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Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1; and
d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is unity.
The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let σ∗∗(n) denote the sum
of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect number if
σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present
paper is Part II in a series of papers on even bi-unitary multiperfect numbers. In the first part we
found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 3 and u is odd;
the only one being n = 120. In this second part we find all bi-unitary triperfect numbers in the
cases a = 4 and a = 5. For a = 4 the only one is n = 2160, and for a = 5 they are n = 672,
n = 10080, n = 528800 and n = 22932000.
Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues.
2010 Mathematics Subject Classification: 11A25.

1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The
letters u, v and w are reserved for odd numbers.
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A divisor d of n is called a unitary divisor (written d‖n) if gcd(d, n/d) = 1. A divisor d of
n is called a bi-unitary divisor if (d, n/d)∗∗ = 1, where (a, b)∗∗ stands for the greatest common
unitary divisor of a and b. The concept of a bi-unitary divisor is due to D. Suryanarayana (cf. [4]).
Let σ∗∗(n) denote the sum of bi-unitary divisors of n. The function σ∗∗(n) is multiplicative, that
is, σ∗∗(1) = 1 and σ∗∗(mn) = σ∗∗(m)σ∗∗(n) whenever (m,n) = 1.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [5]; a positive integer
n is called a bi-unitary perfect number if σ∗∗(n) = 2n. C. R. Wall [5] proved that there are only
three bi-unitary perfect numbers; namely 6, 60 and 90.

A positive integer n is called a bi-unitary multiperfect number if σ∗∗(n) = kn for some k ≥ 3.
For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present
paper is Part II in a series of papers on even bi-unitary multiperfect numbers. In Part I (see [2]),
we found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 3. In fact,
we proved that if 1 ≤ a ≤ 3 and n = 2au is a bi-unitary triperfect number, then a = 3 and
n = 120 = 23.3.5.

In this Part II, we go through the cases a = 4 and a = 5. In Theorem 3.1 we prove that if
n = 24u is a bi-unitary triperfect number, then n = 2160 = 24.33.5, and in Theorem 4.1 we
prove that if n = 25u is a bi-unitary triperfect number, then n = 672 = 25.3.7, n = 10080 =

25.32.5.7, n = 528800 = 25.3.52.13 or n = 22932000 = 25.32.53.72.13. This shows that the case
a = 4 yields one bi-unitary triperfect number, and the case a = 5 yields four bi-unitary triperfect
numbers.

For a general account on various perfect-type numbers, we refer to [3].

2 Preliminaries

We assume that the reader has Part I available (see [2]). We, however, recall Lemmas 2.1 and 2.2
from Part I, because they are also important here.

Lemma 2.1. (I) If α is odd, then

σ∗∗(pα)

pα
>
σ∗∗(pα+1)

pα+1

for any prime p.
(II) For any α ≥ 2`− 1 and any prime p,

σ∗∗(pα)

pα
≥

(
1

p− 1

)(
p− 1

p2`

)
− 1

p`
=

1

p2`

(
p2`+1 − 1

p− 1
− p`

)
.

(III) If p is any prime and α is a positive integer, then

σ∗∗(pα)

pα
<

p

p− 1
.
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Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [5]; (II) of Lemma 2.1 has
been used by him [5] without explicitly stating it.

Lemma 2.2. Let a > 1 be an integer not divisible by an odd prime p and let α be a positive
integer. Let r denote the least positive integer such that ar ≡ 1 (mod pα); then r is usually
denoted by ordpα a. We have the following properties.

(i) If r is even then s = r/2 is the least positive integer such that as ≡ −1 (mod pα). Also,
at ≡ −1 (mod pα) for a positive integer t if and only if t = su, where u is odd.

(ii) If r is odd then pα - at + 1 for any positive integer t.

Remark 2.2. Let a, p, r and s = r/2 be as in Lemma 2.2 (α = 1). Then p|at − 1 if and only if
r|t. If t is odd and r is even, then r - t.Hence p - at−1.Also, p|at+1 if and only if t = su,where
u is odd. In particular if t is even and s is odd, then p - at + 1. In order to check the divisibility
of at − 1 (when t is odd) by an odd prime p, we can confine to those p for which ordp a is odd.
Similarly, for examining the divisibility of at + 1 by p when t is even we need to consider primes
p with s = ordp a/2 even.

3 Bi-unitary triperfect numbers of the form n = 24u

In this section we find all bi-unitary triperfect numbers n with 24‖n.

Theorem 3.1. If n is a bi-unitary triperfect number with 24‖n, then n = 2160 = 24.33.5.

Proof. Let n = 24u be a bi-unitary triperfect number so that

σ∗∗(n) = 3n.

Since σ∗∗(24) = 27, we obtain after simplification,

24.u = 9.σ∗∗(u), (3.1)

and hence 32|u. Let u = 3b.v, where b ≥ 2 and v is prime to 2.3. Hence

n = 24.3b.v, (3.1a)

and substituting u = 3b.v in (3.1), we get

24.3b−2.v = σ∗∗(3b).σ∗∗(v), (3.1b)

where v has no more than three odd prime factors. (3.1c)

The rest of the proof depends on the following Lemmas:

Lemma 3.1. Let n = 24.3b.v, where b ≥ 2 and (v, 2.3) = 1.

(a) If b = 2, then n is not a bi-unitary triperfect number.

(b) If b = 3 and n is a bi-unitary perfect number, then n = 2160 = 24.33.5.
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Proof. Proof of (a). Let b = 2. Suppose that n is a bi-unitary triperfect number so that (3.1a) and
(3.1b) hold. From (3.1b) we get 24.v = 10.σ∗∗(v) and this implies 5|v. Let v = 5c.w. Hence

n = 24.32.5c.w, (3.2a)

and
23.5c−1.w = σ∗∗(5c).σ∗∗(w), (3.2b)

where
w has no more than two odd prime factors; (3.2c)

also w is prime to 2.3.5.
If c = 1, from (3.2b) we get, 23.w = 6.σ∗∗(w) so that 3|w. But this false.
Let c = 2. From (3.2b), we have

22.5.w = 13.σ∗∗(w), (3.3)

so that 13|w.
Let w = 13d.w′, where (w′, 2.3.5.13) = 1. From (3.2a) and (3.2b), we obtain

n = 24.32.5c.13d.w′, (3.3a)

and
22.5.13d−1.w′ = σ∗∗(13d).σ∗∗(w′), (3.3b)

where
w′ has at most one odd prime factor. (3.3c)

We can assume that w′ = pe, where p ≥ 7. Hence from (3.3a), n = 24.32.52.13d.pe. We have,
by Lemma 2.1,

3 =
σ∗∗(n)

n
<

27

16
.
10

9
.
26

25
.
13

12
.
7

6
= 2.464583333 < 3,

a contradiction.
Hence c = 2 is not possible. We may assume that c ≥ 3.

We obtain a contradiction in the case b = 2 by examining the factors of σ∗∗(5c).
Let c be odd so that

σ∗∗(5c) =
5c+1 − 1

4
=

(5t − 1)(5t + 1)

4

(
t =

c+ 1

2
≥ 2

)
.

If t is even, then 4|σ∗∗(5c). From (3.2b), it follows that w = pd, where p ≥ 7. From (3.2a),
n = 24.32.5c.pd, so that

3 =
σ∗∗(n)

n
<

27

16
.
10

9
.
5

4
.
7

6
= 2.734375 < 3,

a contradiction.
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Let t be odd so that t ≥ 3. Following the same procedure adopted in Lemma 3.3 of [2], we
can show that 5t−1

4
is divisible by a prime p ≥ 29 and p|w. We obtain a contradiction as in (3.7)

of [2].
The case when c is odd is complete.
Let c be even so that c = 2k. Hence

σ∗∗(5c) =

(
5k − 1

4

)
.(5k+1 + 1).

If k is even then 4|σ∗∗(5c).We proceed exactly as in the case when t = c+1
2

was even to obtain
a contradiction. If k is odd we obtain a contradiction by imitating the case when t = c+1

2
was

odd.
This finishes the case that c is even and also the case b = 2.

Thus b = 2 is not possible. That is, when b = 2, n cannot be a bi-unitary triperfect number.
This completes the proof of (a) of Lemma 3.1.

Proof of (b). Let n be a bi-unitary perfect number so that (3.1a) and (3.1b) hold. Let b = 3. Since
σ∗∗(33) = 40 = 23.5, taking b = 3 in (3.1b), we get

2.3.v = 5.σ∗∗(v), (3.4)

so that 5|v. Also, from (3.4), v must be a prime power. Hence v = 5c and so from (3.1a) (b = 3)

and (3.4),
n = 24.33.5c, (3.4a)

and
2.3.5c−1 = σ∗∗(5c). (3.4b)

If c ≥ 2, then from (3.4b), 5|σ∗∗(5c), which is false. Hence c = 1 and (3.4b) is satisfied. Thus
n = 24.33.5 = 2160 is a bi-unitary triperfect number.

This completes the proof of (b) of Lemma 3.1.
Proof of Lemma 3.1 is complete.

Lemma 3.2. Let n = 24.3b.v, where b ≥ 4 and (v, 2.3) = 1.

(a) If b is odd or 4|b, then n cannot be a bi-unitary triperfect number.
(b) Let b = 2k and k be odd. If n is a bi-unitary triperfect number then 5 - n.

Proof. We return to the equations (3.1a) and (3.1b), in which b ≥ 4. We obtain a contradiction
by considering σ∗∗(3b).
Proof of (a). Let b be odd so that

σ∗∗(3b) =
3b+1 − 1

2
=

(3t − 1)(3t + 1)

2

(
t =

b+ 1

2

)
.

Let t be even. Since t = b+1
2

is even 4|b + 1. Hence 80 = 34 − 1|3b+1 − 1. It follows that
σ∗∗(3b) is divisible by 5 and 8. From (3.1b), 8|σ∗∗(3b) implies that v cannot have more than one
odd prime factor and 5|σ∗∗(3b) implies that v = 5c. Hence from (3.1a) and (3.1b), we have

n = 24.3b.5c, (b ≥ 4) (3.5a)
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and
24.3b−2.5c = σ∗∗(3b).σ∗∗(5c). (3.5b)

From (3.5b), 5|σ∗∗(3b). This implies either 5|3t − 1 or 5|3t + 1 but not both.
Assume that 5|3t − 1. Then 5 - 3t + 1. Thus 3t+1

2
> 1, odd and not divisible by 3 or 5. This

cannot happen from (3.5b) since 3t+1
2
|σ∗∗(3b).

Let 5|3t+1. Hence 5 - 3t−1. Also, from (3.5b), 16 - 3t−1. Since t is even, we have 8|3t−1;

hence 8‖3t−1. Hence 3t−1
8

is odd, > 1 and not divisible by 3 or 5; since 3t−1
8
|σ∗∗(3b), this cannot

happen in view of (3.5b).
Thus the case t even cannot occur.
Let t be odd. In this case 4‖3t + 1 and 2‖3t − 1 so that 4‖σ∗∗(3b). It follows from (3.1b) that

v cannot have more than two odd prime factors. (3.5c)

Note that 5|3t + 1 if and only if t = 2u, u being odd. In particular t must be even. Since t is
odd, 5 - 3t + 1; also, 11 - 3t + 1 for any positive integer t.

Thus 3t+1
4

is odd, > 1 and not divisible by 3, 5, and 11. Suppose 7 - 3t + 1. Then 3t+1
4

should
be divisible by an odd prime q /∈ {3, 5, 7, 11}. Since q|3t+1

4
|σ∗∗(3b), from (3.1b), it follows that

q|v and q ≥ 13.

Suppose that 7|3t + 1. We prove that 3t+1
4

cannot be divisible by 7 alone. On the contrary let
us assume that 3t+1

4
= 7α, where α is a positive integer. If α ≥ 2, then 72|3t+1. But this is if and

only if t = 21u. Thus 72|3t + 1 implies 321 + 1|3t + 1. We have 321 + 1 = 22.72.43.547.2269, so
that 43|321+1

4
|3t+1

4
= 7α, which is not possible. Thus α = 1 and hence 3t+1

4
= 7 or t = 3. Hence

b = 5.
We now show that b = 5 is not admissible.
We have σ∗∗(35) = 36−1

2
= 22.7.13. Taking b = 5 in (3.1b), we get

22.33.v = 7.13.σ∗∗(v). (3.5d)

From (3.5d), 7 and 13 divide v. Let v = 7c.13d. Now from (3.5d), we get after simplification

22.33.7c−1.13d−1 = σ∗∗(7c).σ∗∗(13d). (3.6)

If c is odd or 4|c then 8|σ∗∗(7c). This is not possible from (3.6).
Let c = 2k, where k is odd. We have

σ∗∗(7c) =

(
7k − 1

6

)
.(7k+1 + 1).

Consider the factor 7k+1 + 1. Since 2‖7k+1 + 1, 7k+1+1
2

is odd and trivially > 1. It is not divisible
by 3 and not divisible by 7 trivially; 13|7k+1 + 1 if and only if k + 1 = 6u (u odd), and 76 + 1 =

2.52.13.181. Hence 13|7k+1 + 1 implies that 5|76 + 1|7k+1 + 1|σ∗∗(7c). This is not possible from
(3.6). So 13 - 7k+1 + 1. Thus 7k+1+1

2
|σ∗∗(7c) is not divisible by 2 or 3 or 7 or 13. This cannot

happen from (3.6). This contradiction shows that b = 5 is not possible.
This proves that 3t+1

4
is divisible by an odd prime q 6= 7. Clearly q ≥ 13 and q|v.
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Thus we have proved that we can always find an odd prime q|3t+1
4

and q|v with q ≥ 13.

We shall now turn our attention to the factor 3t− 1, where t is odd. First of all 2‖3t− 1. Also,
5|3t − 1 ⇐⇒ 4|t and 7|3t − 1 ⇐⇒ 6|t. In particular t should be even. Since t is odd, 3t − 1 is
not divisible by 5 or 7.

Now, 3t−1
2

is odd, > 1 and not divisible by 3, 5, 7 and 11 if we assume that 11 - 3t − 1. Hence
3t−1
2

should be divisible a prime p ≥ 13 and p|v by (3.1b).
We may assume that 11|3t − 1. This is if and only if 5|t. Hence 35 − 1|3t − 1. Since

35 − 1 = 2.112, we have 112|3t − 1.

We now show that 3t−1
2

is not divisible by 11 alone. On the contrary, let 3t−1
2

= 11α, where
α ≥ 2. If α ≥ 3, then 113|3t−1; this is equivalent to 55|t. In particular, 11|t and so 311−1|3t−1.

But 311 − 1 = 2.23.3851. Hence 23|3t−1
2

= 11α. This is impossible. Hence α = 2, so that
3t−1
2

= 112 or t = 5, so that b = 9.

We now prove that b = 9 is not admissible. We have σ∗∗(39) = 310−1
2

= 22.112.61. Taking
b = 9 in (3.1b), we get after simplification, 22.37.v = 112.61.σ∗∗(v); it follows that 11 and 61

divide v. By (3.5c), v = 11c.61d. We already proved that q|v, where q|3t+1
4
. Since 3t−1

2
and 3t+1

4

are relatively prime, q /∈ {11, 61}. This is a contradiction to q|v = 11c.61d. Thus b = 9 is not
admissible.

Hence 3t−1
2

must be divisible by an odd prime say p 6= 11. It follows that p /∈ {3, 5, 7, 11} and
so p ≥ 13. From (3.1b), clearly p|v.As p and q are factors of two relatively prime numbers, p 6= q.

We can assume that p ≥ 13 and q ≥ 17. By (3.5c), v = pc.qd. Hence from (3.1a),n = 24.3b.pc.qd.

We have by Lemma 2.1,

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
13

12
.
17

16
= 2.913574219 < 3,

a contradiction.
The case t = b+1

2
is odd is complete.

Let b be even so that b = 2k. Then

σ∗∗(3b) =

(
3k − 1

2

)
.(3k+1 + 1).

Let k be even. This is same as 4|b. Then 8|3k − 1 and 4|3k+1 + 1. Hence 16|σ∗∗(3b). From
(3.1b), it follows that v = 1 and hence from the same equation we obtain 24.3b−2 = σ∗∗(3b),

which is not possible since b ≥ 4 implies 3|σ∗∗(3b) and this is false.
In all the cases we ended up with a contradiction. Hence n cannot be a bi-unitary perfect

number.
The proof of (a) of Lemma 3.2 is complete.

Proof of (b). Let k be odd. We prove that n in (3.1a) and (3.1b) is not divisible by 5.
Let n be as in (3.1a) and assume that 5|n. Hence v = 5c.w, where (w, 2.3.5) = 1; substituting

this into (3.1a) and (3.1b) we get

n = 24.3b.5c.w, (b ≥ 4) (3.6a)

and
24.3b−2.5c.w = σ∗∗(3b).σ∗∗(5c).σ∗∗(w), (3.6b)
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where
w cannot have more than two odd prime factors. (3.6c)

The case b = 4 falls under b = 2k, where k is even. We already obtained a contradiction in
this case. Hence we may assume that b ≥ 6. By Lemma 2.1, we have σ∗∗(3b)

3b
≥ 1066

729
(b ≥ 5) and

σ∗∗(5c)
5c
≥ 19406

15625
, (c ≥ 5). Hence for c ≥ 5,

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
19406

15625
= 3.064710519 > 3,

a contradiction.
So c ≥ 5 does not hold and hence 1 ≤ c ≤ 4.
Let c = 1. Then (3.6a) and (3.6b) reduce to

n = 24.3b.5.w, (b ≥ 6) (3.7a)

and
23.3b−3.5.w = σ∗∗(3b).σ∗∗(w), (3.7b)

where w cannot have more than two odd prime factors.
From Lemma 2.1, for b ≥ 7, σ

∗∗(3b)
3b
≥ 9760

6561
. Hence for b ≥ 7, from (3.7a),

3 =
σ∗∗(n)

n
≥ 27

16
.
9760

6561
.
6

5
= 3.012345679 > 3,

a contradiction.
Hence b ≤ 6. Since already b ≥ 6, we have b = 6. We now show that b = 6 is not admissible

when c = 1. The relevant equations are (3.7a) and (3.7b).
We have σ∗∗(36) = 1066 = 2.13.41. Taking b = 6 in (3.7b), we get

22.33.5.w = 13.41.σ∗∗(w). (3.7c)

From (3.7c) we see that w is divisible by 13 and 41. Hence w = 13d.41e. From (3.7a), we have

n = 24.36.5.13d.41e, (3.8a)

and
23.33.5.13d−1.41e−1 = σ∗∗(13d).σ∗∗(41e). (3.8b)

Also, by Lemma 2.1, for d ≥ 3, σ∗∗(13d)
13d

≥ 30772
28561

. Hence for d ≥ 3, from (3.8a), we have

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
6

5
.
30772

28561
= 3.190340363 > 3,

a contradiction.
Hence d = 1 or d = 2.

Taking d = 1 in (3.8b), we see that 7 divides its left-hand side which is not true. Taking d = 2

in (3.8b), since σ∗∗(132) = 170, it follows that 17 divides the left-hand side of (3.8b). This is
false. Therefore, b = 6 is not admissible.

This completes the case c = 1. So c = 1 is not possible.

8



Let c = 2. Since σ∗∗(52) = 26 = 2.13, taking c = 2 in (3.6b), we infer that 13|w. Writing
w = 13d.w′, from (3.6a) and (3.6b), we obtain

n = 24.3b.52.13d.w′, (3.9a)

and
23.3b−2.52.13d−1.w′ = σ∗∗(3b).σ∗∗(13d).σ∗∗(w′), (3.9b)

where w′ cannot have more than one odd prime factor.
We recall that we are dealing with the case b = 2k, where k is odd and k ≥ 3.

Consider the factor 3k+1 + 1 of σ∗∗(3b). Since k + 1 is even, 2‖3k+1 + 1 and 3k+1 + 1 is not
divisible by 7 and 19.

For any positive integer t, 3t+1 is not divisible by 11, 13 and 23. This is applicable to 3k+1+1

also.
Suppose 17|3k+1 + 1. This is if and only if k + 1 = 8u. Hence 38 + 1|3k+1 + 1. Also,

38 + 1 = 2.7.193. It follows that 3k+1 + 1 a factor of σ∗∗(3b) is divisible by 17 and 193. From
(3.9b) it follows that w′ is divisible by 17 and 193. However, w′ cannot have more than one odd
prime factor. Thus 17 - 3k+1 + 1.

It follows from the above discussion that 3k+1+1
2

is odd, > 1 and not divisible by any prime in
[3, 23] if 5 - 3k+1 + 1. If q|3k+1+1

2
, then q ≥ 29. From (3.9b), q|w′ and so w′ = qe; we now prove

that this holds good when 5|3k+1 + 1 also.
Suppose 5|3k+1 + 1. We prove that 3k+1+1

2
is not divisible by 5 alone. If this is not so, then

we must have 3k+1+1
2

= 5α. If α ≥ 2, then 52|3k+1 + 1; this is if and only if k + 1 = 10u. Hence
310 + 1|3k+1 + 1. Also, 310 + 1 = 2.52.1181. Thus 1181|3k+1+1

2
= 5α. This is impossible. Hence

α = 1 and so k = 1. But k ≥ 3. Hence 3k+1+1
2

must be divisible by an odd prime q 6= 5 so that
q ≥ 29 as before. Also, q|w′ and w′ = qe.

From (3.9a), n = 24.3b.52.13d.qe, so that

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
26

25
.
13

12
.
29

28
= 2.953727679 < 3,

a contradiction.
Hence c = 2 is not admissible.
Let c = 3. We have σ∗∗(53) = 156 = 22.3.13. Taking c = 3 in (3.6b), we get

22.3b−3.53.w = 13.σ∗∗(3b).σ∗∗(w), (3.9c)

and w cannot have more than one odd prime factor. From the above equation (3.9c), 13|w and
hence w = 13d. From (3.6a), we have n = 24.3b.53.13d and so

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
156

125
= 3.079555556 > 3,

a contradiction. In the above we used that for b ≥ 5, σ
∗∗(3b)
3b
≥ 1066

729
. Hence c = 3 is not possible.

Let c = 4. We have σ∗∗(54) = 756 = 22.33.7. Taking c = 4 in (3.6b), we obtain

22.3b−5.54.w = 7.σ∗∗(3b).σ∗∗(w). (3.9d)

9



It follows from (3.9d) that 7|w and w = 7d. Hence from (3.6a) and (3.9d), we get

n = 24.3b.54.7d, (b ≥ 6) (3.10a)

and
22.3b−5.54.7d−1 = σ∗∗(3b).σ∗∗(7d). (3.10b)

By Lemma 2.1, for d ≥ 3, σ∗∗(7d)
7d
≥ 2752

2401
. We can use σ∗∗(3b)

3b
≥ 1066

729
, since b ≥ 5. Hence for

d ≥ 3, from (3.10a), we have

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
756

625
.
2752

2401
= 3.42114519 > 3,

a contradiction.
Hence d = 1 or d = 2.

Let d = 1. Since σ∗∗(7) = 8, taking d = 1 in (3.10b), we find that 24 divides the right-hand
side of (3.10b) while its left-hand side is divisible unitarily by 22.

Let d = 2. We have σ∗∗(72) = 50 = 2.52. Taking d = 2 in (3.10b), after simplification,
2.3b−5.52.7 = σ∗∗(3b) and from this it follows that 3|σ∗∗(3b) (since b ≥ 6) which is false.

Hence 5 - n. The proof of (b) of Lemma 3.2 is complete.
This completes the proof of Lemma 3.2.

Lemma 3.3. Let n = 24.3b.v be given as in (3.1a) with b = 2k, where k is odd and k ≥ 3.
(I) Suppose that 7|n so that n = 24.3b.7c.w, (b ≥ 6) and (w, 2.3.7) = 1. Then we have the
following:

(a) If c is odd or 4|c, then n is not a bi-unitary triperfect number.
(b) If c = 2`, where ` is odd and n is a bi-unitary triperfect number, then n is divisible by two

distinct primes p′ and q′ : (i) p′|7`−1
6
, p′ > 131 and (ii) q′|7`+1+1

2
, q′ > 131.

(II) If n is a bi-unitary triperfect number then 7 - n.

Proof. Proof of (I). Let n be as given in (3.1a) and assume that n is a bi-unitary triperfect number.
Since 5 - n by Lemma 3.2 and 7|n, v = 7c.w, where (w, 2.3.5.7) = 1 Hence from (3.1a) and
(3.1b), we get

n = 24.3b.7c.w (b ≥ 6) (3.11a)

and
24.3b−2.7c.w = σ∗∗(3b).σ∗∗(7c)σ∗∗(w), (3.11b)

where
w cannot have more than two odd prime factors. (3.11c)

We consider σ∗∗(7c) and obtain a contradiction.
Proof of (a). If c is odd or 4|c, then 8|σ∗∗(7c). It follows from (3.1b) that its both sides should be
unitarily divisible by 24. Hence w = 1 and so from (3.11a), n = 24.3b.7c. Hence

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
7

6
= 2.953125 < 3,

a contradiction. Hence n cannot be a bi-unitary triperfect number.
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Proof of (b). Let c = 2`, where ` is odd. We have

σ∗∗(7c) =

(
7` − 1

6

)
.(7`+1 + 1).

If ` = 1, then c = 2. Since σ∗∗(72) = 50, taking c = 2 in (3.11b), we find that 5|w. But w is
prime to 5. Hence we may assume that ` ≥ 3.

(i) We now consider 7` − 1, given that ` is odd and ≥ 3.

(A) First of all, 2‖7`− 1 since ` is odd; also, 3|7`− 1. We may note that 27|7`− 1 if and only
if 9|`. Assume that 27||7` − 1. Hence 79 − 1|7` − 1. Also, 79 − 1 = 2.33.19.37.1063. Hence 7`−1

6

is divisible by 19, 37 and 1063. Thus σ∗∗(7c) is divisible by these three primes which divide w.
This contradicts (3.11c). Thus 27 - 7` − 1. We shall examine the divisibility by 9 later.

If the interval [3, 2520] is replaced by [3, 131] in Lemma 2.4 (a) of Part I (see [2]), it reduces
to the following:

(B) If p ∈ [3, 131] − {3, 19, 37}, ordp7 is odd and p|7` − 1, then we can find an odd prime
p′|7`−1

6
and p′ > 131.

If 37|7`−1, then 9|`. Hence 79−1|7`−1. Also, 79−1 = 2.33.19.37.1063. If p′ = 1063, then
p′|7`−1

6
and p′ > 131. Hence the statement in (B) can be reduced to the following:

(C) If p ∈ [3, 131]−{3, 19}, ordp7 is odd and p|7`−1, then we can find an odd prime p′|7`−1
6

and p′ > 131.

Let
S ′7 = {p|7` − 1 : ordp7 is odd and p ∈ [3, 131]− {3, 19}}.

If S ′7 is non-empty, then (i) of Lemma 3.3 (a) is true. We may assume that S ′7 is an empty set.
This means that p - 7` − 1 whenever p ∈ [3, 131] − {3, 19} and ordp7 is odd; trivially 7` − 1 is
not divisible by 7. Thus:

(D) 7`−1
6

is not divisible by any prime in [3, 131] except possibly p = 3 or p = 19; (we may
recall that p - 7`−1

6
if ordp7 is even).

We note that 19|7` − 1⇐⇒ 3|`⇐⇒ 9|7` − 1.

Suppose that 19 - 7` − 1. Then 9 - 7` − 1. Hence from the discussion in (A), 3‖7` − 1. Thus
7`−1
6

is odd, > 1 and not divisible by any prime in [3, 131]. Hence every prime factor of 7`−1
6

is > 131 and divides w. In particular we can find a prime p′|7`−1
6
, p′|w and p′ > 131.

Suppose that 19|7` − 1. Hence 9|7` − 1 and since 27 - 7` − 1, we have 9‖7` − 1. Hence
7`−1
18

> 1, odd and not divisible by 3. We now show that it is possible to find a prime p′|7`−1
18

and
p′ 6= 19. Suppose that 7`−1

18
= 19α, α ≥ 1. If α ≥ 2, then 192|7` − 1. But this is if and only if

57|`; hence 757 − 1|7` − 1. From the factors of 757 − 1 given in Appendix F of Part I (see [2]),
419|757 − 1 and so 419|7`−1

18
= 19α, which is impossible. Hence α = 1 so that 7`−1

18
= 19 or

` = 3. We show that this is not possible.
Let ` = 3 and so c = 6. We have σ∗∗(76) =

(
73−1
6

)
.(74 + 1) = 2.3.19.1201.

Taking c = 6 in (3.11b), after simplification we get

23.3b−3.76.w = 19.1201.σ∗∗(3b).σ∗∗(w). (3.12)
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From (3.12), it follows that w is divisible by 19 and 1201 and so w = 19d.(1201)e. Substituting
this into (3.11a) and (3.12), we get

n = 24.3b.76.19d.(1201)e, (3.12a)

and
23.3b−3.76.19d−1.(1201)e−1 = σ∗∗(3b).σ∗∗(19d).σ∗∗((1201)e). (3.12b)

Since b ≥ 5, σ∗∗(3b)
3b

≥ 1066
729

. Also, σ∗∗(76)
76

= 136914
117649

and for d ≥ 3, σ∗∗(19d)
19d

≥ 137200
130321

.

Therefore, for d ≥ 3, from (3.12a), we have

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
136914

117649
.
137200

130321
= 3.023241107 > 3,

a contradiction.
Hence d = 1 or d = 2.

Taking d = 1 in (3.12b), since σ∗∗(19) = 20, we find that 5 divides its right-hand side while
it not so with respect to its left-hand side.

We have σ∗∗(192) = 362 = 2.181. Taking d = 2 in (3.12b), we see that 181 divides its
left-hand side which is false.

Thus c = 6 (or ` = 3) is not admissible. It now follows that 7`−1
18

is not divisible by 19 alone.
Hence we can find a prime p′|7`−1

18
and p′ 6= 19. Thus 7`−1

18
is divisible by a prime p′ /∈ [3, 131].

Hence p′ > 131. Since p′|7`−1
18
|7`−1

6
|σ∗∗(7c), it follows from (3.11b) that p′|w and p′ > 131.

This proves (i) in part (b) of Lemma 3.3.

(ii) We now prove that 7`+1+1
2

is divisible by an odd prime q′|w with q′ > 131, when ` is odd
and ≥ 3.

Replacing the interval [3, 2520] by [3, 131] in Lemma 2.4 (b) in Part I (see [2]), it reduces to
the following:

(E) If q ∈ [3, 131]− {5, 13}, s = 1
2
ordq7 is even and q|7`+1 + 1, then we can find a prime q′

such that q′|7`+1+1
2

.

Let
T ′7 = {q|7`+1 + 1 : q ∈ [3, 131]− {5, 13}, s = 1

2
ordq7 is even}.

If T ′7 is non-empty, then (ii) of Lemma 3.3 holds good. We may assume that T ′7 is empty. Since s
is not even implies that q - 7`+1 + 1, it follows that (taking in to consideration that 7 - 7`+1 + 1

trivially):
(F) 7`+1 + 1 is not divisible by any prime q in [3, 131] except possibly q = 5 or q = 13.

It only remains to discuss divisibility of 7`+1 + 1 by 5 and 13.
We may note that 13|7`+1 +1⇐⇒ `+1 = 6u⇐⇒ 181|7`+1 +1. Hence 13|7`+1 +1 implies

that 181 also divides 7`+1 + 1. Part (b) of Lemma 3.3 which is proved already says that 7`−1
6

is
divisible by an odd prime p′ > 131 which divides w; since 13 and 181 divide w and so totally
three primes divide w; this violates (3.11c). Hence 13 - 7`+1 + 1.

If 5 - 7`+1 + 1, from (F), every prime factor of 7`+1+1
2

exceeds 131 and is a divisor of w.
Suppose that 5|7`+1 + 1. Hence ` + 1 = 2u so that 72 + 1 = 2.52|7`+1 + 1. Thus

5|7`+1 + 1 =⇒ 52|7`+1 + 1. We prove that 7`+1+1
2

must be divisible by an odd prime q 6= 5.
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On the other hand, let 7`+1+1
2

= 5α, where α ≥ 2. If α ≥ 3, then 53|7`+1 + 1; this is if and only if
`+1 = 10u.Hence 710+1|7`+1+1.Also, 710+1 = 2.53.281.4021. In particular, 281|7`+1+1

2
= 5α

and this is impossible. Hence α = 2 so that 7`+1+1
2

= 52 or ` = 1. But ` ≥ 3. This contradiction
shows that we can find an odd prime q′|7`+1+1

2
and q′ 6= 5. It follows that q′ /∈ [3, 131] and hence

q′ > 131. Also, from (3.11b), q′|w. Thus (ii) of Lemma 3.3 follows.
This proves (b) of Lemma 3.3 completely.

Proof of (II). Suppose that 7|n and n is a bi-unitary triperfect number. Then by I(b) of
Lemma 3.3, w is divisible by two primes p and q, where p ≥ 137 and q ≥ 139. This implies that
n = 24.3b.7c.pd.qe, and hence we have

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
7

6
.
137

136
.
139

138
= 2.99639596 < 3,

a contradiction. Hence 7 - n.
This completes the proof of Lemma 3.3.

Lemma 3.4. Let n = 24.3b.v, where (v, 2.3) = 1. If b = 6 and n is a bi-unitary triperfect number,
then 11 - n.

Proof. Let b = 6 and n be a bi-unitary triperfect number. Hence the equation (3.1b) holds good.
We have σ∗∗(36) = 13.82 = 2.13.41. When b = 6, it follows from (3.1b) that 13 and 41 divide v.

Suppose that 11|n and so 11|v. Hence v is divisible by 11, 13 and 41. We can assume that
v = 11c.13d.41e. Substituting this into (3.1a) and (3.1b), we get

n = 24.36.11c.13d.41e, (3.13a)

and
23.34.11c.13d−1.41e−1 = σ∗∗(11c).σ∗∗(13d).σ∗∗(41e). (3.13b)

From Lemma 2.1,

σ∗∗(11c)

11c
≥ 1

118

(
119 − 1

10
− 114

)
=

235780128

214358881
, (c ≥ 7),

σ∗∗(13d)

13d
≥ 1

136

(
137 − 1

12
− 133

)
=

5226846

4826809
, (d ≥ 5),

σ∗∗(41e)

41e
≥ 1

414

(
415 − 1

40
− 412

)
=

2894724

2825761
, (e ≥ 3).

Hence from (3.13a),

3 =
σ∗∗(n)

n
≥ 27

16
.
1066

729
.
235780128

214358881
.
5226846

4826809
.
2894724

2825761
= 3.01085858 > 3,

a contradiction.
Hence c ≥ 7, d ≥ 5 and e ≥ 3 cannot hold simultaneously.
We have

σ∗∗(11) = 12 = 22.3; σ∗∗(112) = 2.61; σ∗∗(113) = 23.3.61;
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and
σ∗∗(114) = 24.33.37;σ∗∗(115) = 22.32.7.19.37;σ∗∗(116) = 2.7.19.7321.

Hence when c = 1, 3, 4, and 5, 22|σ∗∗(11c). Taking c = 1, 3, 4, 5 successively in (3.13b), we
see that 24 divides its right-hand side while 23 divides its left-hand side unitarily.

When c = 2, 61|σ∗∗(11c). Hence from (3.13b) (c = 2), 61 divides right-hand side but it does
not divide its left-hand side.

When c = 6, 7|σ∗∗(11c). Again from (3.13b) (c = 2), it follows that 7 is a factor of its
right-hand side while it is not so with respect its left-hand side.

Hence the values of c = 1, 2, 3, 4, 5, 6 are not admissible.
We have

σ∗∗(13) = 14 = 2.7; σ∗∗(132) = 170 = 2.5.17;σ∗∗(133) = 22.5.7.17; σ∗∗(134) = 22.72.157.

From (3.13b), it is clear that its left-hand side is neither divisible by 7 or 17. However,
7|σ∗∗(13d) when d = 1, 3, 4 and 17|σ∗∗(13d) when d = 2. Hence the values of d = 1, 2, 3, 4 are
not admissible.

Since 7|σ∗∗(41) = 42 and 29|σ∗∗(412) = 2.292, taking e = 1 and e = 2 successively in
(3.13b), we see that 7 and 29 have to divide its left-hand side. This is false. Hence e = 1 or e = 2

cannot occur.
Thus we arrived at a contradiction in all cases by assuming that 11|n. Hence 11 - n.
This proves Lemma 3.4.

Lemma 3.5. Let n = 24.3b.v, where b = 2k, k ≥ 3 and odd; also, (v, 2.3) = 1. If n is a
bi-unitary triperfect number, then we have

(a) 3k−1
2

is divisible by a prime p > 53 and p|v,
(b) 3k+1 + 1 is divisible by a prime q > 53; also, q|v.

Proof. We assume that n is a bi-unitary triperfect number. Hence (3.1b) holds. Also,

σ∗∗(3b) =

(
3k − 1

2

)
.(3k+1 + 1).

Remark 3.1. By Lemmas 3.2 and 3.3, n and hence v is not divisible by 5 or 7. We can assume
that any prime factor of v is at least 11.

Proof of (a).
(I) Since k is odd, 3k − 1 is divisible by none of the primes 5, 7, 17, 19, 29, 31, 37, 41, 43, 53;

trivially not divisible by 3. The remaining odd primes up to 53 are 11, 13, 23 and 47.
(II) Suppose 23|3k − 1. This is if and only if 11|k. Hence 311 − 1|3k − 1. Also,

311 − 1 = 2.23.3851. It follows that 23 and 3851 divide 3k−1
2
|σ∗∗(3b); from (3.1b), these two

primes divide v. By Remark 3.3, we may assume that v is divisible by a prime y ≥ 11. Hence
n = 24.3b.23c.(3851)d.yd and so

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
23

22
.
3851

3850
.
11

10
= 2.911693588 < 3,
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a contradiction. Hence 23 - 3k − 1.

(III) Suppose 47|3k − 1. This is if and only if 23|k. Hence 323 − 1|3k − 1. Also,
323 − 1 = 2.47.1001523179 = 2.p1.p2, say. We use p2 ≥ 59. The primes p1 and p2 divide
3k−1
2
|σ∗∗(3b); from (3.1b), these two primes divide v. If y denotes a possible third prime factor of

v, then we have y ≥ 11. We have n = 24.3b.pc1.p
d
2.y

e, and hence

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
47

46
.
59

10
.
11

10
= 2.893954976 < 3,

a contradiction. Hence 47 - 3k − 1.

(IV) If 3k−1
2

is neither divisible by 11 nor by 13, then 3k−1
2

> 1, odd and not divisible by any
prime in [3, 53]. Hence each prime factor of is> 53 and is a factor of v. This proves (a) of Lemma
3.5 in this case.

(V) Suppose that 11|3k−1
2

and 13 - 3k−1
2
. We may note that 11|3k − 1 if and only if 5|k. Hence

35 − 1|3k − 1. Also, 35 − 1 = 2.112. Thus 11|3k − 1 implies that 112|3k − 1. We claim that 3k−1
2

is divisible by a prime p 6= 11. If this is not the case, then 3k−1
2

= 11α, (α ≥ 2). If α ≥ 3, then
113|3k−1. This is if and only if 55|k; in particular 11|k. Hence 23|311−1|3k−1 (see (II) above).

Thus 23|3k−1
2

= 11α, which is impossible. Hence 3k−1
2

= 112 or 3k = 243 or k = 5. We show
that k = 5 is not possible.

If k = 5, then b = 10 and σ∗∗(310) = 311−1
2

= 2.23.3851
2

= 23.3851. From (3.1b) it follows that
23 and 3851 are factors of v. If y denotes the possible third prime factor of v so that y ≥ 11, we
have n = 24.3b.23c.(3851)d.ye and hence

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
23

22
.
3851

3850
.
11

10
= 2.911693588 < 3,

a contradiction. Hence b = 10 or k = 5 is not possible.
It follows that 3k−1

2
is divisible by a prime p 6= 11; since 13 - 3k−1

2
, p 6= 13 also. Hence

p /∈ [3, 53] so that p > 53 and p|v. This proves (a) of Lemma 3.5 in this case.
(VI) Suppose 11 - 3k−1

2
and 13|3k−1

2
. If 13 alone divides 3k−1

2
then 3k−1

2
= 13β, where β ≥ 1.

If β ≥ 2, then 132|3k−1; this is if and only if 39|k. Also, 339−1 = 2.132.313.6553.7333.797161.

Hence 313|339−1
2
|3k−1

2
= 13β. This is not possible. Hence 3k−1

2
= 13 or k = 3, so that b = 6. We

show that b = 6 is not possible.
We have σ∗∗(36) = 13.82 = 2.13.41 (= 1066). Taking b = 6 in (3.1b), we see that v is

divisible by 13 and 41. By Lemma 3.4, 11 - n and so 11 - v. If y denotes the possible third prime
factor of v, since it is not divisible by 5 or 7 or 11, then y ≥ 17. Hence n = 24.36.13c.41d.y and
so

3 =
σ∗∗(n)

n
<

27

16
.
1066

729
.
13

12
.
41

40
.
17

16
= 2.911309438 < 3,

a contradiction. Hence 3k−1
2

must be divisible by a prime p 6= 13. It follows that p /∈ [3, 53] so
that p|v. This proves (a) of Lemma 3.5 in this case.

(VII) Suppose 3k−1
2

is divisible by both 11 and 13. We show that 3k−1
2

has a prime factor
p 6= 11 and 13. On the contrary, assume that each prime factor of 3k−1

2
is either 11 or 13.

This means that 3k−1
2

= 11α.13β , where α ≥ 1 and β ≥ 1. We have 11|3k − 1 ⇐⇒ 5|k and
13|3k−1⇐⇒ 3|k. Since both 11 and 13 divide 3k−1, it follows that 15|k. Hence 315−1|3k−1.
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Also, 315 − 1 = 2.112.13.4561. This implies that 4561|3k−1
2

= 11α.13β which is impossible.
Hence we can find an odd prime p|3k−1

2
and p /∈ {11, 13}. We have p > 53 and from (3.16), p|v.

The proof of (a) of Lemma 3.5 is complete.
Proof of (b). We now prove that 3k+1 + 1 has an odd prime factor q > 53, where k ≥ 3 and odd.

First of all, 2‖3k+1 + 1.

(I) Since k+1 is even, 3k+1+1 is not divisible by 7, 19, 31 and 43; not divisible by 3 trivially.
(II) For any positive integer t, 3t+1 is not divisible by 11, 13, 23 and 47; in particular 3k+1+1

is not divisible by these primes.
(III) The remaining primes from 3 to 53 are 5, 17, 29 and 53. It remains to check the divisibility

of 3k+1 + 1 by these four primes.
We shall discuss the divisibility of 5 at the end.
(IV) Suppose 17|3k+1 + 1. This is equivalent to k + 1 = 8u. Hence 38 + 1|3k+1 + 1. Also,

38 + 1 = 2.17.193. Hence 17 and 193 are factors of 3k+1 + 1|σ∗∗(3b). From (3.1b), we have that
17 and 193 divide v. In (a) of the present Lemma 3.5, we already proved that 3k−1

2
is divisible by

an odd prime p > 53. Thus v is divisible by 17, 193 and p. By (3.1c),v = pc.17d.193e and so by
(3.1a), n = 24.3b.pc.17d.193e. Hence we have

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
59

58
.
17

16
.
193

192
= 2.750072085 < 3,

a contradiction.
Hence 17 - 3k+1 + 1.

(V) Suppose 29|3k+1 + 1. This is equivalent to k + 1 = 14u. Hence 314 + 1|3k+1 + 1. Also,
314 +1 = 2.5.29.16493. As before, it follows that v is divisible by p, 29 and 16493, where p|3k−1

2

and p > 53. Hence n = 24.3b.pc.29d.16493e and so

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
59

58
.
29

28
.
16493

16492
= 2.667014384 < 3,

a contradiction.
Hence 29 - 3k+1 + 1.

(VI) Assume that 53|3k+1 + 1. This is equivalent to k + 1 = 26u. Hence 326 + 1|3k+1 + 1.

Also, 326 + 1 = 2.5.53.4795973261 = 2.5.p1.p2, say. Then p, p1 and p2 divide v, where p|3k−1
2

and p > 53. Hence n = 24.3b.pc.pd1.p
e
2. We take p2 > 61. We have

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
59

58
.
53

52
.
61

60
= 2.668149557 < 3,

a contradiction.
Hence 53 - 3k+1 + 1.

(VII) If 5 - 3k+1 + 1, then it follows from (I)–(VI) that 3k+1+1
2

is not divisible by any prime in
[3, 53]. Hence each prime factor of 3k+1+1

2
is > 53. This is much more than what we stated in (b).

(VII) Suppose 5|3k+1 + 1. We show that 3k+1+1
2

is divisible by a prime q 6= 5. If this is not
true, then we must have 3k+1+1

2
= 5α, where α ≥ 1. Let α ≥ 2. Then 52|3k+1 + 1. This is if and

only if k+1 = 10u. Hence 310+1|3k+1+1. Also, 310+1 = 2.52.1181. Thus, 1181|3k+1+1
2

= 5α

and this is impossible. Hence α = 1 and 3k+1+1
2

= 5 so that k = 1. But k ≥ 3. It follows that
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3k+1+1
2

must be divisible by an odd prime q 6= 5. From (I)–(VI), we conclude that q /∈ [3, 53].

Hence q > 53 and q|v by (3.1b) since q is a factor of 3k+1+1
2
|σ∗∗(3b).

This completes the proof of (b) of Lemma 3.5, and also the whole Lemma 3.5.

Lemma 3.6. Let n = 24.3b.v, where b = 2k, k ≥ 3 and odd; also, (v, 2.3) = 1. Then n cannot
be a bi-unitary triperfect number.

Proof. Assume that n is a bi-unitary triperfect number. We obtain a contradiction. By our
assumption n satisfies (3.1b). Hence v cannot have more than three odd prime factors. By
Lemma 3.5, two odd primes p and q divide v, where p|3k−1

6
and q|3k+1 + 1; also, p and q

exceed 53. We may assume that p ≥ 59 and q ≥ 61. By Lemmas 3.2 and 3.3, v is not
divisible by 5 and 7. If y denotes the possible third prime factor of v, then we can assume
that y ≥ 11. It follows that n = 24.3b.pc.qd.ye and we have

3 =
σ∗∗(n)

n
<

27

16
.
3

2
.
59

58
.
61

60
.
11

10
= 2.879587823 < 3,

a contradiction.
This proves Lemma 3.6.

Completion of proof of Theorem 3.1. Follows from Lemmas 3.1 and 3.6.

4 Bi-unitary triperfect numbers of the form n = 25u

In this section, we find all bi-unitary triperfect numbers n with 25‖n.

Theorem 4.1. The only bi-unitary triperfect numbers of the form 25u (with u odd) are

672 = 25.3.7; 10080 = 25.32.5.7; 1528800 = 25.3.52.13; and 22932000 = 25.32.53.72.13.

Proof. Let n = 25u be a bi-unitary triperfect number, where u is odd. Since σ∗∗(n) = 3n and
σ∗∗(25) = 26 − 1 = 63 = 32.7, we obtain after simplification,

25.u = 3.7.σ∗∗(u). (4.1)

From (4.1) it is clear that 3 and 7 are factors of u so that u = 3b.7c.v, where (v, 2.3.7) = 1; using
this form of u we have

n = 25.3b.7c.v; (4.1a)

from (4.1), we obtain
25.3b−1.7c−1.v = σ∗∗(3b).σ∗∗(7c).σ∗∗(v), (4.1b)

where (v, 2.3.7) = 1 and

v has at most three odd prime factors. (4.1c)

The remaining proof of Theorem 4.1 depends on the following:
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Lemma 4.1. Let n be as in (4.1a). If b = 1 and n is a bi-unitary triperfect number then
n = 672 = 25.3.7 or n = 1528800 = 25.3.52.13.

Proof. We assume that n is a bi-unitary triperfect number and hence (4.1b) holds. Let b = 1.

Taking b = 1 in (4.1a) and (4.1b), we get

n = 25.3.7c.v, (4.2a)

and
23.7c−1.v = σ∗∗(7c).σ∗∗(v), (4.2b)

where
v has no more than two odd prime factors. (4.2c)

Suppose c = 1. Taking c = 1 in (4.2a) and (4.2b), we get

n = 25.3.7.v, (4.3a)

and
23.v = 8.σ∗∗(v), (4.3b)

so that v = σ∗∗(v). Hence v = 1 and n = 25.3.7 = 672 is a bi-unitary triperfect number.
Let c = 2. From (4.2b), we get 22.7.v = 52.σ∗∗(v); hence 52|v. Let v = 5d.w, where d ≥ 2

and (w, 2.3.5.7) = 1. Thus we have

n = 25.3.72.5d.w, (d ≥ 2) (4.4a)

and
22.7.5d−2.w = σ∗∗(5d).σ∗∗(w), (4.4b)

where w has at most one odd prime factor.
Suppose d = 2. From (4.4b), we obtain

2.7.w = 13.σ∗∗(w); (4.4c)

hence 13|w. Since w has at most one odd prime factor, we have w = 13e. From (4.4a) and (4.4c),
we get

n = 25.3.72.52.13e, (4.5a)

and
2.7.13e−1 = σ∗∗(13e). (4.5b)

Clearly, (4.5b) is satisfied when e = 1. Hence n = 25.3.72.52.13 = 1528800 is a bi-unitary
triperfect number.

If e ≥ 2, from (4.5b) we find that 13|σ∗∗(13e) which is false. Thus the case c = 2, d = 2 and
e ≥ 2 cannot occur.

Let c = 2 and d ≥ 3. For d ≥ 3, σ
∗∗(5d)
5d
≥ 756

625
. From (4.4a), we have n = 25.3.72.5d.w and

hence for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 63

32
.
4

3
.
50

49
.
756

625
= 3.24 > 3,
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a contradiction.
So we may assume that c ≥ 3; hence σ∗∗(7c)

7c
≥ 2752

2401
. From (4.2a),

3 =
σ∗∗(n)

n
≥ 63

32
.
4

3
.
2752

2401
= 3.008746356 > 3,

a contradiction.
The proof of Lemma 4.1 is complete.

Lemma 4.2. Let n be as in (4.1a) and n be a bi-unitary triperfect number. Let b = 2. Then
n = 25.32.7c.5d.w and w is prime to 2.3.5.7.

(i) If c = 1, then d = 1 and n = 25.32.7.5 = 10080.
(ii) If c = 2 then d ≥ 3; if d = 3 then 13‖n and n = 25.32.72.53.13 = 22932000.

Proof. Since n is assumed to be a bi-unitary triperfect number, the equation (4.1b) holds. Taking
b = 2 in (4.1b), we obtain

24.3.7c−1.v = 5.σ∗∗(7c).σ∗∗(v). (4.5c)

From (4.5c), we have 5|v. Let v = 5d.w. From (4.1a) and (4.5c), we obtain

n = 25.32.7c.5d.w, (4.6a)

and
24.3.7c−1.5d−1.w = σ∗∗(7c).σ∗∗(5d).σ∗∗(w), (4.6b)

where w has no more than two odd prime factors.
Proof of (i). Let c = 1. From (4.6a) and (4.6b), we get

n = 25.32.7.5d.w, (4.7a)

and
2.3.5d−1.w = σ∗∗(5d).σ∗∗(w). (4.7b)

If w > 1, it follows that the right-hand side of (4.7b) is divisible by 22 while 2 is a unitary divisor
of its left-hand side. Hence w = 1 and so (4.7a) and (4.7b) reduce to

n = 25.32.7.5d, (4.7c)

and
2.3.5d−1 = σ∗∗(5d). (4.7d)

If d ≥ 2, from (4.7d), we have 5|σ∗∗(5d) and this is not possible. Hence d = 1, and (4.7d) is
satisfied when d = 1. Hence n = 25.32.7.5 = 10080 is a bi-unitary triperfect number.

This completes the proof of (i).
Proof of (ii). Let c = 2. Taking c = 2 in (4.6a) and (4.6b), we obtain

n = 25.32.72.5d.w, (4.8a)
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and
23.3.7.5d−3.w = σ∗∗(5d).σ∗∗(w), (4.8b)

where w has no more than two odd prime factors and (w, 2.3.5.7) = 1.

From the left-hand side of (4.8b), it is clear that d ≥ 3.

Let d = 3. We have σ∗∗(53) = 22.3.13. Taking d = 3 in (4.8b), we get

2.7.w = 13.σ∗∗(w). (4.8c)

From (4.8c), 13|w and w = 13e. From (4.8a) and (4.8c), we obtain

n = 25.32.72.53.13e, (4.9a)

and
2.7.13e−1 = σ∗∗(13e). (4.9b)

If e ≥ 2, then from (4.9b) it follows that 13|σ∗∗(13e). This is not possible. Hence e = 1. This
value satisfies (4.9b). Hence n = 25.32.72.53.13 = 22932000 is a bi-unitary triperfect number.
This proves (ii).

The proof of Lemma 4.2 is complete.

Lemma 4.3. Let n = 25.3b.7c.5d.w, where (w, 2.3.5.7) = 1. If b = 2, c = 2 and d ≥ 4, then n
cannot be a bi-unitary triperfect number.

Proof. Suppose n is a bi-unitary triperfect number with b = 2, c = 2 and d ≥ 4. The relevant
equations are (4.8a) and (4.8b) with d ≥ 4.

We have σ∗∗(54) = 22.33.7. Hence 33|σ∗∗(54). Taking d = 4 in (4.8b), we find that 33 divides
its left-hand side; but it is divisible unitarily by 3. This contradiction shows that d = 4 is not
admissible. Hence we may assume that d ≥ 5.

We obtain a contradiction by analyzing the factors of σ∗∗(5d) in (4.8b). We distinguish the
following cases:
Case 1. Let d be odd. Hence

σ∗∗(5d) =
5d+1 − 1

4
=

(5t − 1)(5t + 1)

4

(
t =

d+ 1

2

)
.

Since d ≥ 5, we have t ≥ 3.

(a) Let t be even. Hence 8|5t − 1 and consequently, 4|5t−1
2
|σ∗∗(5d). It now follows from

(4.8b), that w can have at most one odd prime factor. We wish to show that 5t−1
2

has an odd prime
factor p ≥ 29; and then from (4.8b), p|w. Hence w = pe. This leads to a contradiction since
n = 25.32.72.5d.pe and therefore

3 =
σ∗∗(n)

n
<

63

32
.
10

9
.
50

49
.
5

4
.
29

28
= 2.889827806 < 3, (4.9d)

a contradiction.
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(I) First we observe that 8‖5t − 1. If 16|5t − 1, then 8|5t−1
2
|σ∗∗(5d) and from (4.8b), we find

that w = 1. Hence (4.8b) reduces to 23.3.7.5d−3 = σ∗∗(5d), and since d ≥ 5, this implies that
5|σ∗∗(5d) which is false. Thus 8‖5t − 1.

(II) Suppose 7|5t − 1. This is if and only if 6|t. Hence 56 − 1|5t − 1. Since 9|56 − 1, we
also have 9|5t−1

2
|σ∗∗(5d). From (4.8b) it follows that 3|w but w is prime to 3. This contradiction

proves that 7 - 5t − 1.

(III) Clearly, 3|5t − 1. It may be noted that 9|5t − 1⇐⇒ 6|t⇐⇒ 7|5t − 1. Since it is proved
in (II) above that 7 - 5t − 1, then 9 - 5t − 1. Thus 3‖5t − 1.

(IV) Suppose 11|5t−1. This is equivalent to 5|t.Hence 55−1|5t−1.Also, 55−1 = 22.11.71.

It follows that 5t−1
2
|σ∗∗(5d) is divisible by 11 and 71. From (4.8b) these primes should divide w.

But in the present case namely t = d+1
2

is even, w cannot have more than one odd prime factor.
Hence 11 - 5t − 1.

(V) Suppose 13|5t − 1. This is if and only if 4|t. Hence 16|54 − 1|5t − 1. In (I) above we
proved that 16 - 5t − 1. Thus 13 - 5t − 1.

(VI) Assume that 19|5t − 1. This is if and only if 9|t. Hence 59 − 1|5t − 1. Also,
59 − 1 = 22.19.31.829 so that 5t−1

2
|σ∗∗(5d) is divisible by three primes 19, 31 and 829 which

divide w by (4.8b). This cannot happen as w has no more than one odd prime factor. Thus
19 - 5t − 1.

(VII) Finally, suppose 23|5t − 1. This is if and only if 22|t. We have 522 − 1|5t − 1 and
522 − 1 = 23.3.23.67.5281.12207031. Hence 5t−1

2
|σ∗∗(5d) is divisible by four odd primes and

these four primes divide w by (4.8b). This cannot happen. Hence 23 - 5t − 1.

Further since 8‖5t − 1, 5t−1
8

is odd and also > 1. From (I)–(VII), it follows that each prime
factor of 5t−1

8
is odd and > 23 or ≥ 29. Certainly 5t−1

8
> 1 is divisible by a prime p ≥ 29. Since

p|5t−1
8
|5t−1

2
|σ∗∗(5d), it follows from (4.8b) that p|w.

As mentioned in the beginning of (a) of Case 1, this would lead to a contradiction indicated
in (4.9d).

(b) Let t be odd (already t ≥ 3).
We show that we can find primes p, q, p 6= q, p|5t−1

4
, q|5t+1

6
, p, q|w and p, q > 23.

(I) Since t is odd, 4‖5t − 1 and 5t − 1 is not divisible by 3, 5, 7, 13, 17 and 23.
(II) Suppose 11|5t−1. This is equivalent to 5|t. Hence 55−1|5t−1. Also, 55−1 = 22.11.71.

Hence 71|5t−1
4
. It is true in this case that 5t−1

4
is divisible by a prime p > 23 (here p = 71). So we

may assume that 11 - 5t − 1.

(III) Suppose 19|5t − 1. This is equivalent to 9|t. Consequently 59 − 1|5t − 1. Also,
59 − 1 = 22.19.31.829. It follows that the primes 19, 31 and 829 divide w by (4.8b). This cannot
happen as w cannot have more than two odd prime factors. Hence 19 - 5t − 1.

From (I)–(III), it follows that 5t−1
4

is odd, > 1 and not divisible by any prime in [3, 23]. Let
p|5t−1

4
. Then p ≥ 29 and p|w by (4.8b).

We now consider the factor 5t + 1, where t is odd.
(IV) Since t is odd, 2‖5t + 1 and 3|5t + 1. Also, since 9 cannot divide the left-hand side of

(4.8b), we have 9 - 5t + 1. Hence 3‖5t + 1.

(V) Suppose 7|5t+1. This is equivalent to t = 3u. Hence 53+1|5t+1. Also, 53+1 = 2.32.7.

Hence 9|5t + 1. From (IV) above this is not so. Hence 7 - 5t + 1.
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(VI) For any positive integer t, 11 - 5t + 1 and 19 - 5t + 1.

(VII) Suppose 13|5t + 1. This is equivalent to t = 2u. Also, since t is odd, 13 - 5t + 1.

(VIII) Suppose 17|5t + 1. This is if and only if t = 8u. So t must be even. Since t is
odd,17 - 5t + 1.

(IX) Suppose 23|5t + 1. This is if and only if t = 11u. Hence 511 + 1|5t + 1. Also,
511 + 1 = 2.3.23.67.5281. Hence σ∗∗(5d) is divisible by three primes 23, 67 and 5281 which
also divide w by (4.8b). This cannot happen. Hence 23 - 5t + 1.

It follows from (IV)–(IX) that 5t+1
6

is odd, > 1 and not divisible by any prime in [3, 23]. Let
q|5t+1

6
|5t + 1|σ∗∗(5d). Then q ≥ 29 and q|w by (4.8b). Since 5t−1

4
and 5t+1

6
are relatively prime

it follows that p 6= q. Without loss of generality, we may assume that p ≥ 29 and q ≥ 31. Also,
w = pe.qf . From (4.8a), we have n = 25.32.72.5d.pe.qf . Hence

3 =
σ∗∗(n)

n
<

63

32
.
10

9
.
50

49
.
5

4
.
29

28
.
31

30
= 2.9861554 < 3,

a contradiction.
We have completed Case 1 (d odd.) Thus n given in Lemma 4.3 cannot be a bi-unitary

triperfect number if d is odd.
Case 2. Let d be even so that d = 2k. We may assume that k ≥ 3 since d ≥ 5. We have

σ∗∗(5d) =

(
5k − 1

4

)
.(5k+1 + 1) (k ≥ 3).

(a) Let k be even. Then 8|5k − 1 and 2|5k+1 + 1. Hence 4|σ∗∗(5d). It follows from (4.8b) that
w cannot have more than one odd prime factor. As in (a) of Case 1, 16 - 5k − 1; hence 8‖5k − 1

and we can find an odd prime p|5k−1
8

and p|w such that p ≥ 29. In a similar manner, we obtain a
contradiction (we simply have to replace k by t and proceed as in (a) of Case 1).

(b) Let k be odd. Here also we follow (b) of Case 1, treating k as t. We have 4‖5k − 1 so that
5k−1
4

is odd. This fraction is > 1 since k ≥ 3. Exactly as in (b) of Case 1, 5k−1
4

is divisible by an
odd prime p|w and p ≥ 29.

We now consider 5k+1 + 1. We wish to show that 5k+1+1
2

is divisible by a prime p > 23.

(I) 2‖5k+1 + 1; since k + 1 is even, 5k+1 + 1 is not divisible by 3, 7 and 23.
(II) Since for any positive integer t, 5t + 1 is not divisible by 11 or 19, the same holds good

for 5k+1 + 1 also.
(III) Suppose 17|5k+1 + 1. This is if and only if k + 1 = 8u. Hence 58 + 1|5k+1 + 1. Also,

58+1 = 2.17.11489. It follows that q = 11489 divides 5k+1+1
2
|σ∗∗(5d). Trivially q > 23 and from

(4.8b), q divides w. This is what we wished to prove. We may assume that 17 - 5k+1 + 1.

(IV) Thus from (I), (II) and (III), 5k+1+1
2

is odd, > 1 and not divisible by any prime in [3, 23]

except 13. If 13 - 5k+1 + 1, then it would follow that 5k+1+1
2

is not divisible by any prime in
[3, 23]. Hence every prime factor of 5k+1+1

2
is ≥ 29 and from (4.8b) all prime factors of 5k+1+1

2

also divide w. That there is an odd prime q|5k+1+1
2

and q|w with q ≥ 29 is true.
(V) Suppose 13|5k+1 + 1. We show that 5k+1+1

2
must be divisible by an odd prime q 6= 13. If

this is not so, then we must have 5k+1+1
2

= 13α, where α ≥ 1. If α ≥ 2, 132|5k+1 + 1. This is if
and only if k + 1 = 26u. Hence 526 + 1|5k+1 + 1. Also, 526 + 1 = 2.132.53.8318165204609. In
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particular, 53|5k+1+1
2

= 13α, which is not possible. Hence α = 1 so that 5k+1+1
2

= 13 or k = 1.

But k ≥ 3. This proves that we can find an odd prime q 6= 13 and q|5k+1+1
2

. From (I)–(III), it is
clear that q ∈ [3, 23] and from (4.18b), q|w. Hence q ≥ 29.

Thus we proved that (i) 5k−1
4

is divisible by an odd prime p|w and p ≥ 29, (ii) 5k+1+1
2

is
divisible by an odd prime q ≥ 29. Since 5k−1

4
and 5k+1+1

2
are relatively prime p 6= q. From

(4.8b), w = pe.qf . Hence form (4.8a), n = 25.32.72.5d.pe.qf . As in (b) of Case 1, we obtain a
contradiction.

This proves Lemma 4.3.

Lemma 4.4. Let n = 25.3b.7c.5d.w, where (w, 2.3.5.7) = 1. If b = 2 and c ≥ 3, then n cannot
be a bi-unitary triperfect number.

Proof. Assume that n given in Lemma 4.4 is a bi-unitary triperfect number. The relevant
equations are (4.6a) and (4.6b).

By Lemma 2.1, we have since c ≥ 3, σ∗∗(7c)
7c
≥ 2752

2401
. Also, for d ≥ 3, σ∗∗(5d)

5d
≥ 756

625
. Since

n = 25.32.7c.5d.w, we have for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 63

32
.
10

9
.
2752

2401
.
756

625
= 3.032816327 > 3,

a contradiction.
Hence d = 1 or d = 2.

If d = 1, we have n = 25.32.7c.5.w and again

3 =
σ∗∗(n)

n
≥ 63

32
.
10

9
.
2752

2401
.
6

5
= 3.008746356 > 3,

a contradiction.
Let d = 2. From (4.6b) (d = 2), we obtain

23.3.7c−1.5.w = 13.σ∗∗(7c).σ∗∗(w). (4.10c)

From (4.10c), we have 13|w. Hence w = 13e.w′, where (w′, 2.3.5.7.13) = 1. Now from (4.6a)
and (4.10c), we get

n = 25.32.7c.52.13e.w′ (c ≥ 3), (4.11a)

and
23.3.7c−1.5.13e−1.w′ = σ∗∗(7c).σ∗∗(13e).σ∗∗(w′), (4.11b)

where
w′ has no more than one odd prime factor. (4.11c)

By examining the factors of σ∗∗(7c), we arrive at a contradiction.
We distinguish the following cases:

Case 1. Let c be odd. Then σ∗∗(7c) = 7c+1−1
6

. Since c + 1 is even, 48 = 72 − 1|7c+1 − 1. Hence
8|σ∗∗(7c). From (4.11b) we find an imbalance in powers of 2 between its two sides.
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Case 2. Let c be even say c = 2k. We have

σ∗∗(7c) =

(
7k − 1

6

)
.(7k+1 + 1).

(a) Let k be even. Then 8|7k−1 and 8|7k+1+1.Hence 32|σ∗∗(7c). This leads to a contradiction
as in Case 1.

(b) Let k be odd. We prove that we can find an odd prime p|7k−1
6
, p|w′ and p ≥ 29. If this is

done, then by (4.11c), w′ = pf and so n = 25.32.7c.52.13e.pf . Hence

3 =
σ∗∗(n)

n
<

63

32
.
10

9
.
7

6
.
26

25
.
13

12
.
29

28
= 2.978038194 < 3,

a contradiction. This would complete the proof of Lemma 4.4.
(I) Since k is odd, 2‖7k − 1 and 7k − 1 is divisible by none of the primes 5, 11, 13, 17 and 23;

trivially not divisible by 7.
(II) 3|7k − 1. If 27|7k − 1, then 9|7k−1

6
|σ∗∗(7c). From (4.11b) it follows that 3|w which is not

true. Hence 27 - 7k − 1.

(III) We may note that 9|7k − 1 ⇐⇒ 3|k ⇐⇒ 19|7k − 1. If 9 - 7k − 1, then 19 - 7k − 1 and
3‖7k − 1. In this case 7k−1

6
is odd and > 1, since k ≥ 3. Also, 7k−1

6
is not divisible by any prime

in [3, 23]. Hence every prime factor of 7k−1
6

is ≥ 29 and also is a factor of w′ by (4.11b). This is
slightly more than what wanted to prove.

(IV) Suppose 9|7k − 1. Hence 9‖7k − 1 and 19|7k − 1. We have since k ≥ 3, 7k−1
18

> 1; also,
it is odd and not divisible by 3. We show that 7k−1

18
must be divisible by an odd prime p 6= 19. If

this is not the case, then we have 7k−1
18

= 19α, where α ≥ 1. If α ≥ 2, then 192|7k − 1; this is if
and only if 57|k. Hence 757 − 1|7k − 1. In Appendix F of Part I (see [2]), factorization of 757 − 1

is given. It follows that 419|757 − 1|7k − 1. Hence 419|7k−1
18

= 19α. This is not possible. Hence
α = 1 and so 7k−1

18
= 19 or k = 3.

We now prove that k = 3, that is, c = 6 is not possible. We have σ∗∗(76) = 2.3.19.1201.

Taking c = 6 in (4.11b), we see that 19 and 1201 divide w′. This contradicts (4.11c). Hence k = 3

is not admissible.
Thus 7k−1

18
is divisible by an odd prime p 6= 19.Also, p 6= 3. From (I) it is clear that p /∈ [3, 23].

Also, from (4.11b), p|w′.
This completes the proof of Lemma 4.4.

Lemma 4.5. Let n = 25.3b.7c.v, where (v, 2.3.7) = 1. If b ≥ 3, then n cannot be a bi-unitary
triperfect number.

Proof. Suppose n in Lemma 4.5 (same as n in (4.1a)) is a bi-unitary triperfect number. The
relevant equations are (4.1a) and (4.1b) with b ≥ 3.

By Lemma 2.1, since b ≥ 3, we have σ∗∗(3b)
3b
≥ 112

81
and for c ≥ 3, σ∗∗(7c)

7c
≥ 2752

2401
. Hence for

c ≥ 3,

3 =
σ∗∗(n)

n
≥ 63

32
.
112

81
.
2752

2401
= 3.120181406 > 3,

a contradiction.
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Therefore, c = 1 or c = 2.

When c = 1, we have n = 25.3b.7.v, and so

3 =
σ∗∗(n)

n
≥ 63

32
.
112

81
.
8

7
= 3.1111 > 3,

a contradiction.
Let c = 2. Taking c = 2 in (4.1b), we get

24.3b−1.7.v = 52.σ∗∗(3b).σ∗∗(v). (4.11d)

From (4.11d), we have 52|v. Let v = 5d.w, where d ≥ 2 and w is prime to 2.3.5.7. From
(4.1a) and (4.11d), we have

n = 25.3b.72.5d.w, (b ≥ 3, d ≥ 2) (4.12a)

and
24.3b−1.7.5d−2.w = σ∗∗(3b).σ∗∗(5d).σ∗∗(w), (4.12b)

where w cannot have more than two odd prime factors.
We have by Lemma 2.1, σ

∗∗(5d)
5d
≥ 756

625
(d ≥ 3). Hence from (4.12a), for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 63

32
.
112

81
.
50

49
.
756

625
= 3.36 > 3,

a contradiction.
Hence d = 2 since d ≥ 2. Taking d = 2 in (4.12b), we get

23.3b−1.7.w = 13.σ∗∗(3b).σ∗∗(w). (4.12c)

From (4.12c), we have 13|w. Let w = 13e.w′. From (4.12a) and (4.12c), we obtain

n = 25.3b.72.52.13e.w′, (b ≥ 3) (4.13a)

and
23.3b−1.7.13e−1.w′ = σ∗∗(3b).σ∗∗(13e).σ∗∗(w′), (4.13b)

where (w′, 2.3.5.7.13) = 1 and w′ cannot have more than one odd prime factor.
By Lemma 2.1, for e ≥ 3, σ∗∗(13e)

13e
≥ 30772

28561
. Hence for e ≥ 3, from (4.13a), we have

3 =
σ∗∗(n)

n
≥ 63

32
.
112

81
.
50

49
.
26

25
.
30772

28561
= 3.112527184 > 3,

a contradiction.
Hence e = 1 or e = 2.

If e = 1, we have n = 25.3b.72.52.13.w′ and so

3 =
σ∗∗(n)

n
≥ 63

32
.
112

81
.
50

49
.
26

25
.
14

13
= 3.111 > 3,

a contradiction.
Let e = 2. From (4.13b) (e = 2), we get

23.3b−1.7.13.w′ = 170.σ∗∗(3b).σ∗∗(w′). (4.13c)

From (4.13c), it follows that 5|w′. But w′ is prime to 5. This is a contradiction.
The proof of Lemma 4.5 is complete.

Completion of proof of Theorem 4.1. Follows from Lemmas 4.1 to 4.5.
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