Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 26, 2020, No. 2, 1–26 DOI: 10.7546/nntdm.2020.26.2.1-26

Bi-unitary multiperfect numbers, II

Pentti Haukkanen¹ and Varanasi Sitaramaiah²

¹ Faculty of Information Technology and Communication Sciences FI-33014 Tampere University, Finland e-mail: pentti.haukkanen@tuni.fi

² 1/194e, Poola Subbaiah Street, Taluk Office Road, Markapur, Prakasam District, Andhra Pradesh, 523316 India e-mail: sitaramaiah52@gmail.com

Dedicated to the memory of Prof. D. Suryanarayana

Received: 19 December 2019 Revised: 21 January 2020 Accepted: 5 March 2020

Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1; and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is unity. The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let $\sigma^{**}(n)$ denote the sum of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present paper is Part II in a series of papers on even bi-unitary multiperfect numbers. In the first part we found all bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 3$ and u is odd; the only one being n = 120. In this second part we find all bi-unitary triperfect numbers in the cases a = 4 and a = 5. For a = 4 the only one is n = 2160, and for a = 5 they are n = 672, n = 10080, n = 528800 and n = 22932000.

Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues. **2010 Mathematics Subject Classification:** 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The letters u, v and w are reserved for odd numbers.

A divisor d of n is called a unitary divisor (written d||n) if gcd(d, n/d) = 1. A divisor d of n is called a *bi-unitary* divisor if $(d, n/d)^{**} = 1$, where $(a, b)^{**}$ stands for the greatest common unitary divisor of a and b. The concept of a bi-unitary divisor is due to D. Suryanarayana (cf. [4]). Let $\sigma^{**}(n)$ denote the sum of bi-unitary divisors of n. The function $\sigma^{**}(n)$ is multiplicative, that is, $\sigma^{**}(1) = 1$ and $\sigma^{**}(mn) = \sigma^{**}(m)\sigma^{**}(n)$ whenever (m, n) = 1.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [5]; a positive integer n is called a bi-unitary perfect number if $\sigma^{**}(n) = 2n$. C. R. Wall [5] proved that there are only three bi-unitary perfect numbers; namely 6, 60 and 90.

A positive integer n is called a bi-unitary multiperfect number if $\sigma^{**}(n) = kn$ for some $k \ge 3$. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present paper is Part II in a series of papers on even bi-unitary multiperfect numbers. In Part I (see [2]), we found all bi-unitary triperfect numbers of the form $n = 2^a u$, where $1 \le a \le 3$. In fact, we proved that if $1 \le a \le 3$ and $n = 2^a u$ is a bi-unitary triperfect number, then a = 3 and $n = 120 = 2^3.3.5$.

In this Part II, we go through the cases a = 4 and a = 5. In Theorem 3.1 we prove that if $n = 2^4 u$ is a bi-unitary triperfect number, then $n = 2160 = 2^4.3^3.5$, and in Theorem 4.1 we prove that if $n = 2^5 u$ is a bi-unitary triperfect number, then $n = 672 = 2^5.3.7$, $n = 10080 = 2^5.3^2.5.7$, $n = 528800 = 2^5.3.5^2.13$ or $n = 22932000 = 2^5.3^2.5^3.7^2.13$. This shows that the case a = 4 yields one bi-unitary triperfect number, and the case a = 5 yields four bi-unitary triperfect numbers.

For a general account on various perfect-type numbers, we refer to [3].

2 Preliminaries

We assume that the reader has Part I available (see [2]). We, however, recall Lemmas 2.1 and 2.2 from Part I, because they are also important here.

Lemma 2.1. (I) If α is odd, then

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} > \frac{\sigma^{**}(p^{\alpha+1})}{p^{\alpha+1}}$$

for any prime p.

(II) For any $\alpha \geq 2\ell - 1$ and any prime p,

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} \ge \left(\frac{1}{p-1}\right) \left(p - \frac{1}{p^{2\ell}}\right) - \frac{1}{p^{\ell}} = \frac{1}{p^{2\ell}} \left(\frac{p^{2\ell+1} - 1}{p-1} - p^{\ell}\right).$$

(III) If p is any prime and α is a positive integer, then

$$\frac{\sigma^{**}(p^{\alpha})}{p^{\alpha}} < \frac{p}{p-1}.$$

Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [5]; (II) of Lemma 2.1 has been used by him [5] without explicitly stating it.

Lemma 2.2. Let a > 1 be an integer not divisible by an odd prime p and let α be a positive integer. Let r denote the least positive integer such that $a^r \equiv 1 \pmod{p^{\alpha}}$; then r is usually denoted by $ord_{p^{\alpha}} a$. We have the following properties.

- (i) If r is even then s = r/2 is the least positive integer such that $a^s \equiv -1 \pmod{p^{\alpha}}$. Also, $a^t \equiv -1 \pmod{p^{\alpha}}$ for a positive integer t if and only if t = su, where u is odd.
- (ii) If r is odd then $p^{\alpha} \nmid a^t + 1$ for any positive integer t.

Remark 2.2. Let a, p, r and s = r/2 be as in Lemma 2.2 ($\alpha = 1$). Then $p|a^t - 1$ if and only if r|t. If t is odd and r is even, then $r \nmid t$. Hence $p \nmid a^t - 1$. Also, $p|a^t + 1$ if and only if t = su, where u is odd. In particular if t is even and s is odd, then $p \nmid a^t + 1$. In order to check the divisibility of $a^t - 1$ (when t is odd) by an odd prime p, we can confine to those p for which $ord_p a$ is odd. Similarly, for examining the divisibility of $a^t + 1$ by p when t is even we need to consider primes p with $s = ord_p a/2$ even.

3 Bi-unitary triperfect numbers of the form $n = 2^4 u$

In this section we find all bi-unitary triperfect numbers n with $2^4 || n$.

Theorem 3.1. If n is a bi-unitary triperfect number with $2^4 || n$, then $n = 2160 = 2^4 \cdot 3^3 \cdot 5$.

Proof. Let $n = 2^4 u$ be a bi-unitary triperfect number so that

$$\sigma^{**}(n) = 3n.$$

Since $\sigma^{**}(2^4) = 27$, we obtain after simplification,

$$2^4 \cdot u = 9 \cdot \sigma^{**}(u), \tag{3.1}$$

and hence $3^2|u$. Let $u = 3^b v$, where $b \ge 2$ and v is prime to 2.3. Hence

$$n = 2^4 . 3^b . v, (3.1a)$$

and substituting $u = 3^b v$ in (3.1), we get

$$2^{4}.3^{b-2}.v = \sigma^{**}(3^{b}).\sigma^{**}(v),$$
(3.1b)

where v has no more than three odd prime factors. (3.1c)

The rest of the proof depends on the following Lemmas:

Lemma 3.1. Let $n = 2^4 \cdot 3^b \cdot v$, where $b \ge 2$ and $(v, 2 \cdot 3) = 1$.

- (a) If b = 2, then n is not a bi-unitary triperfect number.
- (b) If b = 3 and n is a bi-unitary perfect number, then $n = 2160 = 2^4 \cdot 3^3 \cdot 5$.

Proof. Proof of (a). Let b = 2. Suppose that n is a bi-unitary triperfect number so that (3.1a) and (3.1b) hold. From (3.1b) we get $2^4 \cdot v = 10 \cdot \sigma^{**}(v)$ and this implies 5|v|. Let $v = 5^c \cdot w$. Hence

$$n = 2^4 . 3^2 . 5^c . w, (3.2a)$$

and

$$2^{3}.5^{c-1}.w = \sigma^{**}(5^{c}).\sigma^{**}(w), \qquad (3.2b)$$

where

$$w$$
 has no more than two odd prime factors; (3.2c)

also w is prime to 2.3.5.

If c = 1, from (3.2b) we get, $2^3 \cdot w = 6 \cdot \sigma^{**}(w)$ so that 3|w. But this false. Let c = 2. From (3.2b), we have

$$2^2.5.w = 13.\sigma^{**}(w), \tag{3.3}$$

so that 13|w.

Let $w = 13^{d} \cdot w'$, where (w', 2.3.5.13) = 1. From (3.2a) and (3.2b), we obtain

$$n = 2^4 . 3^2 . 5^c . 13^d . w', (3.3a)$$

and

$$2^{2}.5.13^{d-1}.w' = \sigma^{**}(13^{d}).\sigma^{**}(w'), \qquad (3.3b)$$

where

w' has at most one odd prime factor. (3.3c)

We can assume that $w' = p^e$, where $p \ge 7$. Hence from (3.3a), $n = 2^4 \cdot 3^2 \cdot 5^2 \cdot 13^d \cdot p^e$. We have, by Lemma 2.1,

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{10}{9} \cdot \frac{26}{25} \cdot \frac{13}{12} \cdot \frac{7}{6} = 2.464583333 < 3,$$

a contradiction.

Hence c = 2 is not possible. We may assume that $c \ge 3$. We obtain a contradiction in the case b = 2 by examining the factors of $\sigma^{**}(5^c)$. Let c be odd so that

$$\sigma^{**}(5^c) = \frac{5^{c+1} - 1}{4} = \frac{(5^t - 1)(5^t + 1)}{4} \quad \left(t = \frac{c+1}{2} \ge 2\right).$$

If t is even, then $4|\sigma^{**}(5^c)$. From (3.2b), it follows that $w = p^d$, where $p \ge 7$. From (3.2a), $n = 2^4 \cdot 3^2 \cdot 5^c \cdot p^d$, so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{10}{9} \cdot \frac{5}{4} \cdot \frac{7}{6} = 2.734375 < 3,$$

a contradiction.

Let t be odd so that $t \ge 3$. Following the same procedure adopted in Lemma 3.3 of [2], we can show that $\frac{5^t-1}{4}$ is divisible by a prime $p \ge 29$ and p|w. We obtain a contradiction as in (3.7) of [2].

The case when c is odd is complete.

Let c be even so that c = 2k. Hence

$$\sigma^{**}(5^c) = \left(\frac{5^k - 1}{4}\right) . (5^{k+1} + 1).$$

If k is even then $4|\sigma^{**}(5^c)$. We proceed exactly as in the case when $t = \frac{c+1}{2}$ was even to obtain a contradiction. If k is odd we obtain a contradiction by imitating the case when $t = \frac{c+1}{2}$ was odd.

This finishes the case that c is even and also the case b = 2.

Thus b = 2 is not possible. That is, when b = 2, *n* cannot be a bi-unitary triperfect number. This completes the proof of (a) of Lemma 3.1.

Proof of (b). Let n be a bi-unitary perfect number so that (3.1a) and (3.1b) hold. Let b = 3. Since $\sigma^{**}(3^3) = 40 = 2^3.5$, taking b = 3 in (3.1b), we get

$$2.3.v = 5.\sigma^{**}(v), \tag{3.4}$$

so that 5|v. Also, from (3.4), v must be a prime power. Hence $v = 5^c$ and so from (3.1a) (b = 3) and (3.4),

$$n = 2^4 \cdot 3^3 \cdot 5^c, \tag{3.4a}$$

and

$$2.3.5^{c-1} = \sigma^{**}(5^c). \tag{3.4b}$$

If $c \ge 2$, then from (3.4b), $5|\sigma^{**}(5^c)$, which is false. Hence c = 1 and (3.4b) is satisfied. Thus $n = 2^4 \cdot 3^3 \cdot 5 = 2160$ is a bi-unitary triperfect number.

This completes the proof of (b) of Lemma 3.1.

Proof of Lemma 3.1 is complete.

Lemma 3.2. Let $n = 2^4 \cdot 3^b \cdot v$, where $b \ge 4$ and $(v, 2 \cdot 3) = 1$.

(a) If b is odd or 4|b, then n cannot be a bi-unitary triperfect number.

(b) Let b = 2k and k be odd. If n is a bi-unitary triperfect number then $5 \nmid n$.

Proof. We return to the equations (3.1a) and (3.1b), in which $b \ge 4$. We obtain a contradiction by considering $\sigma^{**}(3^b)$.

Proof of (a). Let b be odd so that

$$\sigma^{**}(3^b) = \frac{3^{b+1} - 1}{2} = \frac{(3^t - 1)(3^t + 1)}{2} \quad \left(t = \frac{b+1}{2}\right).$$

Let t be even. Since $t = \frac{b+1}{2}$ is even 4|b+1. Hence $80 = 3^4 - 1|3^{b+1} - 1$. It follows that $\sigma^{**}(3^b)$ is divisible by 5 and 8. From (3.1b), $8|\sigma^{**}(3^b)$ implies that v cannot have more than one odd prime factor and $5|\sigma^{**}(3^b)$ implies that $v = 5^c$. Hence from (3.1a) and (3.1b), we have

$$n = 2^4 \cdot 3^b \cdot 5^c, \quad (b \ge 4) \tag{3.5a}$$

and

$$2^{4}.3^{b-2}.5^{c} = \sigma^{**}(3^{b}).\sigma^{**}(5^{c}).$$
(3.5b)

From (3.5b), $5|\sigma^{**}(3^b)$. This implies either $5|3^t - 1$ or $5|3^t + 1$ but not both.

Assume that $5|3^t - 1$. Then $5 \nmid 3^t + 1$. Thus $\frac{3^t+1}{2} > 1$, odd and not divisible by 3 or 5. This cannot happen from (3.5b) since $\frac{3^t+1}{2}|\sigma^{**}(3^b)$.

Let $5|3^t + 1$. Hence $5 \nmid 3^t - 1$. Also, from (3.5b), $16 \nmid 3^t - 1$. Since t is even, we have $8|3^t - 1$; hence $8||3^t - 1$. Hence $\frac{3^t - 1}{8}$ is odd, > 1 and not divisible by 3 or 5; since $\frac{3^t - 1}{8}|\sigma^{**}(3^b)$, this cannot happen in view of (3.5b).

Thus the case t even cannot occur.

Let t be odd. In this case $4||3^t + 1$ and $2||3^t - 1$ so that $4||\sigma^{**}(3^b)$. It follows from (3.1b) that

v cannot have more than two odd prime factors. (3.5c)

Note that $5|3^t + 1$ if and only if t = 2u, u being odd. In particular t must be even. Since t is odd, $5 \nmid 3^t + 1$; also, $11 \nmid 3^t + 1$ for any positive integer t.

Thus $\frac{3^t+1}{4}$ is odd, > 1 and not divisible by 3, 5, and 11. Suppose $7 \nmid 3^t + 1$. Then $\frac{3^t+1}{4}$ should be divisible by an odd prime $q \notin \{3, 5, 7, 11\}$. Since $q \mid \frac{3^t+1}{4} \mid \sigma^{**}(3^b)$, from (3.1b), it follows that $q \mid v$ and $q \geq 13$.

Suppose that $7|3^t + 1$. We prove that $\frac{3^t+1}{4}$ cannot be divisible by 7 alone. On the contrary let us assume that $\frac{3^t+1}{4} = 7^{\alpha}$, where α is a positive integer. If $\alpha \ge 2$, then $7^2|3^t + 1$. But this is if and only if t = 21u. Thus $7^2|3^t + 1$ implies $3^{21} + 1|3^t + 1$. We have $3^{21} + 1 = 2^2.7^2.43.547.2269$, so that $43|\frac{3^{21}+1}{4}|\frac{3^t+1}{4} = 7^{\alpha}$, which is not possible. Thus $\alpha = 1$ and hence $\frac{3^t+1}{4} = 7$ or t = 3. Hence b = 5.

We now show that b = 5 is not admissible.

We have $\sigma^{**}(3^5) = \frac{3^6-1}{2} = 2^2.7.13$. Taking b = 5 in (3.1b), we get

$$2^2 \cdot 3^3 \cdot v = 7 \cdot 13 \cdot \sigma^{**}(v). \tag{3.5d}$$

From (3.5d), 7 and 13 divide v. Let $v = 7^{c} \cdot 13^{d}$. Now from (3.5d), we get after simplification

$$2^{2} \cdot 3^{3} \cdot 7^{c-1} \cdot 13^{d-1} = \sigma^{**}(7^{c}) \cdot \sigma^{**}(13^{d}).$$
(3.6)

If c is odd or 4|c then $8|\sigma^{**}(7^c)$. This is not possible from (3.6).

Let c = 2k, where k is odd. We have

$$\sigma^{**}(7^c) = \left(\frac{7^k - 1}{6}\right) . (7^{k+1} + 1).$$

Consider the factor $7^{k+1} + 1$. Since $2||7^{k+1} + 1$, $\frac{7^{k+1}+1}{2}$ is odd and trivially > 1. It is not divisible by 3 and not divisible by 7 trivially; $13|7^{k+1} + 1$ if and only if k + 1 = 6u (u odd), and $7^6 + 1 = 2.5^2.13.181$. Hence $13|7^{k+1} + 1$ implies that $5|7^6 + 1|7^{k+1} + 1|\sigma^{**}(7^c)$. This is not possible from (3.6). So $13 \nmid 7^{k+1} + 1$. Thus $\frac{7^{k+1}+1}{2}|\sigma^{**}(7^c)$ is not divisible by 2 or 3 or 7 or 13. This cannot happen from (3.6). This contradiction shows that b = 5 is not possible.

This proves that $\frac{3^t+1}{4}$ is divisible by an odd prime $q \neq 7$. Clearly $q \geq 13$ and q|v.

Thus we have proved that we can always find an odd prime $q |\frac{3^t+1}{4}$ and q |v| with $q \ge 13$.

We shall now turn our attention to the factor $3^t - 1$, where t is odd. First of all $2||3^t - 1$. Also, $5|3^t - 1 \iff 4|t$ and $7|3^t - 1 \iff 6|t$. In particular t should be even. Since t is odd, $3^t - 1$ is not divisible by 5 or 7.

Now, $\frac{3^t-1}{2}$ is odd, > 1 and not divisible by 3, 5, 7 and 11 if we assume that $11 \nmid 3^t - 1$. Hence $\frac{3^t-1}{2}$ should be divisible a prime $p \ge 13$ and p|v by (3.1b).

We may assume that $11|3^t - 1$. This is if and only if 5|t. Hence $3^5 - 1|3^t - 1$. Since $3^5 - 1 = 2.11^2$, we have $11^2|3^t - 1$.

We now show that $\frac{3^t-1}{2}$ is not divisible by 11 alone. On the contrary, let $\frac{3^t-1}{2} = 11^{\alpha}$, where $\alpha \ge 2$. If $\alpha \ge 3$, then $11^3|3^t-1$; this is equivalent to 55|t. In particular, 11|t and so $3^{11}-1|3^t-1$. But $3^{11}-1 = 2.23.3851$. Hence $23|\frac{3^t-1}{2} = 11^{\alpha}$. This is impossible. Hence $\alpha = 2$, so that $\frac{3^t-1}{2} = 11^2$ or t = 5, so that b = 9.

We now prove that b = 9 is not admissible. We have $\sigma^{**}(3^9) = \frac{3^{10}-1}{2} = 2^2.11^2.61$. Taking b = 9 in (3.1b), we get after simplification, $2^2.3^7.v = 11^2.61.\sigma^{**}(v)$; it follows that 11 and 61 divide v. By (3.5c), $v = 11^c.61^d$. We already proved that q|v, where $q|\frac{3^t+1}{4}$. Since $\frac{3^t-1}{2}$ and $\frac{3^t+1}{4}$ are relatively prime, $q \notin \{11, 61\}$. This is a contradiction to $q|v = 11^c.61^d$. Thus b = 9 is not admissible.

Hence $\frac{3^t-1}{2}$ must be divisible by an odd prime say $p \neq 11$. It follows that $p \notin \{3, 5, 7, 11\}$ and so $p \geq 13$. From (3.1b), clearly p|v. As p and q are factors of two relatively prime numbers, $p \neq q$. We can assume that $p \geq 13$ and $q \geq 17$. By (3.5c), $v = p^c \cdot q^d$. Hence from (3.1a), $n = 2^4 \cdot 3^b \cdot p^c \cdot q^d$. We have by Lemma 2.1,

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{13}{12} \cdot \frac{17}{16} = 2.913574219 < 3,$$

a contradiction.

The case $t = \frac{b+1}{2}$ is odd is complete.

Let b be even so that b = 2k. Then

$$\sigma^{**}(3^b) = \left(\frac{3^k - 1}{2}\right) . (3^{k+1} + 1).$$

Let k be even. This is same as 4|b. Then $8|3^k - 1$ and $4|3^{k+1} + 1$. Hence $16|\sigma^{**}(3^b)$. From (3.1b), it follows that v = 1 and hence from the same equation we obtain $2^4 \cdot 3^{b-2} = \sigma^{**}(3^b)$, which is not possible since $b \ge 4$ implies $3|\sigma^{**}(3^b)$ and this is false.

In all the cases we ended up with a contradiction. Hence n cannot be a bi-unitary perfect number.

The proof of (a) of Lemma 3.2 is complete.

Proof of (b). Let k be odd. We prove that n in (3.1a) and (3.1b) is not divisible by 5.

Let n be as in (3.1a) and assume that 5|n. Hence $v = 5^c \cdot w$, where (w, 2.3.5) = 1; substituting this into (3.1a) and (3.1b) we get

$$n = 2^4 . 3^b . 5^c . w, \quad (b \ge 4) \tag{3.6a}$$

and

$$2^{4}.3^{b-2}.5^{c}.w = \sigma^{**}(3^{b}).\sigma^{**}(5^{c}).\sigma^{**}(w), \qquad (3.6b)$$

where

The case b = 4 falls under b = 2k, where k is even. We already obtained a contradiction in this case. Hence we may assume that $b \ge 6$. By Lemma 2.1, we have $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{1066}{729}$ $(b \ge 5)$ and $\frac{\sigma^{**}(5^c)}{5^c} \ge \frac{19406}{15625}$, $(c \ge 5)$. Hence for $c \ge 5$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{19406}{15625} = 3.064710519 > 3,$$

a contradiction.

So $c \ge 5$ does not hold and hence $1 \le c \le 4$.

Let c = 1. Then (3.6a) and (3.6b) reduce to

$$n = 2^4 \cdot 3^b \cdot 5 \cdot w, \quad (b \ge 6) \tag{3.7a}$$

and

$$2^{3}.3^{b-3}.5.w = \sigma^{**}(3^{b}).\sigma^{**}(w), \qquad (3.7b)$$

where w cannot have more than two odd prime factors.

From Lemma 2.1, for $b \ge 7$, $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{9760}{6561}$. Hence for $b \ge 7$, from (3.7a),

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{9760}{6561} \cdot \frac{6}{5} = 3.012345679 > 3,$$

a contradiction.

Hence $b \le 6$. Since already $b \ge 6$, we have b = 6. We now show that b = 6 is not admissible when c = 1. The relevant equations are (3.7a) and (3.7b).

We have $\sigma^{**}(3^6) = 1066 = 2.13.41$. Taking b = 6 in (3.7b), we get

$$2^2 \cdot 3^3 \cdot 5 \cdot w = 13.41 \cdot \sigma^{**}(w). \tag{3.7c}$$

From (3.7c) we see that w is divisible by 13 and 41. Hence $w = 13^d \cdot 41^e$. From (3.7a), we have

$$n = 2^4 . 3^6 . 5 . 13^d . 41^e, (3.8a)$$

and

$$2^{3} \cdot 3^{3} \cdot 5 \cdot 13^{d-1} \cdot 41^{e-1} = \sigma^{**}(13^{d}) \cdot \sigma^{**}(41^{e}).$$
(3.8b)

Also, by Lemma 2.1, for $d \ge 3$, $\frac{\sigma^{**}(13^d)}{13^d} \ge \frac{30772}{28561}$. Hence for $d \ge 3$, from (3.8a), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{6}{5} \cdot \frac{30772}{28561} = 3.190340363 > 3,$$

a contradiction.

Hence d = 1 or d = 2.

Taking d = 1 in (3.8b), we see that 7 divides its left-hand side which is not true. Taking d = 2 in (3.8b), since $\sigma^{**}(13^2) = 170$, it follows that 17 divides the left-hand side of (3.8b). This is false. Therefore, b = 6 is not admissible.

This completes the case c = 1. So c = 1 is not possible.

Let c = 2. Since $\sigma^{**}(5^2) = 26 = 2.13$, taking c = 2 in (3.6b), we infer that 13|w. Writing $w = 13^d \cdot w'$, from (3.6a) and (3.6b), we obtain

$$n = 2^4 . 3^b . 5^2 . 13^d . w', (3.9a)$$

and

$$2^{3} \cdot 3^{b-2} \cdot 5^{2} \cdot 13^{d-1} \cdot w' = \sigma^{**}(3^{b}) \cdot \sigma^{**}(13^{d}) \cdot \sigma^{**}(w'), \tag{3.9b}$$

where w' cannot have more than one odd prime factor.

We recall that we are dealing with the case b = 2k, where k is odd and $k \ge 3$.

Consider the factor $3^{k+1} + 1$ of $\sigma^{**}(3^b)$. Since k + 1 is even, $2||3^{k+1} + 1$ and $3^{k+1} + 1$ is not divisible by 7 and 19.

For any positive integer t, 3^t+1 is not divisible by 11, 13 and 23. This is applicable to $3^{k+1}+1$ also.

Suppose $17|3^{k+1} + 1$. This is if and only if k + 1 = 8u. Hence $3^8 + 1|3^{k+1} + 1$. Also, $3^8 + 1 = 2.7.193$. It follows that $3^{k+1} + 1$ a factor of $\sigma^{**}(3^b)$ is divisible by 17 and 193. From (3.9b) it follows that w' is divisible by 17 and 193. However, w' cannot have more than one odd prime factor. Thus $17 \nmid 3^{k+1} + 1$.

It follows from the above discussion that $\frac{3^{k+1}+1}{2}$ is odd, > 1 and not divisible by any prime in [3, 23] if $5 \nmid 3^{k+1} + 1$. If $q \mid \frac{3^{k+1}+1}{2}$, then $q \ge 29$. From (3.9b), $q \mid w'$ and so $w' = q^e$; we now prove that this holds good when $5 \mid 3^{k+1} + 1$ also.

Suppose $5|3^{k+1} + 1$. We prove that $\frac{3^{k+1}+1}{2}$ is not divisible by 5 alone. If this is not so, then we must have $\frac{3^{k+1}+1}{2} = 5^{\alpha}$. If $\alpha \ge 2$, then $5^2|3^{k+1} + 1$; this is if and only if k + 1 = 10u. Hence $3^{10} + 1|3^{k+1} + 1$. Also, $3^{10} + 1 = 2.5^2.1181$. Thus $1181|\frac{3^{k+1}+1}{2} = 5^{\alpha}$. This is impossible. Hence $\alpha = 1$ and so k = 1. But $k \ge 3$. Hence $\frac{3^{k+1}+1}{2}$ must be divisible by an odd prime $q \ne 5$ so that $q \ge 29$ as before. Also, q|w' and $w' = q^e$.

From (3.9a), $n = 2^4 \cdot 3^b \cdot 5^2 \cdot 13^d \cdot q^e$, so that

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{26}{25} \cdot \frac{13}{12} \cdot \frac{29}{28} = 2.953727679 < 3,$$

a contradiction.

Hence c = 2 is not admissible.

Let c = 3. We have $\sigma^{**}(5^3) = 156 = 2^2 \cdot 3 \cdot 13$. Taking c = 3 in (3.6b), we get

$$2^{2}.3^{b-3}.5^{3}.w = 13.\sigma^{**}(3^{b}).\sigma^{**}(w), \qquad (3.9c)$$

and w cannot have more than one odd prime factor. From the above equation (3.9c), 13|w and hence $w = 13^d$. From (3.6a), we have $n = 2^4 \cdot 3^b \cdot 5^3 \cdot 13^d$ and so

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{156}{125} = 3.079555556 > 3,$$

a contradiction. In the above we used that for $b \ge 5$, $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{1066}{729}$. Hence c = 3 is not possible. Let c = 4. We have $\sigma^{**}(5^4) = 756 = 2^2 \cdot 3^3 \cdot 7$. Taking c = 4 in (3.6b), we obtain

$$2^{2}.3^{b-5}.5^{4}.w = 7.\sigma^{**}(3^{b}).\sigma^{**}(w).$$
(3.9d)

It follows from (3.9d) that 7|w and $w = 7^d$. Hence from (3.6a) and (3.9d), we get

$$n = 2^4 \cdot 3^b \cdot 5^4 \cdot 7^d, \quad (b \ge 6) \tag{3.10a}$$

and

$$2^{2}.3^{b-5}.5^{4}.7^{d-1} = \sigma^{**}(3^{b}).\sigma^{**}(7^{d}).$$
(3.10b)

By Lemma 2.1, for $d \ge 3$, $\frac{\sigma^{**}(7^d)}{7^d} \ge \frac{2752}{2401}$. We can use $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{1066}{729}$, since $b \ge 5$. Hence for $d \ge 3$, from (3.10a), we have

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{756}{625} \cdot \frac{2752}{2401} = 3.42114519 > 3,$$

a contradiction.

Hence d = 1 or d = 2.

Let d = 1. Since $\sigma^{**}(7) = 8$, taking d = 1 in (3.10b), we find that 2^4 divides the right-hand side of (3.10b) while its left-hand side is divisible unitarily by 2^2 .

Let d = 2. We have $\sigma^{**}(7^2) = 50 = 2.5^2$. Taking d = 2 in (3.10b), after simplification, $2.3^{b-5}.5^2.7 = \sigma^{**}(3^b)$ and from this it follows that $3|\sigma^{**}(3^b)$ (since $b \ge 6$) which is false.

Hence $5 \nmid n$. The proof of (b) of Lemma 3.2 is complete.

This completes the proof of Lemma 3.2.

Lemma 3.3. Let $n = 2^4 \cdot 3^b \cdot v$ be given as in (3.1a) with b = 2k, where k is odd and $k \ge 3$. (1) Suppose that 7|n so that $n = 2^4 \cdot 3^b \cdot 7^c \cdot w$, $(b \ge 6)$ and $(w, 2 \cdot 3 \cdot 7) = 1$. Then we have the following:

(a) If c is odd or 4|c, then n is not a bi-unitary triperfect number.

(b) If $c = 2\ell$, where ℓ is odd and n is a bi-unitary triperfect number, then n is divisible by two distinct primes p' and $q' : (i) p' | \frac{7^{\ell}-1}{6}, p' > 131$ and (ii) $q' | \frac{7^{\ell+1}+1}{2}, q' > 131$. (II) If n is a bi-unitary triperfect number then $7 \nmid n$.

Proof. Proof of (I). Let n be as given in (3.1a) and assume that n is a bi-unitary triperfect number. Since $5 \nmid n$ by Lemma 3.2 and $7|n, v = 7^c.w$, where (w, 2.3.5.7) = 1 Hence from (3.1a) and (3.1b), we get

$$n = 2^4 \cdot 3^b \cdot 7^c \cdot w \quad (b \ge 6) \tag{3.11a}$$

and

$$2^{4} \cdot 3^{b-2} \cdot 7^{c} \cdot w = \sigma^{**}(3^{b}) \cdot \sigma^{**}(7^{c}) \sigma^{**}(w), \qquad (3.11b)$$

where

$$w$$
 cannot have more than two odd prime factors. (3.11c)

We consider $\sigma^{**}(7^c)$ and obtain a contradiction.

Proof of (a). If c is odd or 4|c, then $8|\sigma^{**}(7^c)$. It follows from (3.1b) that its both sides should be unitarily divisible by 2^4 . Hence w = 1 and so from (3.11a), $n = 2^4 \cdot 3^b \cdot 7^c$. Hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{7}{6} = 2.953125 < 3,$$

a contradiction. Hence n cannot be a bi-unitary triperfect number.

Proof of (b). Let $c = 2\ell$, where ℓ is odd. We have

$$\sigma^{**}(7^c) = \left(\frac{7^\ell - 1}{6}\right) . (7^{\ell+1} + 1).$$

If $\ell = 1$, then c = 2. Since $\sigma^{**}(7^2) = 50$, taking c = 2 in (3.11b), we find that 5|w. But w is prime to 5. Hence we may assume that $\ell \geq 3$.

(i) We now consider $7^{\ell} - 1$, given that ℓ is odd and ≥ 3 .

(A) First of all, $2||7^{\ell} - 1$ since ℓ is odd; also, $3|7^{\ell} - 1$. We may note that $27|7^{\ell} - 1$ if and only if $9|\ell$. Assume that $27||7^{\ell} - 1$. Hence $7^9 - 1|7^{\ell} - 1$. Also, $7^9 - 1 = 2.3^3.19.37.1063$. Hence $\frac{7^{\ell}-1}{6}$ is divisible by 19, 37 and 1063. Thus $\sigma^{**}(7^c)$ is divisible by these three primes which divide w. This contradicts (3.11c). Thus $27 \nmid 7^{\ell} - 1$. We shall examine the divisibility by 9 later.

If the interval [3, 2520] is replaced by [3, 131] in Lemma 2.4 (a) of Part I (see [2]), it reduces to the following:

(B) If $p \in [3, 131] - \{3, 19, 37\}$, $ord_p 7$ is odd and $p|7^{\ell} - 1$, then we can find an odd prime $p'|\frac{7^{\ell}-1}{6}$ and p' > 131.

If $37|7^{\ell}-1$, then $9|\ell$. Hence $7^9-1|7^{\ell}-1$. Also, $7^9-1=2.3^3.19.37.1063$. If p'=1063, then $p'|\frac{7^{\ell}-1}{6}$ and p'>131. Hence the statement in (B) can be reduced to the following:

(C) If $p \in [3, 131] - \{3, 19\}$, $ord_p 7$ is odd and $p|7^{\ell} - 1$, then we can find an odd prime $p'|\frac{7^{\ell}-1}{6}$ and p' > 131.

Let

 $S'_7 = \{p | 7^{\ell} - 1 : ord_p 7 \text{ is odd and } p \in [3, 131] - \{3, 19\}\}.$

If S'_7 is non-empty, then (i) of Lemma 3.3 (a) is true. We may assume that S'_7 is an empty set. This means that $p \nmid 7^{\ell} - 1$ whenever $p \in [3, 131] - \{3, 19\}$ and ord_p7 is odd; trivially $7^{\ell} - 1$ is not divisible by 7. Thus:

(D) $\frac{7^{\ell}-1}{6}$ is not divisible by any prime in [3, 131] except possibly p = 3 or p = 19; (we may recall that $p \nmid \frac{7^{\ell}-1}{6}$ if ord_p7 is even).

We note that $19|7^{\ell} - 1 \iff 3|\ell \iff 9|7^{\ell} - 1$.

Suppose that $19 \nmid 7^{\ell} - 1$. Then $9 \nmid 7^{\ell} - 1$. Hence from the discussion in (A), $3 || 7^{\ell} - 1$. Thus $\frac{7^{\ell}-1}{6}$ is odd, > 1 and not divisible by any prime in [3, 131]. Hence every prime factor of $\frac{7^{\ell}-1}{6}$ is > 131 and divides w. In particular we can find a prime $p' |\frac{7^{\ell}-1}{6}$, p' | w and p' > 131.

is > 131 and divides w. In particular we can find a prime $p'|\frac{7^{\ell}-1}{6}$, p'|w and p' > 131. Suppose that $19|7^{\ell} - 1$. Hence $9|7^{\ell} - 1$ and since $27 \nmid 7^{\ell} - 1$, we have $9||7^{\ell} - 1$. Hence $\frac{7^{\ell}-1}{18} > 1$, odd and not divisible by 3. We now show that it is possible to find a prime $p'|\frac{7^{\ell}-1}{18}$ and $p' \neq 19$. Suppose that $\frac{7^{\ell}-1}{18} = 19^{\alpha}$, $\alpha \ge 1$. If $\alpha \ge 2$, then $19^2|7^{\ell} - 1$. But this is if and only if $57|\ell$; hence $7^{57} - 1|7^{\ell} - 1$. From the factors of $7^{57} - 1$ given in Appendix F of Part I (see [2]), $419|7^{57} - 1$ and so $419|\frac{7^{\ell}-1}{18} = 19^{\alpha}$, which is impossible. Hence $\alpha = 1$ so that $\frac{7^{\ell}-1}{18} = 19$ or $\ell = 3$. We show that this is not possible.

Let $\ell = 3$ and so c = 6. We have $\sigma^{**}(7^6) = \left(\frac{7^3 - 1}{6}\right) . (7^4 + 1) = 2.3.19.1201.$ Taking c = 6 in (3.11b), after simplification we get

$$2^{3} \cdot 3^{b-3} \cdot 7^{6} \cdot w = 19 \cdot 1201 \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(w).$$
(3.12)

From (3.12), it follows that w is divisible by 19 and 1201 and so $w = 19^d \cdot (1201)^e$. Substituting this into (3.11a) and (3.12), we get

$$n = 2^4 \cdot 3^b \cdot 7^6 \cdot 19^d \cdot (1201)^e, (3.12a)$$

and

$$2^{3} \cdot 3^{b-3} \cdot 7^{6} \cdot 19^{d-1} \cdot (1201)^{e-1} = \sigma^{**}(3^{b}) \cdot \sigma^{**}(19^{d}) \cdot \sigma^{**}((1201)^{e}).$$
(3.12b)

Since $b \ge 5$, $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{1066}{729}$. Also, $\frac{\sigma^{**}(7^6)}{7^6} = \frac{136914}{117649}$ and for $d \ge 3$, $\frac{\sigma^{**}(19^d)}{19^d} \ge \frac{137200}{130321}$ Therefore, for $d \ge 3$, from (3.12a), we have

a contradiction.

Hence d = 1 or d = 2.

Taking d = 1 in (3.12b), since $\sigma^{**}(19) = 20$, we find that 5 divides its right-hand side while it not so with respect to its left-hand side.

We have $\sigma^{**}(19^2) = 362 = 2.181$. Taking d = 2 in (3.12b), we see that 181 divides its left-hand side which is false.

Thus c = 6 (or $\ell = 3$) is not admissible. It now follows that $\frac{7^{\ell}-1}{18}$ is not divisible by 19 alone. Hence we can find a prime $p'|\frac{7^{\ell}-1}{18}$ and $p' \neq 19$. Thus $\frac{7^{\ell}-1}{18}$ is divisible by a prime $p' \notin [3, 131]$. Hence p' > 131. Since $p'|\frac{7^{\ell}-1}{18}|\frac{7^{\ell}-1}{6}|\sigma^{**}(7^c)$, it follows from (3.11b) that p'|w and p' > 131.

This proves (i) in part (b) of Lemma 3.3.

(ii) We now prove that $\frac{7^{\ell+1}+1}{2}$ is divisible by an odd prime q'|w with q' > 131, when ℓ is odd and ≥ 3 .

Replacing the interval [3, 2520] by [3, 131] in Lemma 2.4 (b) in Part I (see [2]), it reduces to the following:

(E) If $q \in [3, 131] - \{5, 13\}$, $s = \frac{1}{2}ord_q 7$ is even and $q|7^{\ell+1} + 1$, then we can find a prime q' such that $q'|\frac{7^{\ell+1}+1}{2}$.

Let

$$T'_7 = \{q | 7^{\ell+1} + 1 : q \in [3, 131] - \{5, 13\}, s = \frac{1}{2} ord_q 7 \text{ is even} \}.$$

If T'_7 is non-empty, then (ii) of Lemma 3.3 holds good. We may assume that T'_7 is empty. Since s is not even implies that $q \nmid 7^{\ell+1} + 1$, it follows that (taking in to consideration that $7 \nmid 7^{\ell+1} + 1$ trivially):

(F) $7^{\ell+1} + 1$ is not divisible by any prime q in [3, 131] except possibly q = 5 or q = 13.

It only remains to discuss divisibility of $7^{\ell+1} + 1$ by 5 and 13.

We may note that $13|7^{\ell+1} + 1 \iff \ell + 1 = 6u \iff 181|7^{\ell+1} + 1$. Hence $13|7^{\ell+1} + 1$ implies that 181 also divides $7^{\ell+1} + 1$. Part (b) of Lemma 3.3 which is proved already says that $\frac{7^{\ell}-1}{6}$ is divisible by an odd prime p' > 131 which divides w; since 13 and 181 divide w and so totally three primes divide w; this violates (3.11c). Hence $13 \nmid 7^{\ell+1} + 1$.

If $5 \nmid 7^{\ell+1} + 1$, from (F), every prime factor of $\frac{7^{\ell+1}+1}{2}$ exceeds 131 and is a divisor of w.

Suppose that $5|7^{\ell+1} + 1$. Hence $\ell + 1 = 2u$ so that $7^2 + 1 = 2.5^2|7^{\ell+1} + 1$. Thus $5|7^{\ell+1} + 1 \implies 5^2|7^{\ell+1} + 1$. We prove that $\frac{7^{\ell+1}+1}{2}$ must be divisible by an odd prime $q \neq 5$.

On the other hand, let $\frac{7^{\ell+1}+1}{2} = 5^{\alpha}$, where $\alpha \ge 2$. If $\alpha \ge 3$, then $5^3|7^{\ell+1} + 1$; this is if and only if $\ell+1 = 10u$. Hence $7^{10}+1|7^{\ell+1}+1$. Also, $7^{10}+1 = 2.5^3.281.4021$. In particular, $281|\frac{7^{\ell+1}+1}{2} = 5^{\alpha}$ and this is impossible. Hence $\alpha = 2$ so that $\frac{7^{\ell+1}+1}{2} = 5^2$ or $\ell = 1$. But $\ell \ge 3$. This contradiction shows that we can find an odd prime $q'|\frac{7^{\ell+1}+1}{2}$ and $q' \ne 5$. It follows that $q' \notin [3, 131]$ and hence q' > 131. Also, from (3.11b), q'|w. Thus (ii) of Lemma 3.3 follows.

This proves (b) of Lemma 3.3 completely.

Proof of (II). Suppose that 7|n and n is a bi-unitary triperfect number. Then by I(b) of Lemma 3.3, w is divisible by two primes p and q, where $p \ge 137$ and $q \ge 139$. This implies that $n = 2^4 \cdot 3^b \cdot 7^c \cdot p^d \cdot q^e$, and hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{7}{6} \cdot \frac{137}{136} \cdot \frac{139}{138} = 2.99639596 < 3,$$

a contradiction. Hence $7 \nmid n$.

This completes the proof of Lemma 3.3.

Lemma 3.4. Let $n = 2^4 \cdot 3^b \cdot v$, where $(v, 2 \cdot 3) = 1$. If b = 6 and n is a bi-unitary triperfect number, then $11 \nmid n$.

Proof. Let b = 6 and n be a bi-unitary triperfect number. Hence the equation (3.1b) holds good. We have $\sigma^{**}(3^6) = 13.82 = 2.13.41$. When b = 6, it follows from (3.1b) that 13 and 41 divide v.

Suppose that 11|n and so 11|v. Hence v is divisible by 11, 13 and 41. We can assume that $v = 11^{c} \cdot 13^{d} \cdot 41^{e}$. Substituting this into (3.1a) and (3.1b), we get

$$n = 2^4 .3^6 .11^c .13^d .41^e, (3.13a)$$

and

$$2^{3}.3^{4}.11^{c}.13^{d-1}.41^{e-1} = \sigma^{**}(11^{c}).\sigma^{**}(13^{d}).\sigma^{**}(41^{e}).$$
(3.13b)

From Lemma 2.1,

$$\frac{\sigma^{**}(11^c)}{11^c} \ge \frac{1}{11^8} \left(\frac{11^9 - 1}{10} - 11^4\right) = \frac{235780128}{214358881}, \quad (c \ge 7),$$
$$\frac{\sigma^{**}(13^d)}{13^d} \ge \frac{1}{13^6} \left(\frac{13^7 - 1}{12} - 13^3\right) = \frac{5226846}{4826809}, \qquad (d \ge 5),$$
$$\frac{\sigma^{**}(41^e)}{41^e} \ge \frac{1}{41^4} \left(\frac{41^5 - 1}{40} - 41^2\right) = \frac{2894724}{2825761}, \qquad (e \ge 3).$$

Hence from (3.13a),

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{235780128}{214358881} \cdot \frac{5226846}{4826809} \cdot \frac{2894724}{2825761} = 3.01085858 > 3,$$

a contradiction.

Hence $c \ge 7$, $d \ge 5$ and $e \ge 3$ cannot hold simultaneously.

We have

$$\sigma^{**}(11) = 12 = 2^2.3; \ \sigma^{**}(11^2) = 2.61; \ \sigma^{**}(11^3) = 2^3.3.61;$$

and

$$\sigma^{**}(11^4) = 2^4 \cdot 3^3 \cdot 37; \sigma^{**}(11^5) = 2^2 \cdot 3^2 \cdot 7 \cdot 19 \cdot 37; \sigma^{**}(11^6) = 2 \cdot 7 \cdot 19 \cdot 7321$$

Hence when c = 1, 3, 4, and 5, $2^2 | \sigma^{**}(11^c)$. Taking c = 1, 3, 4, 5 successively in (3.13b), we see that 2^4 divides its right-hand side while 2^3 divides its left-hand side unitarily.

When c = 2, $61|\sigma^{**}(11^c)$. Hence from (3.13b) (c = 2), 61 divides right-hand side but it does not divide its left-hand side.

When c = 6, $7|\sigma^{**}(11^c)$. Again from (3.13b) (c = 2), it follows that 7 is a factor of its right-hand side while it is not so with respect its left-hand side.

Hence the values of c = 1, 2, 3, 4, 5, 6 are not admissible.

We have

$$\sigma^{**}(13) = 14 = 2.7; \ \sigma^{**}(13^2) = 170 = 2.5.17; \\ \sigma^{**}(13^3) = 2^2.5.7.17; \ \sigma^{**}(13^4) = 2^2.7^2.157.$$

From (3.13b), it is clear that its left-hand side is neither divisible by 7 or 17. However, $7|\sigma^{**}(13^d)$ when d = 1, 3, 4 and $17|\sigma^{**}(13^d)$ when d = 2. Hence the values of d = 1, 2, 3, 4 are not admissible.

Since $7|\sigma^{**}(41) = 42$ and $29|\sigma^{**}(41^2) = 2.29^2$, taking e = 1 and e = 2 successively in (3.13b), we see that 7 and 29 have to divide its left-hand side. This is false. Hence e = 1 or e = 2 cannot occur.

Thus we arrived at a contradiction in all cases by assuming that 11|n. Hence $11 \nmid n$. This proves Lemma 3.4.

Lemma 3.5. Let $n = 2^4 \cdot 3^b \cdot v$, where b = 2k, $k \ge 3$ and odd; also, $(v, 2 \cdot 3) = 1$. If n is a bi-unitary triperfect number, then we have

(a) $\frac{3^k-1}{2}$ is divisible by a prime p > 53 and p|v,

(b) $3^{k+1} + 1$ is divisible by a prime q > 53; also, q|v.

Proof. We assume that n is a bi-unitary triperfect number. Hence (3.1b) holds. Also,

$$\sigma^{**}(3^b) = \left(\frac{3^k - 1}{2}\right) . (3^{k+1} + 1).$$

Remark 3.1. By Lemmas 3.2 and 3.3, n and hence v is not divisible by 5 or 7. We can assume that any prime factor of v is at least 11.

Proof of (a).

(I) Since k is odd, $3^k - 1$ is divisible by none of the primes 5, 7, 17, 19, 29, 31, 37, 41, 43, 53; trivially not divisible by 3. The remaining odd primes up to 53 are 11, 13, 23 and 47.

(II) Suppose $23|3^k - 1$. This is if and only if 11|k. Hence $3^{11} - 1|3^k - 1$. Also, $3^{11} - 1 = 2.23.3851$. It follows that 23 and 3851 divide $\frac{3^k-1}{2}|\sigma^{**}(3^b)$; from (3.1b), these two primes divide v. By Remark 3.3, we may assume that v is divisible by a prime $y \ge 11$. Hence $n = 2^4.3^b.23^c.(3851)^d.y^d$ and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{23}{22} \cdot \frac{3851}{3850} \cdot \frac{11}{10} = 2.911693588 < 3,$$

a contradiction. Hence $23 \nmid 3^k - 1$.

(III) Suppose $47|3^k - 1$. This is if and only if 23|k. Hence $3^{23} - 1|3^k - 1$. Also, $3^{23} - 1 = 2.47.1001523179 = 2.p_1.p_2$, say. We use $p_2 \ge 59$. The primes p_1 and p_2 divide $\frac{3^k-1}{2}|\sigma^{**}(3^b)$; from (3.1b), these two primes divide v. If y denotes a possible third prime factor of v, then we have $y \ge 11$. We have $n = 2^4.3^b.p_1^c.p_2^d.y^e$, and hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{47}{46} \cdot \frac{59}{10} \cdot \frac{11}{10} = 2.893954976 < 3,$$

a contradiction. Hence $47 \nmid 3^k - 1$.

(IV) If $\frac{3^k-1}{2}$ is neither divisible by 11 nor by 13, then $\frac{3^k-1}{2} > 1$, odd and not divisible by any prime in [3, 53]. Hence each prime factor of is > 53 and is a factor of v. This proves (a) of Lemma 3.5 in this case.

(V) Suppose that $11|\frac{3^k-1}{2}$ and $13 \nmid \frac{3^k-1}{2}$. We may note that $11|3^k - 1$ if and only if 5|k. Hence $3^5 - 1|3^k - 1$. Also, $3^5 - 1 = 2.11^2$. Thus $11|3^k - 1$ implies that $11^2|3^k - 1$. We claim that $\frac{3^k-1}{2}$ is divisible by a prime $p \neq 11$. If this is not the case, then $\frac{3^k-1}{2} = 11^{\alpha}$, $(\alpha \ge 2)$. If $\alpha \ge 3$, then $11^3|3^k - 1$. This is if and only if 55|k; in particular 11|k. Hence $23|3^{11} - 1|3^k - 1$ (see (II) above).

Thus $23|\frac{3^k-1}{2} = 11^{\alpha}$, which is impossible. Hence $\frac{3^k-1}{2} = 11^2$ or $3^k = 243$ or k = 5. We show that k = 5 is not possible.

If k = 5, then b = 10 and $\sigma^{**}(3^{10}) = \frac{3^{11}-1}{2} = \frac{2\cdot23\cdot3851}{2} = 23\cdot3851$. From (3.1b) it follows that 23 and 3851 are factors of v. If y denotes the possible third prime factor of v so that $y \ge 11$, we have $n = 2^4 \cdot 3^b \cdot 23^c \cdot (3851)^d \cdot y^e$ and hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{23}{22} \cdot \frac{3851}{3850} \cdot \frac{11}{10} = 2.911693588 < 3,$$

a contradiction. Hence b = 10 or k = 5 is not possible.

It follows that $\frac{3^k-1}{2}$ is divisible by a prime $p \neq 11$; since $13 \nmid \frac{3^k-1}{2}$, $p \neq 13$ also. Hence $p \notin [3, 53]$ so that p > 53 and p|v. This proves (a) of Lemma 3.5 in this case.

(VI) Suppose $11 \nmid \frac{3^{k}-1}{2}$ and $13 \mid \frac{3^{k}-1}{2}$. If 13 alone divides $\frac{3^{k}-1}{2}$ then $\frac{3^{k}-1}{2} = 13^{\beta}$, where $\beta \ge 1$. If $\beta \ge 2$, then $13^{2}\mid 3^{k}-1$; this is if and only if $39\mid k$. Also, $3^{39}-1 = 2.13^{2}.313.6553.7333.797161$. Hence $313\mid \frac{3^{39}-1}{2}\mid \frac{3^{k}-1}{2} = 13^{\beta}$. This is not possible. Hence $\frac{3^{k}-1}{2} = 13$ or k = 3, so that b = 6. We show that b = 6 is not possible.

We have $\sigma^{**}(3^6) = 13.82 = 2.13.41$ (= 1066). Taking b = 6 in (3.1b), we see that v is divisible by 13 and 41. By Lemma 3.4, $11 \nmid n$ and so $11 \nmid v$. If y denotes the possible third prime factor of v, since it is not divisible by 5 or 7 or 11, then $y \ge 17$. Hence $n = 2^4.3^6.13^c.41^d.y$ and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{1066}{729} \cdot \frac{13}{12} \cdot \frac{41}{40} \cdot \frac{17}{16} = 2.911309438 < 3,$$

a contradiction. Hence $\frac{3^k-1}{2}$ must be divisible by a prime $p \neq 13$. It follows that $p \notin [3, 53]$ so that p|v. This proves (a) of Lemma 3.5 in this case.

(VII) Suppose $\frac{3^k-1}{2}$ is divisible by both 11 and 13. We show that $\frac{3^k-1}{2}$ has a prime factor $p \neq 11$ and 13. On the contrary, assume that each prime factor of $\frac{3^k-1}{2}$ is either 11 or 13. This means that $\frac{3^k-1}{2} = 11^{\alpha}.13^{\beta}$, where $\alpha \geq 1$ and $\beta \geq 1$. We have $11|3^k - 1 \iff 5|k$ and $13|3^k - 1 \iff 3|k$. Since both 11 and 13 divide $3^k - 1$, it follows that 15|k. Hence $3^{15} - 1|3^k - 1$.

Also, $3^{15} - 1 = 2.11^2.13.4561$. This implies that $4561|\frac{3^k-1}{2} = 11^{\alpha}.13^{\beta}$ which is impossible. Hence we can find an odd prime $p|\frac{3^k-1}{2}$ and $p \notin \{11, 13\}$. We have p > 53 and from (3.16), p|v.

The proof of (a) of Lemma 3.5 is complete.

Proof of (b). We now prove that $3^{k+1} + 1$ has an odd prime factor q > 53, where $k \ge 3$ and odd. First of all, $2||3^{k+1} + 1$.

(I) Since k + 1 is even, $3^{k+1} + 1$ is not divisible by 7, 19, 31 and 43; not divisible by 3 trivially.

(II) For any positive integer t, 3^t+1 is not divisible by 11, 13, 23 and 47; in particular $3^{k+1}+1$ is not divisible by these primes.

(III) The remaining primes from 3 to 53 are 5, 17, 29 and 53. It remains to check the divisibility of $3^{k+1} + 1$ by these four primes.

We shall discuss the divisibility of 5 at the end.

(IV) Suppose $17|3^{k+1} + 1$. This is equivalent to k + 1 = 8u. Hence $3^8 + 1|3^{k+1} + 1$. Also, $3^8 + 1 = 2.17.193$. Hence 17 and 193 are factors of $3^{k+1} + 1|\sigma^{**}(3^b)$. From (3.1b), we have that 17 and 193 divide v. In (a) of the present Lemma 3.5, we already proved that $\frac{3^k-1}{2}$ is divisible by an odd prime p > 53. Thus v is divisible by 17, 193 and p. By (3.1c), $v = p^c .17^d .193^e$ and so by (3.1a), $n = 2^4 .3^b . p^c .17^d .193^e$. Hence we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{59}{58} \cdot \frac{17}{16} \cdot \frac{193}{192} = 2.750072085 < 3,$$

a contradiction.

Hence $17 \nmid 3^{k+1} + 1$.

(V) Suppose $29|3^{k+1} + 1$. This is equivalent to k + 1 = 14u. Hence $3^{14} + 1|3^{k+1} + 1$. Also, $3^{14} + 1 = 2.5.29.16493$. As before, it follows that v is divisible by p, 29 and 16493, where $p|\frac{3^k-1}{2}$ and p > 53. Hence $n = 2^4.3^b.p^c.29^d.16493^e$ and so

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{59}{58} \cdot \frac{29}{28} \cdot \frac{16493}{16492} = 2.667014384 < 3,$$

a contradiction.

Hence $29 \nmid 3^{k+1} + 1$.

(VI) Assume that $53|3^{k+1} + 1$. This is equivalent to k + 1 = 26u. Hence $3^{26} + 1|3^{k+1} + 1$. Also, $3^{26} + 1 = 2.5.53.4795973261 = 2.5.p_1.p_2$, say. Then p, p_1 and p_2 divide v, where $p|\frac{3^k-1}{2}$ and p > 53. Hence $n = 2^4.3^b.p^c.p_1^d.p_2^e$. We take $p_2 > 61$. We have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{59}{58} \cdot \frac{53}{52} \cdot \frac{61}{60} = 2.668149557 < 3,$$

a contradiction.

Hence $53 \nmid 3^{k+1} + 1$.

(VII) If $5 \nmid 3^{k+1} + 1$, then it follows from (I)–(VI) that $\frac{3^{k+1}+1}{2}$ is not divisible by any prime in [3, 53]. Hence each prime factor of $\frac{3^{k+1}+1}{2}$ is > 53. This is much more than what we stated in (b).

(VII) Suppose $5|3^{k+1} + 1$. We show that $\frac{3^{k+1}+1}{2}$ is divisible by a prime $q \neq 5$. If this is not true, then we must have $\frac{3^{k+1}+1}{2} = 5^{\alpha}$, where $\alpha \geq 1$. Let $\alpha \geq 2$. Then $5^2|3^{k+1} + 1$. This is if and only if k + 1 = 10u. Hence $3^{10} + 1|3^{k+1} + 1$. Also, $3^{10} + 1 = 2.5^2.1181$. Thus, $1181|\frac{3^{k+1}+1}{2} = 5^{\alpha}$ and this is impossible. Hence $\alpha = 1$ and $\frac{3^{k+1}+1}{2} = 5$ so that k = 1. But $k \geq 3$. It follows that

 $\frac{3^{k+1}+1}{2}$ must be divisible by an odd prime $q \neq 5$. From (I)–(VI), we conclude that $q \notin [3, 53]$. Hence q > 53 and q|v by (3.1b) since q is a factor of $\frac{3^{k+1}+1}{2}|\sigma^{**}(3^b)$.

This completes the proof of (b) of Lemma 3.5, and also the whole Lemma 3.5.

Lemma 3.6. Let $n = 2^4 \cdot 3^b \cdot v$, where b = 2k, $k \ge 3$ and odd; also, $(v, 2 \cdot 3) = 1$. Then n cannot be a bi-unitary triperfect number.

Proof. Assume that n is a bi-unitary triperfect number. We obtain a contradiction. By our assumption n satisfies (3.1b). Hence v cannot have more than three odd prime factors. By Lemma 3.5, two odd primes p and q divide v, where $p|\frac{3^k-1}{6}$ and $q|3^{k+1} + 1$; also, p and q exceed 53. We may assume that $p \ge 59$ and $q \ge 61$. By Lemmas 3.2 and 3.3, v is not divisible by 5 and 7. If y denotes the possible third prime factor of v, then we can assume that $y \ge 11$. It follows that $n = 2^4 \cdot 3^b \cdot p^c \cdot q^d \cdot y^e$ and we have

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{27}{16} \cdot \frac{3}{2} \cdot \frac{59}{58} \cdot \frac{61}{60} \cdot \frac{11}{10} = 2.879587823 < 3,$$

a contradiction.

This proves Lemma 3.6.

Completion of proof of Theorem 3.1. Follows from Lemmas 3.1 and 3.6.

4 Bi-unitary triperfect numbers of the form $n = 2^5 u$

In this section, we find all bi-unitary triperfect numbers n with $2^5 || n$.

Theorem 4.1. The only bi-unitary triperfect numbers of the form 2^5u (with u odd) are

$$672 = 2^5.3.7; \ 10080 = 2^5.3^2.5.7; \ 1528800 = 2^5.3.5^2.13; \ and \ 22932000 = 2^5.3^2.5^3.7^2.13.$$

Proof. Let $n = 2^5 u$ be a bi-unitary triperfect number, where u is odd. Since $\sigma^{**}(n) = 3n$ and $\sigma^{**}(2^5) = 2^6 - 1 = 63 = 3^2.7$, we obtain after simplification,

$$2^5 \cdot u = 3.7 \cdot \sigma^{**}(u). \tag{4.1}$$

From (4.1) it is clear that 3 and 7 are factors of u so that $u = 3^{b} \cdot 7^{c} \cdot v$, where $(v, 2 \cdot 3 \cdot 7) = 1$; using this form of u we have

$$n = 2^5 . 3^b . 7^c . v; (4.1a)$$

from (4.1), we obtain

$$2^{5} \cdot 3^{b-1} \cdot 7^{c-1} \cdot v = \sigma^{**}(3^{b}) \cdot \sigma^{**}(7^{c}) \cdot \sigma^{**}(v), \qquad (4.1b)$$

where (v, 2.3.7) = 1 and

v has at most three odd prime factors. (4.1c)

The remaining proof of Theorem 4.1 depends on the following:

Lemma 4.1. Let *n* be as in (4.1a). If b = 1 and *n* is a bi-unitary triperfect number then $n = 672 = 2^5 \cdot 3.7$ or $n = 1528800 = 2^5 \cdot 3.5^2 \cdot 13$.

Proof. We assume that n is a bi-unitary triperfect number and hence (4.1b) holds. Let b = 1. Taking b = 1 in (4.1a) and (4.1b), we get

$$n = 2^5 \cdot 3 \cdot 7^c \cdot v, \tag{4.2a}$$

and

$$2^{3}.7^{c-1}.v = \sigma^{**}(7^{c}).\sigma^{**}(v), \qquad (4.2b)$$

where

v has no more than two odd prime factors. (4.2c)

Suppose
$$c = 1$$
. Taking $c = 1$ in (4.2a) and (4.2b), we get

$$n = 2^5.3.7.v, (4.3a)$$

and

$$2^{3} \cdot v = 8 \cdot \sigma^{**}(v), \tag{4.3b}$$

so that $v = \sigma^{**}(v)$. Hence v = 1 and $n = 2^5 \cdot 3 \cdot 7 = 672$ is a bi-unitary triperfect number.

Let c = 2. From (4.2b), we get $2^2 \cdot 7 \cdot v = 5^2 \cdot \sigma^{**}(v)$; hence $5^2 | v$. Let $v = 5^d \cdot w$, where $d \ge 2$ and (w, 2.3.5.7) = 1. Thus we have

$$n = 2^5 \cdot 3 \cdot 7^2 \cdot 5^d \cdot w, \quad (d \ge 2) \tag{4.4a}$$

and

$$2^{2} \cdot 7 \cdot 5^{d-2} \cdot w = \sigma^{**}(5^{d}) \cdot \sigma^{**}(w), \qquad (4.4b)$$

where w has at most one odd prime factor.

Suppose d = 2. From (4.4b), we obtain

$$2.7.w = 13.\sigma^{**}(w); \tag{4.4c}$$

hence 13|w. Since w has at most one odd prime factor, we have $w = 13^e$. From (4.4a) and (4.4c), we get

$$n = 2^5 \cdot 3 \cdot 7^2 \cdot 5^2 \cdot 13^e, \tag{4.5a}$$

and

$$2.7.13^{e-1} = \sigma^{**}(13^e). \tag{4.5b}$$

Clearly, (4.5b) is satisfied when e = 1. Hence $n = 2^{5} \cdot 3 \cdot 7^{2} \cdot 5^{2} \cdot 13 = 1528800$ is a bi-unitary triperfect number.

If $e \ge 2$, from (4.5b) we find that $13|\sigma^{**}(13^e)$ which is false. Thus the case c = 2, d = 2 and $e \ge 2$ cannot occur.

Let c = 2 and $d \ge 3$. For $d \ge 3$, $\frac{\sigma^{**}(5^d)}{5^d} \ge \frac{756}{625}$. From (4.4a), we have $n = 2^5 \cdot 3 \cdot 7^2 \cdot 5^d \cdot w$ and hence for $d \ge 3$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{4}{3} \cdot \frac{50}{49} \cdot \frac{756}{625} = 3.24 > 3,$$

a contradiction.

So we may assume that $c \ge 3$; hence $\frac{\sigma^{**}(7^c)}{7^c} \ge \frac{2752}{2401}$. From (4.2a),

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{4}{3} \cdot \frac{2752}{2401} = 3.008746356 > 3,$$

a contradiction.

The proof of Lemma 4.1 is complete.

Lemma 4.2. Let n be as in (4.1a) and n be a bi-unitary triperfect number. Let b = 2. Then $n = 2^5 \cdot 3^2 \cdot 7^c \cdot 5^d \cdot w$ and w is prime to 2.3.5.7.

(i) If c = 1, then d = 1 and $n = 2^5 \cdot 3^2 \cdot 7 \cdot 5 = 10080$. (ii) If c = 2 then $d \ge 3$; if d = 3 then 13 || n and $n = 2^5 \cdot 3^2 \cdot 7^2 \cdot 5^3 \cdot 13 = 22932000$.

Proof. Since n is assumed to be a bi-unitary triperfect number, the equation (4.1b) holds. Taking b = 2 in (4.1b), we obtain

$$2^{4}.3.7^{c-1}.v = 5.\sigma^{**}(7^{c}).\sigma^{**}(v).$$
(4.5c)

From (4.5c), we have 5|v. Let $v = 5^d \cdot w$. From (4.1a) and (4.5c), we obtain

$$n = 2^5 . 3^2 . 7^c . 5^d . w, (4.6a)$$

and

$$2^{4}.3.7^{c-1}.5^{d-1}.w = \sigma^{**}(7^{c}).\sigma^{**}(5^{d}).\sigma^{**}(w), \qquad (4.6b)$$

where w has no more than two odd prime factors.

Proof of (i). Let c = 1. From (4.6a) and (4.6b), we get

$$n = 2^5 . 3^2 . 7 . 5^d . w, \tag{4.7a}$$

and

$$2.3.5^{d-1}.w = \sigma^{**}(5^d).\sigma^{**}(w). \tag{4.7b}$$

If w > 1, it follows that the right-hand side of (4.7b) is divisible by 2^2 while 2 is a unitary divisor of its left-hand side. Hence w = 1 and so (4.7a) and (4.7b) reduce to

$$n = 2^5 . 3^2 . 7.5^d, \tag{4.7c}$$

and

$$2.3.5^{d-1} = \sigma^{**}(5^d). \tag{4.7d}$$

If $d \ge 2$, from (4.7d), we have $5|\sigma^{**}(5^d)$ and this is not possible. Hence d = 1, and (4.7d) is satisfied when d = 1. Hence $n = 2^5 \cdot 3^2 \cdot 7 \cdot 5 = 10080$ is a bi-unitary triperfect number.

This completes the proof of (i).

Proof of (ii). Let c = 2. Taking c = 2 in (4.6a) and (4.6b), we obtain

$$n = 2^5 \cdot 3^2 \cdot 7^2 \cdot 5^d \cdot w, \tag{4.8a}$$

and

$$2^{3}.3.7.5^{d-3}.w = \sigma^{**}(5^{d}).\sigma^{**}(w), \qquad (4.8b)$$

where w has no more than two odd prime factors and (w, 2.3.5.7) = 1.

From the left-hand side of (4.8b), it is clear that $d \ge 3$.

Let d = 3. We have $\sigma^{**}(5^3) = 2^2 \cdot 3 \cdot 13$. Taking d = 3 in (4.8b), we get

$$2.7.w = 13.\sigma^{**}(w). \tag{4.8c}$$

From (4.8c), 13|w and $w = 13^{e}$. From (4.8a) and (4.8c), we obtain

$$n = 2^5 \cdot 3^2 \cdot 7^2 \cdot 5^3 \cdot 13^e, \tag{4.9a}$$

and

$$2.7.13^{e-1} = \sigma^{**}(13^e). \tag{4.9b}$$

If $e \ge 2$, then from (4.9b) it follows that $13|\sigma^{**}(13^e)$. This is not possible. Hence e = 1. This value satisfies (4.9b). Hence $n = 2^5 \cdot 3^2 \cdot 7^2 \cdot 5^3 \cdot 13 = 22932000$ is a bi-unitary triperfect number. This proves (ii).

The proof of Lemma 4.2 is complete.

Lemma 4.3. Let $n = 2^{5} \cdot 3^{b} \cdot 7^{c} \cdot 5^{d} \cdot w$, where $(w, 2 \cdot 3 \cdot 5 \cdot 7) = 1$. If b = 2, c = 2 and $d \ge 4$, then n cannot be a bi-unitary triperfect number.

Proof. Suppose n is a bi-unitary triperfect number with b = 2, c = 2 and $d \ge 4$. The relevant equations are (4.8a) and (4.8b) with $d \ge 4$.

We have $\sigma^{**}(5^4) = 2^2 \cdot 3^3 \cdot 7$. Hence $3^3 | \sigma^{**}(5^4)$. Taking d = 4 in (4.8b), we find that 3^3 divides its left-hand side; but it is divisible unitarily by 3. This contradiction shows that d = 4 is not admissible. Hence we may assume that $d \ge 5$.

We obtain a contradiction by analyzing the factors of $\sigma^{**}(5^d)$ in (4.8b). We distinguish the following cases:

<u>Case 1.</u> Let d be odd. Hence

$$\sigma^{**}(5^d) = \frac{5^{d+1} - 1}{4} = \frac{(5^t - 1)(5^t + 1)}{4} \quad \left(t = \frac{d+1}{2}\right).$$

Since $d \ge 5$, we have $t \ge 3$.

(a) Let t be even. Hence $8|5^t - 1$ and consequently, $4|\frac{5^t-1}{2}|\sigma^{**}(5^d)$. It now follows from (4.8b), that w can have at most one odd prime factor. We wish to show that $\frac{5^t-1}{2}$ has an odd prime factor $p \ge 29$; and then from (4.8b), p|w. Hence $w = p^e$. This leads to a contradiction since $n = 2^5 \cdot 3^2 \cdot 7^2 \cdot 5^d \cdot p^e$ and therefore

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{63}{32} \cdot \frac{10}{9} \cdot \frac{50}{49} \cdot \frac{5}{4} \cdot \frac{29}{28} = 2.889827806 < 3, \tag{4.9d}$$

a contradiction.

(I) First we observe that $8||5^t - 1$. If $16|5^t - 1$, then $8|\frac{5^t-1}{2}|\sigma^{**}(5^d)$ and from (4.8b), we find that w = 1. Hence (4.8b) reduces to $2^3 \cdot 3 \cdot 7 \cdot 5^{d-3} = \sigma^{**}(5^d)$, and since $d \ge 5$, this implies that $5|\sigma^{**}(5^d)$ which is false. Thus $8||5^t - 1$.

(II) Suppose $7|5^t - 1$. This is if and only if 6|t. Hence $5^6 - 1|5^t - 1$. Since $9|5^6 - 1$, we also have $9|\frac{5^t-1}{2}|\sigma^{**}(5^d)$. From (4.8b) it follows that 3|w but w is prime to 3. This contradiction proves that $7 \nmid 5^t - 1$.

(III) Clearly, $3|5^t - 1$. It may be noted that $9|5^t - 1 \iff 6|t \iff 7|5^t - 1$. Since it is proved in (II) above that $7 \nmid 5^t - 1$, then $9 \nmid 5^t - 1$. Thus $3||5^t - 1$.

(IV) Suppose $11|5^t - 1$. This is equivalent to 5|t. Hence $5^5 - 1|5^t - 1$. Also, $5^5 - 1 = 2^2 \cdot 11 \cdot 71$. It follows that $\frac{5^t - 1}{2}|\sigma^{**}(5^d)$ is divisible by 11 and 71. From (4.8b) these primes should divide w. But in the present case namely $t = \frac{d+1}{2}$ is even, w cannot have more than one odd prime factor. Hence $11 \nmid 5^t - 1$.

(V) Suppose $13|5^t - 1$. This is if and only if 4|t. Hence $16|5^4 - 1|5^t - 1$. In (I) above we proved that $16 \nmid 5^t - 1$. Thus $13 \nmid 5^t - 1$.

(VI) Assume that $19|5^t - 1$. This is if and only if 9|t. Hence $5^9 - 1|5^t - 1$. Also, $5^9 - 1 = 2^2 \cdot 19.31 \cdot 829$ so that $\frac{5^t - 1}{2} |\sigma^{**}(5^d)$ is divisible by three primes 19, 31 and 829 which divide w by (4.8b). This cannot happen as w has no more than one odd prime factor. Thus $19 \nmid 5^t - 1$.

(VII) Finally, suppose $23|5^t - 1$. This is if and only if 22|t. We have $5^{22} - 1|5^t - 1$ and $5^{22} - 1 = 2^3 \cdot 3 \cdot 23 \cdot 67 \cdot 5281 \cdot 12207031$. Hence $\frac{5^t - 1}{2}|\sigma^{**}(5^d)$ is divisible by four odd primes and these four primes divide w by (4.8b). This cannot happen. Hence $23 \nmid 5^t - 1$.

Further since $8||5^t - 1, \frac{5^t - 1}{8}$ is odd and also > 1. From (I)–(VII), it follows that each prime factor of $\frac{5^t - 1}{8}$ is odd and > 23 or ≥ 29 . Certainly $\frac{5^t - 1}{8} > 1$ is divisible by a prime $p \ge 29$. Since $p|\frac{5^t - 1}{8}|\sigma^{**}(5^d)$, it follows from (4.8b) that p|w.

As mentioned in the beginning of (a) of Case 1, this would lead to a contradiction indicated in (4.9d).

(b) Let t be odd (already $t \ge 3$).

We show that we can find primes $p, q, p \neq q, p|\frac{5^t-1}{4}, q|\frac{5^t+1}{6}, p, q|w \text{ and } p, q > 23.$

(I) Since t is odd, $4||5^t - 1$ and $5^t - 1$ is not divisible by 3, 5, 7, 13, 17 and 23.

(II) Suppose $11|5^t - 1$. This is equivalent to 5|t. Hence $5^5 - 1|5^t - 1$. Also, $5^5 - 1 = 2^2 \cdot 11 \cdot 71$. Hence $71|\frac{5^t-1}{4}$. It is true in this case that $\frac{5^t-1}{4}$ is divisible by a prime p > 23 (here p = 71). So we may assume that $11 \nmid 5^t - 1$.

(III) Suppose $19|5^t - 1$. This is equivalent to 9|t. Consequently $5^9 - 1|5^t - 1$. Also, $5^9 - 1 = 2^2 \cdot 19 \cdot 31 \cdot 829$. It follows that the primes 19, 31 and 829 divide w by (4.8b). This cannot happen as w cannot have more than two odd prime factors. Hence $19 \nmid 5^t - 1$.

From (I)–(III), it follows that $\frac{5^t-1}{4}$ is odd, > 1 and not divisible by any prime in [3, 23]. Let $p|\frac{5^t-1}{4}$. Then $p \ge 29$ and p|w by (4.8b).

We now consider the factor $5^t + 1$, where t is odd.

(IV) Since t is odd, $2||5^t + 1$ and $3|5^t + 1$. Also, since 9 cannot divide the left-hand side of (4.8b), we have $9 \nmid 5^t + 1$. Hence $3||5^t + 1$.

(V) Suppose $7|5^t + 1$. This is equivalent to t = 3u. Hence $5^3 + 1|5^t + 1$. Also, $5^3 + 1 = 2.3^2.7$. Hence $9|5^t + 1$. From (IV) above this is not so. Hence $7 \nmid 5^t + 1$. (VI) For any positive integer t, $11 \nmid 5^t + 1$ and $19 \nmid 5^t + 1$.

(VII) Suppose $13|5^t + 1$. This is equivalent to t = 2u. Also, since t is odd, $13 \nmid 5^t + 1$.

(VIII) Suppose $17|5^t + 1$. This is if and only if t = 8u. So t must be even. Since t is odd, $17 \nmid 5^t + 1$.

(IX) Suppose $23|5^t + 1$. This is if and only if t = 11u. Hence $5^{11} + 1|5^t + 1$. Also, $5^{11} + 1 = 2.3.23.67.5281$. Hence $\sigma^{**}(5^d)$ is divisible by three primes 23,67 and 5281 which also divide w by (4.8b). This cannot happen. Hence $23 \nmid 5^t + 1$.

It follows from (IV)–(IX) that $\frac{5^t+1}{6}$ is odd, > 1 and not divisible by any prime in [3, 23]. Let $q|\frac{5^t+1}{6}|5^t+1|\sigma^{**}(5^d)$. Then $q \ge 29$ and q|w by (4.8b). Since $\frac{5^t-1}{4}$ and $\frac{5^t+1}{6}$ are relatively prime it follows that $p \ne q$. Without loss of generality, we may assume that $p \ge 29$ and $q \ge 31$. Also, $w = p^e.q^f$. From (4.8a), we have $n = 2^{5}.3^2.7^2.5^d.p^e.q^f$. Hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{63}{32} \cdot \frac{10}{9} \cdot \frac{50}{49} \cdot \frac{5}{4} \cdot \frac{29}{28} \cdot \frac{31}{30} = 2.9861554 < 3,$$

a contradiction.

We have completed Case 1 (d odd.) Thus n given in Lemma 4.3 cannot be a bi-unitary triperfect number if d is odd.

<u>Case 2.</u> Let d be even so that d = 2k. We may assume that $k \ge 3$ since $d \ge 5$. We have

$$\sigma^{**}(5^d) = \left(\frac{5^k - 1}{4}\right) \cdot (5^{k+1} + 1) \quad (k \ge 3)$$

(a) Let k be even. Then $8|5^k - 1$ and $2|5^{k+1} + 1$. Hence $4|\sigma^{**}(5^d)$. It follows from (4.8b) that w cannot have more than one odd prime factor. As in (a) of Case 1, $16 \nmid 5^k - 1$; hence $8||5^k - 1$ and we can find an odd prime $p|\frac{5^k-1}{8}$ and p|w such that $p \ge 29$. In a similar manner, we obtain a contradiction (we simply have to replace k by t and proceed as in (a) of Case 1).

(b) Let k be odd. Here also we follow (b) of Case 1, treating k as t. We have $4||5^k - 1$ so that $\frac{5^k-1}{4}$ is odd. This fraction is > 1 since $k \ge 3$. Exactly as in (b) of Case 1, $\frac{5^k-1}{4}$ is divisible by an odd prime p|w and $p \ge 29$.

We now consider $5^{k+1} + 1$. We wish to show that $\frac{5^{k+1}+1}{2}$ is divisible by a prime p > 23.

(I) $2||5^{k+1} + 1$; since k + 1 is even, $5^{k+1} + 1$ is not divisible by 3, 7 and 23.

(II) Since for any positive integer t, $5^t + 1$ is not divisible by 11 or 19, the same holds good for $5^{k+1} + 1$ also.

(III) Suppose $17|5^{k+1} + 1$. This is if and only if k + 1 = 8u. Hence $5^8 + 1|5^{k+1} + 1$. Also, $5^8 + 1 = 2.17.11489$. It follows that q = 11489 divides $\frac{5^{k+1}+1}{2}|\sigma^{**}(5^d)$. Trivially q > 23 and from (4.8b), q divides w. This is what we wished to prove. We may assume that $17 \nmid 5^{k+1} + 1$.

(IV) Thus from (I), (II) and (III), $\frac{5^{k+1}+1}{2}$ is odd, > 1 and not divisible by any prime in [3,23] except 13. If $13 \nmid 5^{k+1} + 1$, then it would follow that $\frac{5^{k+1}+1}{2}$ is not divisible by any prime in [3,23]. Hence every prime factor of $\frac{5^{k+1}+1}{2}$ is ≥ 29 and from (4.8b) all prime factors of $\frac{5^{k+1}+1}{2}$ also divide w. That there is an odd prime $q|\frac{5^{k+1}+1}{2}$ and q|w with $q \geq 29$ is true. (V) Suppose $13|5^{k+1} + 1$. We show that $\frac{5^{k+1}+1}{2}$ must be divisible by an odd prime $q \neq 13$. If

(V) Suppose $13|5^{k+1} + 1$. We show that $\frac{5^{k+1}+1}{2}$ must be divisible by an odd prime $q \neq 13$. If this is not so, then we must have $\frac{5^{k+1}+1}{2} = 13^{\alpha}$, where $\alpha \geq 1$. If $\alpha \geq 2$, $13^2|5^{k+1} + 1$. This is if and only if k + 1 = 26u. Hence $5^{26} + 1|5^{k+1} + 1$. Also, $5^{26} + 1 = 2.13^2.53.8318165204609$. In

particular, $53|\frac{5^{k+1}+1}{2} = 13^{\alpha}$, which is not possible. Hence $\alpha = 1$ so that $\frac{5^{k+1}+1}{2} = 13$ or k = 1. But $k \ge 3$. This proves that we can find an odd prime $q \ne 13$ and $q|\frac{5^{k+1}+1}{2}$. From (I)–(III), it is clear that $q \in [3, 23]$ and from (4.18b), q|w. Hence $q \ge 29$.

Thus we proved that (i) $\frac{5^{k}-1}{4}$ is divisible by an odd prime p|w and $p \ge 29$, (ii) $\frac{5^{k+1}+1}{2}$ is divisible by an odd prime $q \ge 29$. Since $\frac{5^{k}-1}{4}$ and $\frac{5^{k+1}+1}{2}$ are relatively prime $p \ne q$. From (4.8b), $w = p^{e}.q^{f}$. Hence form (4.8a), $n = 2^{5}.3^{2}.7^{2}.5^{d}.p^{e}.q^{f}$. As in (b) of Case 1, we obtain a contradiction.

This proves Lemma 4.3.

Lemma 4.4. Let $n = 2^5 \cdot 3^b \cdot 7^c \cdot 5^d \cdot w$, where $(w, 2 \cdot 3 \cdot 5 \cdot 7) = 1$. If b = 2 and $c \ge 3$, then n cannot be a bi-unitary triperfect number.

Proof. Assume that n given in Lemma 4.4 is a bi-unitary triperfect number. The relevant equations are (4.6a) and (4.6b).

By Lemma 2.1, we have since $c \ge 3$, $\frac{\sigma^{**}(7^c)}{7^c} \ge \frac{2752}{2401}$. Also, for $d \ge 3$, $\frac{\sigma^{**}(5^d)}{5^d} \ge \frac{756}{625}$. Since $n = 2^5 \cdot 3^2 \cdot 7^c \cdot 5^d \cdot w$, we have for $d \ge 3$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{10}{9} \cdot \frac{2752}{2401} \cdot \frac{756}{625} = 3.032816327 > 3,$$

a contradiction.

Hence d = 1 or d = 2.

If d = 1, we have $n = 2^5 \cdot 3^2 \cdot 7^c \cdot 5 \cdot w$ and again

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{10}{9} \cdot \frac{2752}{2401} \cdot \frac{6}{5} = 3.008746356 > 3,$$

a contradiction.

Let d = 2. From (4.6b) (d = 2), we obtain

$$2^{3}.3.7^{c-1}.5.w = 13.\sigma^{**}(7^{c}).\sigma^{**}(w).$$
(4.10c)

From (4.10c), we have 13|w. Hence $w = 13^e \cdot w'$, where (w', 2.3.5.7.13) = 1. Now from (4.6a) and (4.10c), we get

$$n = 2^{5} \cdot 3^{2} \cdot 7^{c} \cdot 5^{2} \cdot 13^{e} \cdot w' \quad (c \ge 3),$$
(4.11a)

and

$$2^{3}.3.7^{c-1}.5.13^{e-1}.w' = \sigma^{**}(7^{c}).\sigma^{**}(13^{e}).\sigma^{**}(w'), \qquad (4.11b)$$

where

w' has no more than one odd prime factor. (4.11c)

By examining the factors of $\sigma^{**}(7^c)$, we arrive at a contradiction.

We distinguish the following cases:

<u>Case 1.</u> Let c be odd. Then $\sigma^{**}(7^c) = \frac{7^{c+1}-1}{6}$. Since c+1 is even, $48 = 7^2 - 1|7^{c+1} - 1$. Hence $8|\sigma^{**}(7^c)$. From (4.11b) we find an imbalance in powers of 2 between its two sides.

<u>Case 2.</u> Let c be even say c = 2k. We have

$$\sigma^{**}(7^c) = \left(\frac{7^k - 1}{6}\right) . (7^{k+1} + 1).$$

(a) Let k be even. Then $8|7^k-1$ and $8|7^{k+1}+1$. Hence $32|\sigma^{**}(7^c)$. This leads to a contradiction as in Case 1.

(b) Let k be odd. We prove that we can find an odd prime $p|\frac{7^k-1}{6}$, p|w' and $p \ge 29$. If this is done, then by (4.11c), $w' = p^f$ and so $n = 2^5 \cdot 3^2 \cdot 7^c \cdot 5^2 \cdot 13^e \cdot p^f$. Hence

$$3 = \frac{\sigma^{**}(n)}{n} < \frac{63}{32} \cdot \frac{10}{9} \cdot \frac{7}{6} \cdot \frac{26}{25} \cdot \frac{13}{12} \cdot \frac{29}{28} = 2.978038194 < 3,$$

a contradiction. This would complete the proof of Lemma 4.4.

(I) Since k is odd, $2||7^k - 1$ and $7^k - 1$ is divisible by none of the primes 5, 11, 13, 17 and 23; trivially not divisible by 7.

(II) $3|7^{k} - 1$. If $27|7^{k} - 1$, then $9|\frac{7^{k}-1}{6}|\sigma^{**}(7^{c})$. From (4.11b) it follows that 3|w which is not true. Hence $27 \nmid 7^{k} - 1$.

(III) We may note that $9|7^k - 1 \iff 3|k \iff 19|7^k - 1$. If $9 \nmid 7^k - 1$, then $19 \nmid 7^k - 1$ and $3||7^k - 1$. In this case $\frac{7^k - 1}{6}$ is odd and > 1, since $k \ge 3$. Also, $\frac{7^k - 1}{6}$ is not divisible by any prime in [3, 23]. Hence every prime factor of $\frac{7^k - 1}{6}$ is ≥ 29 and also is a factor of w' by (4.11b). This is slightly more than what wanted to prove.

(IV) Suppose $9|7^k - 1$. Hence $9||7^k - 1$ and $19|7^k - 1$. We have since $k \ge 3$, $\frac{7^k - 1}{18} > 1$; also, it is odd and not divisible by 3. We show that $\frac{7^k - 1}{18}$ must be divisible by an odd prime $p \ne 19$. If this is not the case, then we have $\frac{7^k - 1}{18} = 19^{\alpha}$, where $\alpha \ge 1$. If $\alpha \ge 2$, then $19^2|7^k - 1$; this is if and only if 57|k. Hence $7^{57} - 1|7^k - 1$. In Appendix F of Part I (see [2]), factorization of $7^{57} - 1$ is given. It follows that $419|7^{57} - 1|7^k - 1$. Hence $419|\frac{7^k - 1}{18} = 19^{\alpha}$. This is not possible. Hence $\alpha = 1$ and so $\frac{7^k - 1}{18} = 19$ or k = 3.

We now prove that k = 3, that is, c = 6 is not possible. We have $\sigma^{**}(7^6) = 2.3.19.1201$. Taking c = 6 in (4.11b), we see that 19 and 1201 divide w'. This contradicts (4.11c). Hence k = 3 is not admissible.

Thus $\frac{7^k-1}{18}$ is divisible by an odd prime $p \neq 19$. Also, $p \neq 3$. From (I) it is clear that $p \notin [3, 23]$. Also, from (4.11b), p|w'.

This completes the proof of Lemma 4.4.

Lemma 4.5. Let $n = 2^{5} \cdot 3^{b} \cdot 7^{c} \cdot v$, where $(v, 2 \cdot 3 \cdot 7) = 1$. If $b \ge 3$, then n cannot be a bi-unitary triperfect number.

Proof. Suppose n in Lemma 4.5 (same as n in (4.1a)) is a bi-unitary triperfect number. The relevant equations are (4.1a) and (4.1b) with $b \ge 3$.

By Lemma 2.1, since $b \ge 3$, we have $\frac{\sigma^{**}(3^b)}{3^b} \ge \frac{112}{81}$ and for $c \ge 3$, $\frac{\sigma^{**}(7^c)}{7^c} \ge \frac{2752}{2401}$. Hence for $c \ge 3$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{112}{81} \cdot \frac{2752}{2401} = 3.120181406 > 3,$$

a contradiction.

Therefore, c = 1 or c = 2.

When c = 1, we have $n = 2^5 \cdot 3^b \cdot 7 \cdot v$, and so

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{112}{81} \cdot \frac{8}{7} = 3.1111 > 3,$$

a contradiction.

Let c = 2. Taking c = 2 in (4.1b), we get

$$2^{4} \cdot 3^{b-1} \cdot 7 \cdot v = 5^{2} \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(v).$$
(4.11d)

From (4.11d), we have $5^2|v$. Let $v = 5^d w$, where $d \ge 2$ and w is prime to 2.3.5.7. From (4.1a) and (4.11d), we have

$$n = 2^5 \cdot 3^b \cdot 7^2 \cdot 5^d \cdot w, \quad (b \ge 3, \ d \ge 2)$$
 (4.12a)

and

$$2^{4}.3^{b-1}.7.5^{d-2}.w = \sigma^{**}(3^{b}).\sigma^{**}(5^{d}).\sigma^{**}(w), \qquad (4.12b)$$

where w cannot have more than two odd prime factors.

We have by Lemma 2.1, $\frac{\sigma^{**}(5^d)}{5^d} \ge \frac{756}{625}$ $(d \ge 3)$. Hence from (4.12a), for $d \ge 3$,

$$3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{112}{81} \cdot \frac{50}{49} \cdot \frac{756}{625} = 3.36 > 3,$$

a contradiction.

Hence d = 2 since $d \ge 2$. Taking d = 2 in (4.12b), we get

$$2^{3} \cdot 3^{b-1} \cdot 7 \cdot w = 13 \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(w).$$
(4.12c)

From (4.12c), we have 13|w. Let $w = 13^{e} \cdot w'$. From (4.12a) and (4.12c), we obtain

$$n = 2^{5} \cdot 3^{b} \cdot 7^{2} \cdot 5^{2} \cdot 13^{e} \cdot w', \quad (b \ge 3)$$
(4.13a)

and

$$2^{3} \cdot 3^{b-1} \cdot 7 \cdot 13^{e-1} \cdot w' = \sigma^{**}(3^{b}) \cdot \sigma^{**}(13^{e}) \cdot \sigma^{**}(w'), \qquad (4.13b)$$

where (w', 2.3.5.7.13) = 1 and w' cannot have more than one odd prime factor.

By Lemma 2.1, for $e \ge 3$, $\frac{\sigma^{**}(13^e)}{13^e} \ge \frac{30772}{28561}$. Hence for $e \ge 3$, from (4.13a), we have $\sigma^{**}(n) = 63, 112, 50, 26, 30772$

$$3 = \frac{\delta^{-n}(n)}{n} \ge \frac{63}{32} \cdot \frac{112}{81} \cdot \frac{30}{49} \cdot \frac{26}{25} \cdot \frac{30772}{28561} = 3.112527184 > 3,$$

a contradiction.

Hence e = 1 or e = 2. If e = 1, we have $n = 2^5 \cdot 3^b \cdot 7^2 \cdot 5^2 \cdot 13 \cdot w'$ and so $3 = \frac{\sigma^{**}(n)}{n} \ge \frac{63}{32} \cdot \frac{112}{81} \cdot \frac{50}{49} \cdot \frac{26}{25} \cdot \frac{14}{13} = 3.111 > 3,$

a contradiction.

Let e = 2. From (4.13b) (e = 2), we get

$$2^{3} \cdot 3^{b-1} \cdot 7 \cdot 13 \cdot w' = 170 \cdot \sigma^{**}(3^{b}) \cdot \sigma^{**}(w').$$

$$(4.13c)$$

From (4.13c), it follows that 5|w'. But w' is prime to 5. This is a contradiction.

The proof of Lemma 4.5 is complete.

Completion of proof of Theorem 4.1. Follows from Lemmas 4.1 to 4.5.

References

- [1] Hagis, P., Jr. (1987). Bi-unitary amicable and multiperfect numbers, *Fibonacci Quart.*, 25 (2), 144–150.
- [2] Haukkanen, P. & Sitaramaiah, V. (2020). Bi-unitary multiperfect numbers, I, *Notes Number Theory Discrete Math.*, 26 (1), 93–171.
- [3] Sándor, J. & Crstici, P. (2004). Handbook of Number Theory II, Kluwer Academic.
- [4] Suryanarayana, D. (1972). The number of bi-unitary divisors of an integer, in *The Theory of Arithmetic Functions*, Lecture Notes in Mathematics 251: 273–282, New York, Springer–Verlag.
- [5] Wall, C. R. (1972). Bi-unitary perfect numbers, Proc. Amer. Math. Soc., 33, No. 1, 39–42.