2^n - 1}{2}\right) + \sum_{i=1}^{n} (-1)^i \binom{n}{i} \left(\frac{2^{n-i}}{2}\right)
\]
\[
= \left(\frac{2^n - 1}{2}\right) - \left(\frac{2^n}{2}\right) + \sum_{i=0}^{n} (-1)^i \binom{n}{i} \left(\frac{2^{n-i}}{2}\right)
\]
\[
= \left(\frac{2^n - 1}{2}\right) - \left(\frac{2^n}{2}\right) + \frac{1}{2} \sum_{i=0}^{n} (-1)^i \binom{n}{i} (2^{n-i} - 1)
\]
\[
= \left(\frac{2^n - 1}{2}\right) - \left(\frac{2^n}{2}\right) + \frac{1}{2} \sum_{i=0}^{n} (-1)^i \binom{n}{i} (4^{n-i} - 2^{n-i})
\]
\[
= \left(\frac{2^n - 1}{2}\right) - \left(\frac{2^n}{2}\right) + \frac{1}{2} 3^n - \frac{1}{2} = \frac{3^n - 2^{n+1} + 1}{2} = \left\{\binom{n+1}{3}\right\}.
\]

Theorem 2.7. Let \(R_n(k) = \{(x_1, x_2, \ldots, x_k) \in S_n(k) | \ \gcd(x_1, \ldots, x_k) = 1\} \). Then
\[
|R_n(k)| = |S_n(k)| + \sum_{d|n, \ d \neq 1} \mu(d)|Q_n(k)|.
\]

Proof. Let \((x_1, \ldots, x_k) \in S_n(k) \) and \(\gcd(x_1, \ldots, x_k) = d > 1 \). Then there exists a prime \(p \) such that \(p|d \). Hence we can write \((x_1, \ldots, x_k) = p^{\left(\frac{x_1}{d}\right)} \cdot \ldots \cdot p^{\left(\frac{x_k}{d}\right)} \) and \((x_1, \ldots, x_k) \in p Q_{P_n}(k) \). Since for every prime \(p \), \(p Q_{P_n}(k) \subseteq S_n(k) \), \(R_n(k) = S_n(k) \setminus \left(\cup_{p|d} p Q_{P_n}(k)\right) \). Hence we have
\[
|R_n(k)| = |S_n(k)| - \left|\left(\cup_{p|d} p Q_{P_n}(k)\right)\right|.
\]
Let the prime factors of n be $\{p_1, p_2, \ldots, p_m\}$. By applying principle of inclusion and exclusion we get

$$-\left| \bigcup_{p|n} Q_{\frac{n}{p}}(k) \right|$$

$$= -\sum_{p_i} \left| Q_{\frac{n}{p_i}}(k) \right| + \cdots + (-1)^x \sum_{p_i < \ldots < p_x} \left| Q_{\frac{n}{p_i \ldots p_x}}(k) \right| + \cdots + (-1)^n \left| Q_{\frac{n}{p_1 \ldots p_m}}(k) \right|$$

$$= \sum_{d|n, d \neq 1} (\mu(d)|Q_{\frac{n}{d}}(k)|).$$

Therefore

$$|R_n(k)| = |S_n(k)| + \sum_{d|n, d \neq 1} \mu(d)|Q_{\frac{n}{d}}(k)|. \quad \square$$

We noticed that the sequence $|S_{P_n}(2)|$ coincides with the sequence in OEIS: A000392 (https://oeis.org/A000392). The following result establishes the same correspondence.

Theorem 2.8. Let P_n be the n-th primorial number. Then

$$|S_{P_n}(2)| = \left\{ \frac{n + 1}{3} \right\}.$$

Proof. We have

$$|S_{P_n}(2)|$$

$$= \left(2^n - 2 \right) + \left(\sum_{i=1}^{n} (-1)^i \binom{n}{i} \left(\frac{2^{n-i} - 1}{2} \right) \right)$$

$$= (2^n - 1)(2^n - 3) + \left(\sum_{i=1}^{n} (-1)^i \binom{n}{i} (2^{n-i} - 1)(2^{n-i-1} - 1) \right)$$

$$= -2(2^{n-1} - 1) + (1 - 0)^0 \left(\binom{n}{0} (2^n - 1)(2^{n-1} - 1) + \sum_{i=1}^{n} (-1)^i \binom{n}{i} (2^{n-i} - 1)(2^{n-i-1} - 1) \right)$$

$$= -2(2^{n-1} - 1) + \left(\sum_{i=0}^{n} (-1)^i \binom{n}{i} (2^{n-i} - 1)(2^{n-i-1} - 1) \right)$$

$$= -2(2^{n-1} - 1) + \left(\sum_{i=0}^{n} (-1)^i \binom{n}{i} \left(\frac{1}{2} 4^{n-i} - \frac{3}{2} 2^{n-i} + 1 \right) \right)$$

$$= -2(2^{n-1} - 1) + \frac{1}{2} \left(\sum_{i=0}^{n} (-1)^i \binom{n}{i} (4^{n-i}) \right) - \frac{3}{2} \left(\sum_{i=0}^{n} (-1)^i \binom{n}{i} (2^{n-i}) \right) + \left(\sum_{i=0}^{n} (-1)^i \binom{n}{i} \right)$$

$$= -2(2^{n-1} - 1) + \frac{3^n - 3}{2}$$

$$= \frac{3^n - 2^{n+1} + 1}{2}$$

$$= \left\{ \frac{n + 1}{3} \right\}. \quad \square$$
Theorem 2.9. Let \(n = \prod_{i=1}^{m} p_i^{\alpha_i}, k \leq m \) and \(F_n(k) = \{ (x_1, x_2, \ldots, x_k) \in A_n(k) | x_i \neq 1 \text{ and } \gcd(x_i, x_j) = 1 \} \). Then \(|F_n(k)| = \left\{ \begin{array}{l} m \\ k! \end{array} \right\} \).

Proof. Let \(f : \{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, k\} \) be an onto function. Let \(f(i) \) denote the position of prime power \(p_i^{\alpha_i} \) in the \(k \)-tuple. Since \(f \) is onto every entry in the \(k \)-tuple is a non-unit. Therefore, the number of onto functions is equal to the number of required \(k \)-tuples. The number of onto functions from a set of size \(m \) to a set of size \(k \) is given by \(\left\{ \begin{array}{l} m \\ k \end{array} \right\} k! \). Hence \(|F_n(k)| = \left\{ \begin{array}{l} m \\ k \end{array} \right\} k! \).

Example 2.10. \(F_{210}(3) = \{ (2, 3, 35), (2, 5, 21), (2, 7, 15), (2, 15, 7), (2, 21, 5), (2, 35, 3), (3, 2, 35), (3, 5, 14), (3, 7, 10), (3, 10, 7), (3, 14, 5), (3, 35, 2), (5, 2, 21), (5, 3, 14), (5, 6, 7), (5, 7, 6), (5, 14, 3), (5, 21, 2), (6, 5, 7), (6, 7, 5), (7, 2, 15), (7, 3, 10), (7, 5, 6), (7, 6, 5), (7, 10, 3), (7, 15, 2), (10, 3, 7), (10, 7, 3), (14, 3, 5), (14, 5, 3), (15, 2, 7), (15, 7, 2), (21, 2, 5), (21, 5, 2), (35, 2, 3), (35, 3, 2) \} \). Hence \(|F_{210}(3)| = 36 \).

Corollary 2.11. Let \(F'_n(k) = \{ (x_1, x_2, \ldots, x_k) \in F_n(k) | x_1 < \cdots < x_k < n \} \).

Proof. Each tuple in \(F'_n(k) \) corresponds to \(k! \) tuples in \(F_n(k) \). Hence
\[
|F'_n(k)| = \frac{|F_n(k)|}{k!} = \left\{ \begin{array}{l} m \\ k \end{array} \right\} k!.
\]

Example 2.12. \(F'_{210}(3) = \{ (2, 3, 35), (2, 5, 21), (2, 7, 15), (3, 5, 14), (3, 7, 10), (5, 6, 7) \} \). Hence \(|F_{210}(3)| = 6 \). It is easy to verify that \(R_n(2) = F'_n(2) \).

3 Conclusion

In this article, for a given natural numbers \(n \) and \(k \), we derived different arithmetic functions of the form \(f_n(k) \) which count the numbers elements in \(\mathbb{N}^k \) satisfying few conditions such that whose lcm is \(n \). We associate these functions with Stirling numbers of the second kind for certain values of \(n \) and \(k \). In future we will work on applications of these functions on the multiplicative representation of integers studied in [5, 8] in particular, Theorem 2.9. One can also explore sequences obtained by iterating these functions as studied in the recent paper [4].

Acknowledgements

We would like to thank the referees for the valuable comments.

References

