Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 26, 2020, No. 2, 53-60

DOI: 10.7546/nntdm.2020.26.2.53-60

Number of tuples with a given

least common multiple

K. Siddharth Choudary' and A. Satyanarayana Reddy>

! Department of Mathematics, Shiv Nadar University
India-201314
e-mail: sk597@snu.edu.in

2 Department of Mathematics, Shiv Nadar University
India-201314

e-mail: satyanarayana.reddy@snu.edu.in

Received: 20 June 2019 Revised: 18 March 2020 Accepted: 20 April 2020

Abstract: In this paper, for a given natural number n, we count the number of k-tuples
(71, 2s,...,2,) € NF with certain conditions such that lem(zy, s, ...,2;) = n. In the pro-
cess, we derived different arithmetic functions.

Keywords: Arithmetic function, Multiplicative function, Least common multiple, Stirling
numbers of the second kind.

2010 Mathematics Subject Classification: 11A41, 11A51, 11A25.

1 Introduction and preliminaries

m

Let n = [ p;" be the prime factorization of positive integer n and
i=1

A, (k) ={(x1,29,...,2%) € Nk| Vi, xjn}.

For a given (1, xo, ..., 2x) € A, (k) we associate a k-tuple (51, B2, . - ., Bx) such that pfﬂ ||z; for
eachp; 1 < i < m. Since 0 < f; < «, the total number of possible k-tuples (z1, z, . .., Tk)
corresponding to p; is (a; + 1)*. Thus |A, (k)| = [](cw + 1)*. If k = 1, then A, (1) C Nis

i=1
exactly the set of positive divisors of n. We denote |A,,(1)| as 7(n), number of positive divisors

of n. Hence |A, (k)| = 7(n)k.
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The following result, also proved by O. Bagdasar [2] we are giving the proof for the sake
of completeness. For elementary properties of divisor function, lem, ged refer any one of the
following [1,3,6,7].

Theorem 1.1 ([2]). Letn = [] pi" and
i=1

ATL(k) = {(xlvx% R ,$k) S Nk| lcm(xhx% s ,.Tk) - TL}

Then | Au(k)| = TT (0 + 1)* — o).

=1

Proof. First note that A,,(k) C A, (k). In order to have lem(xy, 2o, ..., x;) = n, at least one of
x; should be equal to pj’. Corresponding to each p;, the number of elements in A, (k) \ A, (k)
are . Thus the total number of valid cases for p; is (a; + 1)* — (;)*. Hence the result follows
from the product rule. O]

Example 1.2. [fn = 12 and k = 2, then we have A12(2) = {(1,12), (2,12),(3,4), (3,12), (4, 3),
(4,6), (4,12), (6,4), (6,12), (12, 1), (12, 2), (12, 3), (12, 4), (12, 6), (12, 12)} and
4] = (@ + 1)~ 2)((1+ 1) — 12).

Let P, denote the product of first k primes. For example P, = 2, P, = 6,P; = 30. The
sequence whose n-th term is P, is called primorial and P, is called n-th primorial number.

Corollary 1.3. Let P, be the n-th primorial number. Then |Ap, (k)| = (2% — 1)™

It is easy to see that A, (k) and A, (k) are multiplicative functions in n. Recall that a function
f: N — Nis multiplicative if f(mn) = f(m)f(n) whenever gcd(m,n) = 1.

Let S, (k) = {(x1,22,...,2) € Ap(k)| 1 <21 < --- <z, < n}. Thenitis clear that Sy (k)
is an empty set, where p is a prime number and ¢ € N. Further, 2 < k£ < 7(n) — 2. For example

S30(2) = {(2,15), (3,10), (5,6), (6, 10), (6, 15), (10, 15)}.

Our goal is to find out |S,,(k)| for a given n and k. Before stating main result, we state and prove
a couple of results.

Lemma 14. Let n = [[;", p" and B, (k) = {(z1,29,...,24) € A, (k)| Vi x; < n}. Then

[Ba(k)| = [An(R)] = (r(0)* = (7(n) = 1)F).

Proof. Let A”(k) {(z1,29,...,25) € A, (k)|z; = n for some j}. Then A?(k) C A, (k) and
B.(k) = A, (k) \ A?(k). It is easy to see that |A,, (k) \ A"(k)| = (7(n) — 1)*. Hence the result
follows. [

Example 1.5. Let n = 12 and k = 2. Then B15(2) = {(3,4), (4,3), (4,6), (6,4)}.
|B12(2)] = 15— (6% — (6 — 1)?).

The following result follows from Corollary 1.3 and |Bp, (2)| = |Ap, (2)| — (2% — (2" —1)?).
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Corollary 1.6. Let P, be the n-th primorial number. Then

1
Br@l =3 - r1=2{" T}

where {Z} is the Stirling numbers of the second kind.

Lemma 1.7. Let n = [[", pi* and C,, (k) = {(x1, z2, ..., x) € B, (k)|Vi,x; > 1}. Then

1=0

Cu(b)] = (Z(—w(’j) A, - z'>|> — () = 1~ () — 209

Proof. We have that |C),(k)| = |B, (k)| is the number of tuples in B, (k) that contain 1. Using
the principle of inclusion and exclusion, we get that number of tuples in B,,(k) that contain 1 is

k

S () mate
- 123(—1)@-1 ()i — 1) - (Z(—n(k)t) " (Z(—n(’“) (t- 1)“)
- i(—l)i—l (5)1aute =) + (ZH)(’“)t) - (Z(—w(k) (t - 1>'H’>
— g(—ni—l (f) |Ap(k =) | + (¢ =D" =" — (¢t —2)" =t = 1))
_ i(—l)z—l (5)1uti =) = (= 2t = 1+ (020,
Therefore, |Cy (k)|
= |Ba(k)| — <g(—1)i1 <l:) |A,(k — z')\) + (" =20t —1)F + (t —2)%)
= AR - (- (=) + (Z(—n(’“) Aul— m) (20— 1 4 (- 2)Y)
- (D—l)(k) Ak - z'>|> (-1 (-2
This completes the proof. O

Example 1.8. Since C15(2) = {(3,4), (4,3), (4,6), (6,4)}, we have |C15(2)| = 4. One can verify
that |012(2)| = (A12(2) — 21412(1) + A12(0)) — (52 — 42)

When k£ = 2, we have that B,,(2) = C,,(2). Thus from Corollary 1.6 we have |Cp,(2)| =
(711},
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2 Main results

Theorem 2.1. Letn = [~ pi". Then
T(n) —2 (%) -1
saml= (T2 0 Y (w7 ).
d|n, d#1
where i(.) denotes well-known Mobius function.

We use the following lemma to prove above theorem. We omit the proof, as it is easy to
derive.

Lemma 2.2. Let n > 2, G, (k) = {(z1,29,...,2%)|1l < 21 < -+- < 2 < n, Vi x;in} and
H,(k) ={(x1,z9,...,2p)|1 <z1 < -+ <z <n, Vixgn}. Then

Gl = (7). = (77T

Proof. Proof of Theorem 2.1. First note that S,(k) C G, (k). Let (zy,...,2r) € Gu(k).
If lem(zy, 29,...,2,) = n, then (z1,...,2,) € S,(k). Let us assume that lem(xq,...,z;) =
[ < n. Then there exists a prime p such that p|7. Hence (z1,...,7;) € H%(k:) and for every
pln, Hz (k) € Gy (k). Hence

Su(k) = G\ (U H ())

Therefore,
1u (k)] = 1Ga(B)] = | (UpnH2 (1))
Since the prime factors of n are pq, po, .. ., P, after applying principle of inclusion and exclu-
sion, we get
= | (Ut 1)
= | 1 3 H 0] 1 H e (8)
Di ' Piy <. <Pig . e
T(2) -1
- Y )= X (waTH 1),
djn,d#1 djn,d#1
Therefore () ( )
T(n) —2 T(%) -1
s = (") T (w797 0

d|n, d#1

Example 2.3. For n = 30 and k = 3, we have S3,(3) = {(2,3,5), (2, 3,10),(2,3,15),(2,5,6),
(2,5,15), (2,6, 10), (2,6,15), (2,10,15), (3,5,6), (3, 5, 10), (3, 6, 10), (3,6, 15), (3, 10, 15),
(5,6,10), (5,6, 15), (5,10, 15), (6, 10, 15)}. Hence |Sso(3)| = 17.
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Lemma24. Letn > 2and Q, (k) = {(x1, 22, ..., 2p)|l <z < -+ <xp <n, lem(xy, ..., x5) =

n}. Then
= (") Y (wa(T9)).

d|n, d#1
Proof. If 1 < zy,then (xq,...,2x) € Sp(k). If 1 = x4, then (x4, ..., x%) € S,,(k—1). Therefore,

|@n(F)| = [Su(k)[ + [Sn(k = 1)|

() mwﬂ( (5 () 2 (o ()
() () Z (1) (020)
()2 () :

Example 2.5. For n = 12 and k = 3, we have Q12(3) = {(1,3,4),(1,4,6),(2,3,4),(2,4,6),
(3,4,6)}.
1Q12(3)| =10+ (=4 — 1+ 0+ 0+ 0).

Corollary 2.6. Let P, denote the n-th primorial number. Then |Qp,(2)| = {"1'}.

Proof. We have |Qp, (2)| = (")) + 32 (,u(d) (T<P7;)_l)) . Thus

d|Py, d#1

anel= (7, )+ e () (%)
(%)= () e ()
()G ey (fereron
(2)- () 15 (e
()Gt o

Theorem 2.7. Let R, (k) = {(x1, 22, ...,2) € Sy (k) | ged(z1,...,x,) = 1}. Then
|[Ra(R) = [Sa (k)] + Y u(@d)|Qs (k).

dln d#1

Proof. Let (xy,...,xx) € S,(k) and ged(xq, ..., x,) = d > 1. Then there exists a prime p such
that p|d. Hence we can write (21, ..., zy) = 10(71 o) and (21, ..., wy) € pQ%(k;). Since for

every prime p, pQ%(k) C Sp(k), Ru(k) = Sn(k)\ ( p|an%(k')> . Hence we have
[Ru(k)] = 1Su()] = | (Upup @z (R)) I
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Let the prime factors of n be {p1, p2, ..., pm}. By applying principle of inclusion and exclusion

we get
| sz

i L G L W e R )]

= Y (MD)]Q=(k)]) .

d|n,d#1
Therefore
[Ra(k)] = |Su(R) + > n(d)|Q (k). O
dn d#1

We noticed that the sequence |Sp,(2)| coincide with the sequence in OEIS: A000392
(https://oeis.org/A000392). The following result establishes the same correspondence.

Theorem 2.8. Let P, be the n-th primorial number. Then

sl ={"7 '}

Proof. We have

1Sp,(2)]

=<2";2> ( ()
~@r e - (S (e v )

— _9(2n1 1) (—1)0(7(;‘) 2" — )2 —1) + (Z(—U(?) 2 =12t - 1)>

(e ve )
(x- <”

_|_
4 - 2" ’+1)>
= (2" 1) 4 = (Z(—m (C‘) (4n~ Z)) .
+

=202 -1)+
2( 1)+

2n—1 .

/_3
\_/v

DO W

(3 (e ()e) (2o ()

-3

= 202"t -1
( )+

3n—2ntl 41
2

31) :
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Theorem 2.9. Let n = Hpal, k < mand F,(k) = {(x1,22,...,2) € Ay(k)|x; # 1 and
ged(z;, xj) = 1}. Then |F = {7}kl

Proof. Let f : {1,2,...,m} — {1,2,...,k} be an onto function. Let f(¢) denote the position of
prime power p}“ in the k-tuple. Since f is onto every entry in the k-tuple is a non-unit. Therefore,
the number of onto functions is equal to the number of required k-tuples. The number of onto
functions from a set of size m to a set of size k is given by {' }k!. Hence |F,,(k)| = {7/ }kl. O

Example 2.10. Fy10(3) = {(2,3,35), (2,5,21), (2,7,15), (2, 15,7), (2,21, 5), (2,35, 3), (3,2, 35),
(3,5,14), (3,7, 10), (3,10, 7), (3, 14,5), (3, 35,2), ( 5,2,21), (5,3,14), (5,6,7), (5,7,6), (5, 14, 3),
(5,21,2),(6,5,7), (6,7,5), (7,2, 15), (7,3, 10), (7,5,6), (7,6,5), (7, 10,3), (7, 15,2), (10,3, 7),
(10,7,3), (14,3,5), (14,5, 3), (15,2, 7), (15,7, 2),(21,2,5),(21 5,2),(35,2,3), (35,3,2)}.
Hence |F510(3)| = 36.

Corollary 2.11. Let F) (k) = {(x1, 22, ..., x) € F(k)|z1 < -+ < 2 < n}.

Proof. Each tuple in F (k) corresponds to k! tuples in F,,(k). Hence

F = 2L 0

Example 2.12. F},,(3) = {(2,3,35), (2,5,21), (2,7,15), (3,5, 14), (3,7, 10), (5,6,7)}. Hence
| F210(3)| = 6. It is easy to verify that R,,(2) = F(2).

3 Conclusion

In this article, for a given natural numbers n and k, we derived different arithmetic functions
of the form f,, (k) which count the numbers elements in N* satisfying few conditions such that
whose lcm is n. We associate these functions with Stirling numbers of the second kind for certain
values of n and k. In future we will work on applications of these functions on the multiplica-
tive representation of integers studied in [5, 8] in particular, Theorem 2.9. One can also explore
sequences obtained by iterating these functions as studied in the recent paper [4].
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