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Abstract: A bi-periodic sequence is a sequence which satisfies different recurrence relations
depending on whether the n-th term considered is odd or even. In this paper, we investigate the
properties of the generalized bi-periodic Fibonacci sequences. It is a generalization of the bi-
periodic Fibonacci sequences defined by Edson and Yayenie. We derive binomial-sum identities
for the generalized bi-periodic Fibonacci sequences by matrix method. Our identities generalize
binomial-sum identities derived by Edson and Yayenie for the case of bi-periodic Fibonacci
sequences.
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1 Introduction

The generalized bi-periodic Horadam sequence (wy,),>0 := (wy,(wo, wy;a,b,c))y>o is defined
by the following recurrence relations:

aw,_1 + cw,_o, if niseven
wn = 9 TZ Z 2
bw,_1 + cw,_o, ifnisodd

with arbitrary initial conditions wy and w;, and nonzero real numbers a, b and c. The numbers
uy, defined by (uy,)n>0 = (w,(0,1;a,b,c)),>o are called the generalized bi-periodic Fibonacci

199



numbers. The numbers v,, defined by (v,,)n>0 1= (v,(2,b;a, b, ¢)),>0 are called the generalized
bi-periodic Lucas numbers.

The generalized bi-periodic Horadam sequence (wy,),>o is a natural generalization of the
Horadam sequence (hy,),>0 := (wn(wo, w1;a,a,c))n>o [6], the bi-periodic Fibonacci sequence
(Gn)n>0 = (w,(0,1;a,b,1)),>0 [3], the classical Fibonacci numbers F),, the Lucas numbers L,
etc.

For various generalizations of the classical Fibonacci numbers, it is well-known that many
combinatorial identities and summation identities can be derived by the matrix method. Its origin
comes from the Fibonacci ()-matrix (),, which is defined as follows:

Q - FnJrl Fn
" Fn Fn—l .

It has the following interesting property:

Qn = QF o))

and hence one readily gets the Cassini’s identity F, 1 F,,_1 — F> = (—1)" by taking determinants
on both sides of (1). By the Cayley—Hamilton theorem on @, we have Q2 — Q; — I = 0.
We easily derive various interesting binomial-sum identities for the Fibonacci numbers by the
method of binomial expansion. For example, by considering (Q?)" = (Q; + I)", we easily get
the following well-known identity by comparing the top right entries on both sides of the matrix

Py = Xn: (Z) F,.

k=0

equation:

Gould’s paper [4] serves as an excellent reference for the history of the method of Fibonacci
(Q-matrix. The matrix method is further explored by Bicknell and Hoggatt [5], Deveci [2],
Khmovsky [7], Ekin and Tan [9], Tan [10], Waddill [12] to derive identities for the Fibonacci
numbers and its generalizations. Bacon, Cook, and Graves [1] gave a recent account of a
generalization of this method.

In this paper, we derive some binomial-sum identities for the generalized bi-periodic
Fibonacci numbers u,, and the generalized bi-periodic Lucas numbers v,, by the matrix method.

2 Main results
The Binet’s formula for the generalized bi-periodic Fibonacci numbers wu,, is as follows
[13, Theorem 8]:
¢(n+1) n __ Aan
Up = — (O‘ b ) 2)

(ab)[3] \ o =5

The function ((n) is the parity function of n, i.e., ((n) = 0if n is even; and {(n) = 1 if n is odd.

The variables o and /3 are the roots of the polynomial 22 — abz — abc. That is,

ab + vV a?b? + 4abc ab — v a?b? + 4abc
2 ’ B 2 '

o =
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We note the following algebraic properties of « and 3:
a+p=ab, a—p=+Va*b®+4abc, «f = —abc. 3)
Also, the Binet’s formula for the generalized bi-periodic Lucas numbers v, is as follows (see (36)

in Section 3. Appendix):

pe(n)
Uy =

m (™ +8"). 4)

We state some identities for the numbers u,, and v,,.

Lemma 2.1. Let m and n be any non-negative integers. The following identities are true:

b SIEm)
U Up, + UpUp, = 2 (a) Un+m, (5)
¢(n)¢(m)
Un4m + (_C)mun—m - <%> UpUm, (6)
¢(n)¢(m)
Up4+m — (_C)mun—m - <%> U Up, - (7)

Proof. It can be proved by the Binet’s formulas for the numbers u,, (see (2)) and v,, (see (4)). We
will do it only for the case of even n and odd m in (7). The other cases would be left as exercises
to the readers. Let m = 2k + 1 and n be even. Then,

2%k+1
Unt(2k+1) T € Up—(2k+1)

B 1 ot (2k+1) Bn-l—(?k-‘rl) N 2kt an—(k+1) _ 6n—(2k+1)
 (ab)EtH a—p (ab)z k-1 a—f
1
_ i (an+(2k+1) B ()2 (an7(2k+1) B 5n7(2k+1)))
@I =)
1 n n n— n—
_ e (a HERH) gl (o 3)241 (a (2k+1) _ g (2k+1)))
1
_ n+(2k+1 n+(2k+1 n 2k+1 2k+1 on
_(ab)%J“k-(a—ﬁ)(a ( )_6 ( )_(aﬁ —a 6))
1 a2k+1 _ 62k+1 1

(ab)* . a—pf . (ab)2 (0" 4 ") = ugkr1vn.

]

Remark 1. The identity (5) is a generalization of the classical identity F, L, = F5, which
involves both the Fibonacci numbers F,, and the Lucas numbers L,; while the identities (6),

(7) are generalizations of the identities for the numbers F,, and L, first given by Ruggles [8].

Let k be any positive integer. Let Ry, be the following matrix:

v 1)1 Ugk  Uggk
Fare = (—c2k 0) N U (—c%u% 0 ) ' ®)

The last equality is due to the identity (5). We state the following property for the matrix [af.
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Lemma 2.2. Letn > 0. Then, we have

no_ L[ Uent2k Uznk

2 U \ =M Uy, _C2ku(2n—2)k '
Proof. We prove it by induction on n. The base case for n = 1 is clear by (8). For the inductive
step, we do the following computation:

R I [ wenio Ugnk vg 1
2k 42k = 2k 2k 2k
Ugk \ —CUgpk  —C " Up—2)x ] \ —¢™ 0
1 2k
U2n4-2)kV2k — C " U2nk U(2n+2)k
2k 4k 2k
U \ —CU2nk U2k + C U2p—2)k —C U2nk

1 U(2n+4)k U(2n+2)k
- 2k 2k :
Ugk \ —CU@n42)k  —C Uk

The last equality is due to the identity (6) and hence the inductive step is complete. ]

The following identities for the numbers u,, are true due to an application of a theorem in the
paper [11] (see Theorem 3.2 in Section 3. Appendix):

2k

Uok+sU2k+2nk — W2kU2nk+2k+s — C UsUank, 9)
2k

UsUktonk — U2kU2nk+s = C UankUs—2k, (10)
2k

Ugk+sU2nk — U2kU2nk+s = C UsU(2n—2)k- (11)

Let s > 2k. Let (), be the following matrix:

Q L Ust2k Us
s - — .
_CQkus _CQkus_2k

By Lemma 2.2, we do the following matrix computation:

n o 1 U(2n+2)k Uznk Us+2k Us
2k*0s 2k 2k 2k 2k
U2k \ —CUgpk  —CU(2n—2)k —CTUs —CTUs—2k
1 2k 2k
U(2n4-2)kUs4-2k — C U2pkUs U2n+2)kUs — C U2nkUs—2k
2
—C

k 2k 2k 2k
U2k (u2nkus+2k —C usu(Qn—Q)k) —C (u2nkus —C u(?n—Q)kus—Qk)

_ ( U2§k+2k+s U2nk+s ) (12)

k 2k
—C U2nk+s —CT Unk—2k+s-

The last equality is due to the identities (9), (10) and (11).
By the Cayley—Hamilton theorem, the characteristic equation for the matrix Ry (see (8)) is

R%, — vy Roy + AT =0 = (Rop+"I)" = (vgp £ 2¢*) Ry (13)

For the expression (v, + 2¢¥), we have the following identities:
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Lemma 2.3. Let k > 0. Then, we have

2k 2
Ugg, + 2¢7° = vy,

(ab)? + 4abc

2% _
Ugp, — 27 = 5 Uy,

a
Ugk+2 + 2c*M ! = (ab + 4c) ugk—i—l?

a
2k+1 __ 2
Ugpya — 20777 = 3 Va1

Proof. By the Binet’s formula for the numbers v,, shown in (4) and the equations shown in (3),

the identities stated in the lemma can be proved by straightforward algebraic manipulations. As

an example, for the first identity,

o = (abl)% (o™ + 5%)" = ﬁ (0 + 8% + 2(aB))
- (abl)% (%455 + (ab)2k (2(abe)™) = v + 2.

Other identities can be proved in a similar manner.
We state the following matrix identities for the matrix Ro.
Theorem 2.4. Let k, m and n be non-negative integers. We have
2n
Ry (R4k + C%]) = U%ZRZ;WL,
2n+1
R}, (Rye 4+ )™ = 03l RyF™ (R + 1)
m 2k 7\ 21 2 4be " 2n pn+m
R4k (R4k —C ]) = b + 7 u2kR4k: 5

4be

- = (4 s .

m 2n n_ 2n n+m
Rt o (Ragso + C%HI) = (ab+ 4c)"uzp RS,

Rl o (Ragra + 1) = (@b + de)"u RIS (Rapsz + 1)

n
m 2k+1 1\ 2n _ a 2n n+m
Rijio (R4k+2 —C I ) = (g Vakr1 Fii i

m 2k+1 7\ 2nt+1 o a\™ 2n n+m 2k+1
Rikso (R4’f+2 - ¢ ]) = (7) Va1 By (R4k+2 —C —7) .

b

(14)
(15)

(16)

(17)

(18)
(19)
(20)

1)

Proof. All of these matrix identities can be shown to be true by essentially the same method. To

illustrate it, we do it only for the identity (15). By (13), we get

(R4k + 02k1)2 = (U4k + 20%) R4k

)" = (0w + 26)" Ry, (Rag + 1)
)2n+1

— (R4k + AT

—— RZ;C (R4k + C%I

— (Rap + 1) = 2 REF™ (Rag + ) .

The last equality is due to Lemma 2.3.
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‘We state some binomial-sum identities for the numbers u,, and v,, as follows:

Theorem 2.5. For the generalized bi-periodic Fibonacci numbers u, and the generalized

bi-periodic Lucas numbers v, we have the following binomial-sum identities:

2n
2n i "
> (j )C%(% Digi(jmybs = VR Uak(ntm)+s: (22)
j=0
2n+1
2n+1 n+1—7q n
Z ( j )0%(2 i ])U4k(j+m)+s = U§k+lu4k(n+m)+2k+s> (23)
§=0
" on 4bc\"
Z (j )(—C)Qk(2nj)u4k(j+m)+s = (b2 + 7) USR Udk(nm)-+s» (24)
§=0
2n+1 n
o + 1 el 4bc n
Z < ]. )(—C)2k(2 + j)U4k(j+m)+s = (52 + 7) ng+1v4k(j+m)+2k+su (25)
§=0
o~ (27 ekinen ny2n
Z j ¢ U(4k+2)(j+m)+s = (ab + 4c) Uok4-1U(4k+2) (n+m)+s> (26)
j=0
2n+1
27’L—|— 1 41— a ¢(s+1) n, 2n
Z( i >c(2k+1)(2 1 ])u(4k+2)(j+m)+s = (g) (Clb+40) ugkillv(4k+2)(n+m)+2k+l+s7
j=0
(27)
- (20 (2k+1) (2n—5) a\"™ 20
> )=o) U(ak+2) () +s = <5> Uk 41 U(ak+2) (nhm) 55 (28)
§=0

2n+1
2n+1 ] a\ n+¢(s+1) "
E ( i )(—c)(%“)(2 1 J)u(4k+2)(j+m)+s = (6) ngillu(4k+2)(n+m)+2k+1+s-
Jj=0

(29)

Proof. The derivation is straightforward for (22), (24), (26), (28) by first applying binomial
expansions on the identities (14), (16), (18) and (20) respectively; then, by applying the
matrices of the equations to the matrix (), and by (12), we get the desired identities by
comparing the (1, 2)-entries on both sides of the matrix equations.

For the identities (23), (25), (27), (29), we first apply binomial expansions to the identities
(15), (17), (19) and (21), respectively. Then, we need to apply Lemma 2.1 to get the identities.
We will show it for the identity (23). The proofs of the remaining identities will be left as exercises
for the readers.

For identity (23), by a binomial expansion on (15), we get

_— 2n+1 271, + 1 . 2n+1 2n + 1 '
RZ]Lc (R4k + 62k1> ntl RZ;; Z ( ; )C2k(2n+l—j)Rik _ Z ( ; )CQk(2n+1—j)RiZ—m

_2n n+m-+1 2k pn+m
= vy (R + R,

J=0 Jj=0
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We multiply the matrices on both sides by the matrix ), and compare the (1, 2)-entries on
both sides of the matrix equation, we get

2n+1
2n+1 ]
Z ( . )C%@ i ])u4k(j+m)+s = Uk (U4k(n+m+1)+s + C2ku4k(n+m)+s)

=0 J

_2n+1
= Vg, Udk(n+m)+2k+s-

The last equality is due to the identity (6). O]

Remark 2. Ifwe set ¢ = 1 in Theorem 2.5, then we get the corresponding binomial-sum identities
for the bi-periodic Fibonacci sequence (q,)n>0 := (w,(0,1;a,b,1)),>0 and bi-periodic Lucas
sequence (Dn)n>0 = (wn(2,b;a,b,1)),>0 defined by Edson and Yayenie [3]. If we set a = b =
c = 1, then we get the corresponding binomial-sum identities for the Fibonacci numbers F,, and
Lucas numbers L,, originally derived by Bicknell and Hoggatt [5].

3 Appendix

The results stated in Appendix are presented in the paper [11]. Since it is unpublished, we state
and prove some of the results in [11] which are used in this paper.

The matrix A = alb a(l))c has the following property:
ab abc) ny [ 66y chasMy
A" = = (ab)L3! il " 30
(1 0 ) (ab) (a—C(nJrl)un by, 4 (30)

If n is even, then we have

A”( by ) = (ab)* (7”37{“ > A" (wag) = (ab)? (wa"”>. (D)
a "Wy a "Wy CWw1 CWp+1

By combining equations (30) and (31), we get

Wpy1 \ [ Uny1  Chuy Wo cbwnya\ [ Ung1r  Ccbu, cbhw, (32)
a tw, a‘u, cu,_1 alw; )\ cwngy a‘u, cu,_q cwy |

Theorem 3.1. Let n and p be positive integers. Then,

b\ S tSP) p S(m<p+1)
Wpyp = <5> UpWpy1 + € (a) Up—1Wp

Proof. Letn and p be even. Then, by (31) and (32), we get
(ab)™* ( Ut ) — Am < o > — (ab)3 A ( Ut ) (33)
a” Wy a” wy a” wp

= (ab)"" (“_"1“ Cb“”) (f“f“) (34)
a U, ClUp_1 Wy
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By comparing both entries of the matrices on both sides of (33), we get the result as desired.
Similarly, we obtain the following equation by (31) and (32),

chwnipr2 [ Ung1  cbu, cbwy o (35)
Wnips1 | \a My cupor ) \ cwpir |
By comparing entries of the matrices in (35) and taking p+1 = ¢, we get the result as desired. [

By setting p = 0 in Theorem 3.1, we get the relation

b ¢(n)
W, = U, W1 + C (—) U1 W
a

Based on this identity and the Binet’s formula for the generalized bi-periodic Fibonacci sequence
{u,} (see (2)), by setting wy = 2 and w; = b, we get the Binet’s formula for the generalized
bi-periodic Lucas sequence {v,,} as follows:

pe(n)

By Theorem 3.1, we have the following matrix identities for even n and even p:

Un4p+1 Upt1  beuy Up+1
a” Uy 0 1 a”
(C T _ Ups1  beuy, cbuy o (38)
Clpyy 0 1 Cupr1 |

Theorem 3.2. Let n and p be even integers and q be any integer. Then, we have the following
identity for the generalized bi-periodic Horadam sequence:

. n
Un-+pUntg — UnUntprg = (€) " Upllq.

Proof. For the case of even n, even p and odd ¢, we do a computation for

-1
r _ a /U/n+
(@)% (tnsy 0 'un) s
“Un+ptq

By (37) and (38), we get the following equations:

u

(ab)? (un+q a_lun> = (ab)? (un+1 a—lun> (bcuz_1 ?)

. _1 T\7 Uq 0
- <u1 a u0> (A) (bcuq_l 1).

n+p -1 n n+p 1 -1 n
(@)™ [ ¢ ") = (ab)™E® 07} (@ tnty
—Untptq —beug_1 g —Un+p+1
1o\ o =1\ (o
_ a “Up (40)
—bcug—1 u,) \ —abc ab —uy

206

(39)



‘We note that

ug 0 1 0 - ab 1 0o -1 — abel
bcug1 0] \ —bcug—1 u, abc 0) \ —abc ab

By (39) and (40), we get

1

p
n+2 _1 a Upyp . - n 1 0 —1 a_luo
(@)% (g 0 un) (_u> = (u)(~abe)" (e auy) (_abc ab) (_ul

-1
n » Clup—1 —a U 0 et my
= ug(abc)" (ab)? <1 O) <—biup tpir p) <_1) = (ab)" "2 (a M upu,.

By expanding the left side of the equation and cancelling common terms on both sides, we get the
desired result. For the case of even n, even p and even ¢, it can be proved in a similar way. ]

Remark 3. In the paper [11], a generalization of Theorem 3.2 is proved for the generalized
bi-periodic Horadam numbers w,,.
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