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Abstract: A bi-periodic sequence is a sequence which satisfies different recurrence relations
depending on whether the n-th term considered is odd or even. In this paper, we investigate the
properties of the generalized bi-periodic Fibonacci sequences. It is a generalization of the bi-
periodic Fibonacci sequences defined by Edson and Yayenie. We derive binomial-sum identities
for the generalized bi-periodic Fibonacci sequences by matrix method. Our identities generalize
binomial-sum identities derived by Edson and Yayenie for the case of bi-periodic Fibonacci
sequences.
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1 Introduction

The generalized bi-periodic Horadam sequence (wn)n≥0 := (wn(w0, w1; a, b, c))n≥0 is defined
by the following recurrence relations:

wn =

awn−1 + cwn−2, if n is even

bwn−1 + cwn−2, if n is odd
, n ≥ 2

with arbitrary initial conditions w0 and w1, and nonzero real numbers a, b and c. The numbers
un defined by (un)n≥0 := (wn(0, 1; a, b, c))n≥0 are called the generalized bi-periodic Fibonacci
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numbers. The numbers vn defined by (vn)n≥0 := (vn(2, b; a, b, c))n≥0 are called the generalized
bi-periodic Lucas numbers.

The generalized bi-periodic Horadam sequence (wn)n≥0 is a natural generalization of the
Horadam sequence (hn)n≥0 := (wn(w0, w1; a, a, c))n≥0 [6], the bi-periodic Fibonacci sequence
(qn)n≥0 := (wn(0, 1; a, b, 1))n≥0 [3], the classical Fibonacci numbers Fn, the Lucas numbers Ln,
etc.

For various generalizations of the classical Fibonacci numbers, it is well-known that many
combinatorial identities and summation identities can be derived by the matrix method. Its origin
comes from the Fibonacci Q-matrix Qn which is defined as follows:

Qn :=

(
Fn+1 Fn
Fn Fn−1

)
.

It has the following interesting property:

Qn = Qn
1 (1)

and hence one readily gets the Cassini’s identity Fn+1Fn−1−F 2
n = (−1)n by taking determinants

on both sides of (1). By the Cayley–Hamilton theorem on Q1, we have Q2
1 − Q1 − I = 0.

We easily derive various interesting binomial-sum identities for the Fibonacci numbers by the
method of binomial expansion. For example, by considering (Q2

1)
n = (Q1 + I)n, we easily get

the following well-known identity by comparing the top right entries on both sides of the matrix
equation:

F2n =
n∑
k=0

(
n

k

)
Fk.

Gould’s paper [4] serves as an excellent reference for the history of the method of Fibonacci
Q-matrix. The matrix method is further explored by Bicknell and Hoggatt [5], Deveci [2],
Khmovsky [7], Ekin and Tan [9], Tan [10], Waddill [12] to derive identities for the Fibonacci
numbers and its generalizations. Bacon, Cook, and Graves [1] gave a recent account of a
generalization of this method.

In this paper, we derive some binomial-sum identities for the generalized bi-periodic
Fibonacci numbers un and the generalized bi-periodic Lucas numbers vn by the matrix method.

2 Main results

The Binet’s formula for the generalized bi-periodic Fibonacci numbers un is as follows
[13, Theorem 8]:

un =
aζ(n+1)

(ab)b
n
2 c

(
αn − βn

α− β

)
. (2)

The function ζ(n) is the parity function of n, i.e., ζ(n) = 0 if n is even; and ζ(n) = 1 if n is odd.
The variables α and β are the roots of the polynomial x2 − abx− abc. That is,

α =
ab+

√
a2b2 + 4abc

2
, β =

ab−
√
a2b2 + 4abc

2
.
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We note the following algebraic properties of α and β:

α + β = ab, α− β =
√
a2b2 + 4abc, αβ = −abc. (3)

Also, the Binet’s formula for the generalized bi-periodic Lucas numbers vn is as follows (see (36)
in Section 3. Appendix):

vn =
bζ(n)

(ab)b
n+1
2 c

(αn + βn) . (4)

We state some identities for the numbers un and vn.

Lemma 2.1. Let m and n be any non-negative integers. The following identities are true:

umvn + unvm = 2

(
b

a

)ζ(n)ζ(m)

un+m, (5)

un+m + (−c)mun−m =
(a
b

)ζ(n)ζ(m)

unvm, (6)

un+m − (−c)mun−m =
(a
b

)ζ(n)ζ(m)

umvn. (7)

Proof. It can be proved by the Binet’s formulas for the numbers un (see (2)) and vn (see (4)). We
will do it only for the case of even n and odd m in (7). The other cases would be left as exercises
to the readers. Let m = 2k + 1 and n be even. Then,

un+(2k+1) + c2k+1un−(2k+1)

=
1

(ab)
n
2
+k
· α

n+(2k+1) − βn+(2k+1)

α− β
+

c2k+1

(ab)
n
2
−k−1 ·

αn−(2k+1) − βn−(2k+1)

α− β

=
1

(ab)
n
2
+k · (α− β)

(
αn+(2k+1) − βn+(2k+1) + (abc)2k+1

(
αn−(2k+1) − βn−(2k+1)

))
=

1

(ab)
n
2
+k · (α− β)

(
αn+(2k+1) − βn+(2k+1) − (αβ)2k+1

(
αn−(2k+1) − βn−(2k+1)

))
=

1

(ab)
n
2
+k · (α− β)

(
αn+(2k+1) − βn+(2k+1) −

(
αnβ2k+1 − α2k+1βn

))
=

1

(ab)k
· α

2k+1 − β2k+1

α− β
· 1

(ab)
n
2

· (αn + βn) = u2k+1vn.

Remark 1. The identity (5) is a generalization of the classical identity FnLn = F2n which
involves both the Fibonacci numbers Fn and the Lucas numbers Ln; while the identities (6),
(7) are generalizations of the identities for the numbers Fn and Ln first given by Ruggles [8].

Let k be any positive integer. Let R2k be the following matrix:

R2k :=

(
v2k 1

−c2k 0

)
=

1

u2k

(
u4k u2k
−c2ku2k 0

)
. (8)

The last equality is due to the identity (5). We state the following property for the matrix R2k.
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Lemma 2.2. Let n ≥ 0. Then, we have

Rn
2k =

1

u2k

(
u(2n+2)k u2nk
−c2ku2nk −c2ku(2n−2)k

)
.

Proof. We prove it by induction on n. The base case for n = 1 is clear by (8). For the inductive
step, we do the following computation:

Rn
2k ·R2k =

1

u2k

(
u(2n+2)k u2nk
−c2ku2nk −c2ku(2n−2)k

)(
v2k 1

−c2k 0

)

=
1

u2k

(
u(2n+2)kv2k − c2ku2nk u(2n+2)k

−c2ku2nkv2k + c4ku(2n−2)k −c2ku2nk

)

=
1

u2k

(
u(2n+4)k u(2n+2)k

−c2ku(2n+2)k −c2ku2nk

)
.

The last equality is due to the identity (6) and hence the inductive step is complete.

The following identities for the numbers un are true due to an application of a theorem in the
paper [11] (see Theorem 3.2 in Section 3. Appendix):

u2k+su2k+2nk − u2ku2nk+2k+s = c2kusu2nk, (9)

usu2k+2nk − u2ku2nk+s = c2ku2nkus−2k, (10)

u2k+su2nk − u2ku2nk+s = c2kusu(2n−2)k. (11)

Let s ≥ 2k. Let Qs be the following matrix:

Qs :=

(
us+2k us
−c2kus −c2kus−2k

)
.

By Lemma 2.2, we do the following matrix computation:

Rn
2kQs =

1

u2k

(
u(2n+2)k u2nk
−c2ku2nk −c2ku(2n−2)k

)(
us+2k us
−c2kus −c2kus−2k

)

=
1

u2k

(
u(2n+2)kus+2k − c2ku2nkus u(2n+2)kus − c2ku2nkus−2k

−c2k
(
u2nkus+2k − c2kusu(2n−2)k

)
−c2k

(
u2nkus − c2ku(2n−2)kus−2k

))

=

(
u2nk+2k+s u2nk+s
−c2ku2nk+s −c2ku2nk−2k+s.

)
(12)

The last equality is due to the identities (9), (10) and (11).
By the Cayley–Hamilton theorem, the characteristic equation for the matrix R2k (see (8)) is

R2
2k − v2kR2k + c2kI = 0 =⇒

(
R2k ± ckI

)2
=
(
v2k ± 2ck

)
R2k. (13)

For the expression
(
v2k ± 2ck

)
, we have the following identities:

202



Lemma 2.3. Let k ≥ 0. Then, we have

v4k + 2c2k = v22k,

v4k − 2c2k =
(ab)2 + 4abc

a2
u22k,

v4k+2 + 2c2k+1 = (ab+ 4c)u22k+1,

v4k+2 − 2c2k+1 =
a

b
v22k+1.

Proof. By the Binet’s formula for the numbers vn shown in (4) and the equations shown in (3),
the identities stated in the lemma can be proved by straightforward algebraic manipulations. As
an example, for the first identity,

v22k =
1

(ab)2k
(
α2k + β2k

)2
=

1

(ab)2k
(
α4k + β4k + 2(αβ)2k

)
=

1

(ab)2k
(
α4k + β4k

)
+

1

(ab)2k
(
2(abc)2k

)
= v4k + 2c2k.

Other identities can be proved in a similar manner.

We state the following matrix identities for the matrix R2k.

Theorem 2.4. Let k, m and n be non-negative integers. We have

Rm
4k

(
R4k + c2kI

)2n
= v2n2kR

n+m
4k , (14)

Rm
4k

(
R4k + c2kI

)2n+1
= v2n2kR

n+m
4k

(
R4k + c2kI

)
, (15)

Rm
4k

(
R4k − c2kI

)2n
=

(
b2 +

4bc

a

)n
u2n2kR

n+m
4k , (16)

Rm
4k

(
R4k − c2kI

)2n+1
=

(
b2 +

4bc

a

)n
u2n2kR

n+m
4k

(
R4k − c2kI

)
, (17)

Rm
4k+2

(
R4k+2 + c2k+1I

)2n
= (ab+ 4c)nu2n2k+1R

n+m
4k+2, (18)

Rm
4k+2

(
R4k+2 + c2k+1I

)2n+1
= (ab+ 4c)nu2n2k+1R

n+m
4k+2

(
R4k+2 + c2k+1I

)
, (19)

Rm
4k+2

(
R4k+2 − c2k+1I

)2n
=
(a
b

)n
v2n2k+1R

n+m
4k+2, (20)

Rm
4k+2

(
R4k+2 − c2k+1I

)2n+1
=
(a
b

)n
v2n2k+1R

n+m
4k+2

(
R4k+2 − c2k+1I

)
. (21)

Proof. All of these matrix identities can be shown to be true by essentially the same method. To
illustrate it, we do it only for the identity (15). By (13), we get(

R4k + c2kI
)2

=
(
v4k + 2c2k

)
R4k

=⇒
(
R4k + c2kI

)2n+1
=
(
v4k + 2c2k

)n
Rn

4k

(
R4k + c2kI

)
=⇒ Rm

4k

(
R4k + c2kI

)2n+1
=
(
v4k + 2c2k

)n
Rn+m

4k

(
R4k + c2kI

)
=⇒

(
R4k + c2kI

)2n+1
= v2n2kR

n+m
4k

(
R4k + c2kI

)
.

The last equality is due to Lemma 2.3.
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We state some binomial-sum identities for the numbers un and vn as follows:

Theorem 2.5. For the generalized bi-periodic Fibonacci numbers un and the generalized
bi-periodic Lucas numbers vn, we have the following binomial-sum identities:

2n∑
j=0

(
2n

j

)
c2k(2n−j)u4k(j+m)+s = v2n2ku4k(n+m)+s, (22)

2n+1∑
j=0

(
2n+ 1

j

)
c2k(2n+1−j)u4k(j+m)+s = v2n+1

2k u4k(n+m)+2k+s, (23)

2n∑
j=0

(
2n

j

)
(−c)2k(2n−j)u4k(j+m)+s =

(
b2 +

4bc

a

)n
u2n2ku4k(n+m)+s, (24)

2n+1∑
j=0

(
2n+ 1

j

)
(−c)2k(2n+1−j)u4k(j+m)+s =

(
b2 +

4bc

a

)n
u2n+1
2k v4k(j+m)+2k+s, (25)

2n∑
j=0

(
2n

j

)
c(2k+1)(2n−j)u(4k+2)(j+m)+s = (ab+ 4c)nu2n2k+1u(4k+2)(n+m)+s, (26)

2n+1∑
j=0

(
2n+ 1

j

)
c(2k+1)(2n+1−j)u(4k+2)(j+m)+s =

(a
b

)ζ(s+1)

(ab+ 4c)nu2n+1
2k+1v(4k+2)(n+m)+2k+1+s,

(27)
2n∑
j=0

(
2n

j

)
(−c)(2k+1)(2n−j)u(4k+2)(j+m)+s =

(a
b

)n
v2n2k+1u(4k+2)(n+m)+s, (28)

2n+1∑
j=0

(
2n+ 1

j

)
(−c)(2k+1)(2n+1−j)u(4k+2)(j+m)+s =

(a
b

)n+ζ(s+1)

v2n+1
2k+1u(4k+2)(n+m)+2k+1+s.

(29)

Proof. The derivation is straightforward for (22), (24), (26), (28) by first applying binomial
expansions on the identities (14), (16), (18) and (20) respectively; then, by applying the
matrices of the equations to the matrix Qs and by (12), we get the desired identities by
comparing the (1, 2)-entries on both sides of the matrix equations.

For the identities (23), (25), (27), (29), we first apply binomial expansions to the identities
(15), (17), (19) and (21), respectively. Then, we need to apply Lemma 2.1 to get the identities.
We will show it for the identity (23). The proofs of the remaining identities will be left as exercises
for the readers.

For identity (23), by a binomial expansion on (15), we get

Rm
4k

(
R4k + c2kI

)2n+1
= Rm

4k

2n+1∑
j=0

(
2n+ 1

j

)
c2k(2n+1−j)Rj

4k =
2n+1∑
j=0

(
2n+ 1

j

)
c2k(2n+1−j)Rj+m

4k

= v2n2k (R
n+m+1
4k + c2kRn+m

4k ).
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We multiply the matrices on both sides by the matrix Qs and compare the (1, 2)-entries on
both sides of the matrix equation, we get

2n+1∑
j=0

(
2n+ 1

j

)
c2k(2n+1−j)u4k(j+m)+s = v2k

(
u4k(n+m+1)+s + c2ku4k(n+m)+s

)
= v2n+1

2k u4k(n+m)+2k+s.

The last equality is due to the identity (6).

Remark 2. If we set c = 1 in Theorem 2.5, then we get the corresponding binomial-sum identities
for the bi-periodic Fibonacci sequence (qn)n≥0 := (wn(0, 1; a, b, 1))n≥0 and bi-periodic Lucas
sequence (pn)n≥0 := (wn(2, b; a, b, 1))n≥0 defined by Edson and Yayenie [3]. If we set a = b =

c = 1, then we get the corresponding binomial-sum identities for the Fibonacci numbers Fn and
Lucas numbers Ln originally derived by Bicknell and Hoggatt [5].

3 Appendix

The results stated in Appendix are presented in the paper [11]. Since it is unpublished, we state
and prove some of the results in [11] which are used in this paper.

The matrix A =

(
ab abc

1 0

)
has the following property:

An =

(
ab abc

1 0

)n

= (ab)b
n
2
c

(
bζ(n)un+1 cbaζ(n)un
a−ζ(n+1)un cbζ(n)un−1

)
. (30)

If n is even, then we have

An

(
w1

a−1w0

)
= (ab)

n
2

(
wn+1

a−1wn

)
, An

(
cbw2

cw1

)
= (ab)

n
2

(
cbwn+2

cwn+1

)
. (31)

By combining equations (30) and (31), we get(
wn+1

a−1wn

)
=

(
un+1 cbun
a−1un cun−1

)(
w0

a−1w1

)
,

(
cbwn+2

cwn+1

)
=

(
un+1 cbun
a−1un cun−1

)(
cbw2

cw1

)
. (32)

Theorem 3.1. Let n and p be positive integers. Then,

wn+p =

(
b

a

)ζ(n+1)ζ(p)

unwp+1 + c

(
b

a

)ζ(n)ζ(p+1)

un−1wp

Proof. Let n and p be even. Then, by (31) and (32), we get

(ab)
n+p
2

(
wn+p+1

a−1wn+p

)
= An+p

(
w1

a−1w0

)
= (ab)

p
2An

(
wp+1

a−1wp

)
(33)

= (ab)
n+p
2

(
un+1 cbun
a−1un cun−1

)(
wp+1

−1wp

)
(34)

205



By comparing both entries of the matrices on both sides of (33), we get the result as desired.
Similarly, we obtain the following equation by (31) and (32),(

cbwn+p+2

cwn+p+1

)
=

(
un+1 cbun
a−1un cun−1

)(
cbwp+2

cwp+1

)
. (35)

By comparing entries of the matrices in (35) and taking p+1 = q, we get the result as desired.

By setting p = 0 in Theorem 3.1, we get the relation

wn = unw1 + c

(
b

a

)ζ(n)
un−1w0.

Based on this identity and the Binet’s formula for the generalized bi-periodic Fibonacci sequence
{un} (see (2)), by setting w0 = 2 and w1 = b, we get the Binet’s formula for the generalized
bi-periodic Lucas sequence {vn} as follows:

vn =
bζ(n)

(ab)b
n+1
2
c
(αn + βn). (36)

By Theorem 3.1, we have the following matrix identities for even n and even p:(
un+p+1

a−1up

)
=

(
un+1 bcun
0 1

)(
up+1

a−1up

)
, (37)(

cbun+p+2

cup+1

)
=

(
un+1 bcun
0 1

)(
cbup+2

cup+1

)
. (38)

Theorem 3.2. Let n and p be even integers and q be any integer. Then, we have the following
identity for the generalized bi-periodic Horadam sequence:

un+pun+q − unun+p+q = (c)nupuq.

Proof. For the case of even n, even p and odd q, we do a computation for

(ab)n+
p
2

(
un+q a−1un

)(a−1un+p
−un+p+q

)
.

By (37) and (38), we get the following equations:

(ab)
n
2

(
un+q a−1un

)
= (ab)

n
2

(
un+1 a−1un

)( uq 0

bcuq−1 1

)

=
(
u1 a−1u0

) (
AT
)n( uq 0

bcuq−1 1

)
.

(39)

(ab)
n+p
2

(
a−1un+p
−un+p+q

)
= (ab)

n+p
2

(
1 0

−bcuq−1 uq

)(
a−1un+p
−un+p+1

)

=

(
1 0

−bcuq−1 uq

)(
0 −1
−abc ab

)n+p(
a−1u0
−u1

)
(40)
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We note that(
uq 0

bcuq−1 0

)(
1 0

−bcuq−1 uq

)
= uqI,

(
ab 1

abc 0

)(
0 −1
−abc ab

)
= −abcI.

By (39) and (40), we get

(ab)n+
p
2

(
un+q a−1un

)(a−1un+p
−un+p+q

)
= (uq)(−abc)n

(
u1 a−1u0

)( 0 −1
−abc ab

)p(
a−1u0
−u1

)

= uq(abc)
n(ab)

p
2

(
1 0

)( cup−1 −a−1up
−bcup up+1

)(
0

−1

)
= (ab)n+

p
2 cn(a−1)upuq.

By expanding the left side of the equation and cancelling common terms on both sides, we get the
desired result. For the case of even n, even p and even q, it can be proved in a similar way.

Remark 3. In the paper [11], a generalization of Theorem 3.2 is proved for the generalized
bi-periodic Horadam numbers wn.
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