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1 Introduction and preliminaries

Let n =
m∏
i=1

pαi
i be the prime factorization of positive integer n and

∆n(k) = {(x1, x2, . . . , xk) ∈ Nk| ∀j, xj|n}.

For a given (x1, x2, . . . , xk) ∈ ∆n(k) we associate a k-tuple (β1, β2, . . . , βk) such that pβji ||xj for
each pi 1 ≤ i ≤ m. Since 0 ≤ βj ≤ αi, the total number of possible k-tuples (x1, x2, . . . , xk)

corresponding to pi is (αi + 1)k. Thus |∆n(k)| =
m∏
i=1

(αi + 1)k. If k = 1, then ∆n(1) ⊆ N is

exactly the set of positive divisors of n. We denote |∆n(1)| as τ(n), number of positive divisors
of n. Hence |∆n(k)| = τ(n)k.
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The following result, also proved by O. Bagdasar [2] we are giving the proof for the sake
of completeness. For elementary properties of divisor function, lcm, gcd refer any one of the
following [1, 3, 6, 7].

Theorem 1.1 ([2]). Let n =
m∏
i=1

pαi
i and

An(k) = {(x1, x2, . . . , xk) ∈ Nk| lcm(x1, x2, . . . , xk) = n}.

Then |An(k)| =
m∏
i=1

(
(αi + 1)k − αki

)
.

Proof. First note that An(k) ⊆ ∆n(k). In order to have lcm(x1, x2, . . . , xk) = n, at least one of
xj should be equal to pαi

i . Corresponding to each pi, the number of elements in ∆n(k) \ An(k)

are αki . Thus the total number of valid cases for pi is (αi + 1)k − (αi)
k. Hence the result follows

from the product rule.

Example 1.2. If n = 12 and k = 2, then we haveA12(2) = {(1, 12), (2, 12), (3, 4), (3, 12), (4, 3),

(4, 6), (4, 12), (6, 4), (6, 12), (12, 1), (12, 2), (12, 3), (12, 4), (12, 6), (12, 12)} and

|A12(2)| = ((2 + 1)2 − 22)((1 + 1)2 − 12).

Let Pk denote the product of first k primes. For example P1 = 2, P2 = 6, P3 = 30. The
sequence whose n-th term is Pn is called primorial and Pn is called n-th primorial number.

Corollary 1.3. Let Pn be the n-th primorial number. Then |APn(k)| = (2k − 1)n.

It is easy to see that ∆n(k) and An(k) are multiplicative functions in n. Recall that a function
f : N→ N is multiplicative if f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

Let Sn(k) = {(x1, x2, . . . , xk) ∈ An(k)| 1 < x1 < · · · < xk < n}. Then it is clear that Spt(k)

is an empty set, where p is a prime number and t ∈ N. Further, 2 ≤ k ≤ τ(n)− 2. For example

S30(2) = {(2, 15), (3, 10), (5, 6), (6, 10), (6, 15), (10, 15)}.

Our goal is to find out |Sn(k)| for a given n and k. Before stating main result, we state and prove
a couple of results.

Lemma 1.4. Let n =
∏m

i=1 p
αi
i and Bn(k) = {(x1, x2, . . . , xk) ∈ An(k)| ∀i xi < n}. Then

|Bn(k)| = |An(k)| −
(
τ(n)k − (τ(n)− 1)k

)
.

Proof. Let ∆n
n(k) = {(x1, x2, . . . , xk) ∈ ∆n(k)|xj = n for some j}. Then ∆n

n(k) ⊆ An(k) and
Bn(k) = An(k) \∆n

n(k). It is easy to see that |∆n(k) \∆n
n(k)| = (τ(n)− 1)k. Hence the result

follows.

Example 1.5. Let n = 12 and k = 2. Then B12(2) = {(3, 4), (4, 3), (4, 6), (6, 4)}.
|B12(2)| = 15− (62 − (6− 1)2).

The following result follows from Corollary 1.3 and |BPn(2)| = |APn(2)|− (22n− (2n−1)2).
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Corollary 1.6. Let Pn be the n-th primorial number. Then

|BPn(2)| = 3n − 2n+1 + 1 = 2

{
n+ 1

3

}
,

where
{
n
k

}
is the Stirling numbers of the second kind.

Lemma 1.7. Let n =
∏m

i=1 p
αi
i and Cn(k) = {(x1, x2, . . . , xk) ∈ Bn(k)|∀i, xi > 1}. Then

|Cn(k)| =

(
k∑
i=0

(−1)i
(
k

i

)
|An(k − i)|

)
−
(
(τ(n)− 1)k − (τ(n)− 2)k

)
.

Proof. We have that |Cn(k)| = |Bn(k)| is the number of tuples in Bn(k) that contain 1. Using
the principle of inclusion and exclusion, we get that number of tuples in Bn(k) that contain 1 is

k∑
i=1

(−1)i−1
(
k

i

)
|Bn(k − i)|

=

(
k∑
i=1

(−1)i−1
(
k

i

)
|An(k − i)|

)
−

(
k∑
i=1

(−1)i−1
(
k

i

)
tk−i

)
+

(
k∑
i=1

(−1)i−1
(
k

i

)
(t− 1)k−i

)

=

(
k∑
i=1

(−1)i−1
(
k

i

)
|An(k − i)|

)
+

(
k∑
i=1

(−1)i
(
k

i

)
tk−i

)
−

(
k∑
i=1

(−1)i
(
k

i

)
(t− 1)k−i

)

=

(
k∑
i=1

(−1)i−1
(
k

i

)
|An(k − i)|

)
+
(
(t− 1)k − tk

)
−
(
(t− 2)k − (t− 1)k

)
=

(
k∑
i=1

(−1)i−1
(
k

i

)
|An(k − i)|

)
−
(
tk − 2(t− 1)k + (t− 2)k

)
.

Therefore, |Cn(k)|

= |Bn(k)| −

(
k∑
i=1

(−1)i−1
(
k

i

)
|An(k − i)|

)
+
(
tk − 2(t− 1)k + (t− 2)k

)
= |An(k)| −

(
tk − (t− 1)k

)
+

(
k∑
i=1

(−1)i
(
k

i

)
|An(k − i)|

)
+
(
tk − 2(t− 1)k + (t− 2)k

)
=

(
k∑
i=0

(−1)i
(
k

i

)
|An(k − i)|

)
−
(
(t− 1)k − (t− 2)k

)
.

This completes the proof.

Example 1.8. Since C12(2) = {(3, 4), (4, 3), (4, 6), (6, 4)}, we have |C12(2)| = 4. One can verify
that |C12(2)| = (A12(2)− 2A12(1) + A12(0))− (52 − 42).

When k = 2, we have that Bn(2) = Cn(2). Thus from Corollary 1.6 we have |CPn(2)| =

2
{
n+1
3

}
.
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2 Main results

Theorem 2.1. Let n =
∏m

i=1 p
αi
i . Then

|Sn(k)| =
(
τ(n)− 2

k

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
− 1

k

))
,

where µ(.) denotes well-known Möbius function.

We use the following lemma to prove above theorem. We omit the proof, as it is easy to
derive.

Lemma 2.2. Let n ≥ 2, Gn(k) = {(x1, x2, . . . , xk)|1 < x1 < · · · < xk < n, ∀i xi|n} and
Hn(k) = {(x1, x2, . . . , xk)|1 < x1 < · · · < xk ≤ n, ∀i xi|n}. Then

|Gn(k)| =
(
τ(n)− 2

k

)
, |Hn(k)| =

(
τ(n)− 1

k

)
.

Proof. Proof of Theorem 2.1. First note that Sn(k) ⊆ Gn(k). Let (x1, . . . , xk) ∈ Gn(k).
If lcm(x1, x2, . . . , xk) = n, then (x1, . . . , xk) ∈ Sn(k). Let us assume that lcm(x1, . . . , xk) =

l < n. Then there exists a prime p such that p|n
l
. Hence (x1, . . . , xk) ∈ Hn

p
(k) and for every

p|n,Hn
p
(k) ⊆ Gn(k). Hence

Sn(k) = Gn(k)\
(
∪p|nHn

p
(k)
)
.

Therefore,
|Sn(k)| = |Gn(k)| −

∣∣∣(∪p|nHn
p
(k)
)∣∣∣ .

Since the prime factors of n are p1, p2, . . . , pm, after applying principle of inclusion and exclu-
sion, we get

−
∣∣∣(∪p|nHn

p
(k)
)∣∣∣

= −
∑
pi

∣∣∣H n
pi

(k)
∣∣∣+ · · ·+ (−1)x

∑
pi1<...<pix

∣∣∣H n
pi1

...pix

(k)
∣∣∣+ · · ·+ (−1)m

∣∣∣H n
pi1

...pim

(k)
∣∣∣

=
∑

d|n,d 6=1

(
µ(d)|Hn

d
(k)|
)

=
∑

d|n,d 6=1

(
µ(d)

(
τ
(
n
d

)
− 1

k

))
.

Therefore

|Sn(k)| =
(
τ(n)− 2

k

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
− 1

k

))
.

Example 2.3. For n = 30 and k = 3, we have S30(3) = {(2, 3, 5), (2, 3, 10), (2, 3, 15), (2, 5, 6),

(2, 5, 15), (2, 6, 10), (2, 6, 15), (2, 10, 15), (3, 5, 6), (3, 5, 10), (3, 6, 10), (3, 6, 15), (3, 10, 15),

(5, 6, 10), (5, 6, 15), (5, 10, 15), (6, 10, 15)}. Hence |S30(3)| = 17.
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Lemma 2.4. Let n ≥ 2 andQn(k) = {(x1, x2, . . . , xk)|1 ≤ x1 < · · · < xk < n, lcm(x1, . . . , xk) =

n}. Then

|Qn(k)| =
(
τ(n)− 1

k

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
k

))
.

Proof. If 1 < x1, then (x1, . . . , xk) ∈ Sn(k). If 1 = x1, then (x2, . . . , xk) ∈ Sn(k−1). Therefore,

|Qn(k)| = |Sn(k)|+ |Sn(k − 1)|

=

(
τ(n)− 2

k

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
− 1

k

))
+

(
τ(n)− 2

k − 1

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
− 1

k − 1

))

=

(
τ(n)− 2

k

)
+

(
τ(n)− 2

k − 1

)
+

∑
d|n, d 6=1

µ(d)

((
τ
(
n
d

)
− 1

k

)
+

(
τ
(
n
d

)
− 1

k − 1

))

=

(
τ(n)− 1

k

)
+

∑
d|n, d 6=1

(
µ(d)

(
τ
(
n
d

)
k

))
.

Example 2.5. For n = 12 and k = 3, we have Q12(3) = {(1, 3, 4), (1, 4, 6), (2, 3, 4), (2, 4, 6),

(3, 4, 6)}.
|Q12(3)| = 10 + (−4− 1 + 0 + 0 + 0).

Corollary 2.6. Let Pn denote the n-th primorial number. Then |QPn(2)| =
{
n+1
3

}
.

Proof. We have |QPn(2)| =
(
τ(Pn)−1

2

)
+

∑
d|Pn, d 6=1

(
µ(d)

(τ(Pn
d )−1
2

))
. Thus

|QPn(2)| =
(

2n − 1

2

)
+

n∑
i=1

(−1)i
(
n

i

)(
2n−i

2

)
=

(
2n − 1

2

)
−
(

2n

2

)
+

n∑
i=0

(−1)i
(
n

i

)(
2n−i

2

)
=

(
2n − 1

2

)
−
(

2n

2

)
+

1

2

n∑
i=0

(−1)i
(
n

i

)
(2n−i)(2n−i − 1)

=

(
2n − 1

2

)
−
(

2n

2

)
+

1

2

n∑
i=0

(−1)i
(
n

i

)
(4n−i − 2n−i)

=

(
2n − 1

2

)
−
(

2n

2

)
+

1

2
3n − 1

2
=

3n − 2n+1 + 1

2
=

{
n+ 1

3

}
.

Theorem 2.7. Let Rn(k) = {(x1, x2, . . . , xk) ∈ Sn(k) | gcd(x1, . . . , xk) = 1}. Then

|Rn(k)| = |Sn(k)|+
∑

d|n d 6=1

µ(d)|Qn
d
(k)|.

Proof. Let (x1, . . . , xk) ∈ Sn(k) and gcd(x1, . . . , xk) = d > 1. Then there exists a prime p such
that p|d. Hence we can write (x1, . . . , xk) = p(x1

p
, . . . , xk

p
) and (x1, . . . , xk) ∈ pQn

p
(k). Since for

every prime p, pQn
p
(k) ⊆ Sn(k), Rn(k) = Sn(k)\

(
∪p|npQn

p
(k)
)
. Hence we have

|Rn(k)| = |Sn(k)| − |
(
∪p|npQn

p
(k)
)
|.
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Let the prime factors of n be {p1, p2, . . . , pm}. By applying principle of inclusion and exclusion
we get

−
∣∣∣(∪p|npQn

p
(k)
)∣∣∣

= −
∑
pi

∣∣∣Q n
pi

(k)
∣∣∣+ · · ·+ (−1)x

∑
pi1<...<pix

∣∣∣Q n
pi1

...pix

(k)
∣∣∣+ · · ·+ (−1)m

∣∣∣Q n
pi1

...pim

(k)
∣∣∣

=
∑

d|n,d 6=1

(
µ(d)|Qn

d
(k)|
)
.

Therefore
|Rn(k)| = |Sn(k)|+

∑
d|n d 6=1

µ(d)|Qn
d
(k)|.

We noticed that the sequence |SPn(2)| coincide with the sequence in OEIS: A000392
(https://oeis.org/A000392). The following result establishes the same correspondence.

Theorem 2.8. Let Pn be the n-th primorial number. Then

|SPn(2)| =
{
n+ 1

3

}
.

Proof. We have

|SPn(2)|

=

(
2n − 2

2

)
+

(
n∑
i=1

(−1)i
(
n

i

)(
2n−i − 1

2

))

= (2n−1 − 1)(2n − 3) +

(
n∑
i=1

(−1)i
(
n

i

)
(2n−i − 1)(2n−i−1 − 1)

)

= −2(2n−1 − 1) + (−1)0
(
n

0

)
(2n − 1)(2n−1 − 1) +

(
n∑
i=1

(−1)i
(
n

i

)
(2n−i − 1)(2n−i−1 − 1)

)

= −2(2n−1 − 1) +

(
n∑
i=0

(−1)i
(
n

i

)
(2n−i − 1)(2n−i−1 − 1)

)

= −2(2n−1 − 1) +

(
n∑
i=0

(−1)i
(
n

i

)
(
1

2
4n−i − 3

2
2n−i + 1)

)

= −2(2n−1 − 1) +
1

2

(
n∑
i=0

(−1)i
(
n

i

)
(4n−i)

)
− 3

2

(
n∑
i=0

(−1)i
(
n

i

)
(2n−i)

)
+

(
n∑
i=0

(−1)i
(
n

i

))
= −2(2n−1 − 1) +

3n − 3

2

=
3n − 2n+1 + 1

2

=

{
n+ 1

3

}
.
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Theorem 2.9. Let n =
m∏
i=1

pαi
i , k ≤ m and Fn(k) = {(x1, x2, . . . , xk) ∈ An(k)|xi 6= 1 and

gcd(xi, xj) = 1}. Then |Fn(k)| =
{
m
k

}
k!.

Proof. Let f : {1, 2, . . . ,m} → {1, 2, . . . , k} be an onto function. Let f(i) denote the position of
prime power pαi

i in the k-tuple. Since f is onto every entry in the k-tuple is a non-unit. Therefore,
the number of onto functions is equal to the number of required k-tuples. The number of onto
functions from a set of size m to a set of size k is given by

{
m
k

}
k!. Hence |Fn(k)| =

{
m
k

}
k!.

Example 2.10. F210(3) = {(2, 3, 35), (2, 5, 21), (2, 7, 15), (2, 15, 7), (2, 21, 5), (2, 35, 3), (3, 2, 35),

(3, 5, 14), (3, 7, 10), (3, 10, 7), (3, 14, 5), (3, 35, 2), (5, 2, 21), (5, 3, 14), (5, 6, 7), (5, 7, 6), (5, 14, 3),

(5, 21, 2), (6, 5, 7), (6, 7, 5), (7, 2, 15), (7, 3, 10), (7, 5, 6), (7, 6, 5), (7, 10, 3), (7, 15, 2), (10, 3, 7),

(10, 7, 3), (14, 3, 5), (14, 5, 3), (15, 2, 7), (15, 7, 2), (21, 2, 5), (21, 5, 2), (35, 2, 3), (35, 3, 2)}.
Hence |F210(3)| = 36.

Corollary 2.11. Let F ′n(k) = {(x1, x2, . . . , xk) ∈ Fn(k)|x1 < · · · < xk < n}.

Proof. Each tuple in F ′n(k) corresponds to k! tuples in Fn(k). Hence

|F ′n(k)| = |Fn(k)|
k!

=

{
m

k

}
.

Example 2.12. F ′210(3) = {(2, 3, 35), (2, 5, 21), (2, 7, 15), (3, 5, 14), (3, 7, 10), (5, 6, 7)}. Hence
|F210(3)| = 6. It is easy to verify that Rn(2) = F ′n(2).

3 Conclusion

In this article, for a given natural numbers n and k, we derived different arithmetic functions
of the form fn(k) which count the numbers elements in Nk satisfying few conditions such that
whose lcm is n. We associate these functions with Stirling numbers of the second kind for certain
values of n and k. In future we will work on applications of these functions on the multiplica-
tive representation of integers studied in [5, 8] in particular, Theorem 2.9. One can also explore
sequences obtained by iterating these functions as studied in the recent paper [4].
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